## Supporting information

# $\mathrm{AlCl}_{3}$-Catalyzed $\boldsymbol{O}$-Alkylative Passerini Reaction of Isocyanides, Cinnamaldehydes and Various Aliphatic <br> <br> Alcohols for Accessing $\boldsymbol{\alpha}$-Alkoxy- $\boldsymbol{\beta}, \boldsymbol{\gamma}$-Enamides <br> <br> Alcohols for Accessing $\boldsymbol{\alpha}$-Alkoxy- $\boldsymbol{\beta}, \boldsymbol{\gamma}$-Enamides <br> Long-yun Lyu, ${ }^{a, b}$ Han Xie, ${ }^{a}$ Huaixue Mu, ${ }^{b}$ Qijie He, ${ }^{a}$ Zhaoxiang Bian ${ }^{* b}$ and Jun Wang ${ }^{* a}$ <br> ${ }^{a}$ Department of Chemistry, South University of Science and Technology of China, <br> Shenzhen, China, 518055 <br> ${ }^{b}$ School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 

## Table of Contents

General information ..... 2
Material and instrumentation. .....  2
General procedure for the synthesis of $\alpha$-alkoxy- $\beta, \gamma$-enamides (table 2 and 3 ). .....  2
Analytic data for the products in table 2 and 3. .....  3
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra in table 2 and 3 .....  9

## General information

## Material and instrumentation

NMR Spectra were recorded on a Bruker DPX-400 or DPX-500 spectrometer at 400 MHz or 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}$. Chemical shifts are reported in $\delta(\mathrm{ppm})$ referenced to an internal tetramethylsilane (TMS) standard or the residual deuterated solvent peaks and coupling constants $(J)$ were expressed in Hz. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer. ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source. All chemicals were purchased from Acros, Alfa Aesar and TCI, and used as received.

General procedure for the synthesis of $\alpha$-alkoxy- $\beta, \gamma$-enamides (Table 2 and 3).


To a solution of $\mathrm{AlCl}_{3}$ ( $0.2 \mathrm{mmol}, 0.20 \mathrm{eq}$ ) in indicated alcohols ( 4 mL ) in a sealed vial were added cinnamaldehyde $2(1 \mathrm{mmol}, 1.0 \mathrm{eq})$ and isocyanides $1(1.5 \mathrm{mmol}, 1.5 \mathrm{eq})$ in sequence. Then the result mixtures were stirred at $60{ }^{\circ} \mathrm{C}$ for indicated time. After the reactions were completed, the solvent was removed under reduced pressure. The residues were chromatographed on silica gel with petroleum ether-ethyl acetate ( $6: 1-1: 1$ ) as eluent to afford the desired products in $51-91 \%$ yields (Table 2 and 3 )

## Analytic data for the products in table 2 and 3.



4aaa was obtained in $85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.41-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-$ $3.77(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.30,136.28,133.34,128.50,127.90$, $126.70,125.01,82.83,77.22,76.97,76.72,57.35,47.71,33.13,33.03,25.54,24.79,24.77$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$274.1807, found 274.1791.


4aab

4aab was obtained in $63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=16.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dq}, J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.13(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.77$, $136.28,132.68,128.52,127.87,126.70,125.50,80.93,77.34,77.03,76.71,65.53,47.68,33.14,33.01$, 25.52, 24.78, 15.30. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$288.1964, found 288.1952.


4aac

4aac was obtained in $64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $16.0,1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $-3.69(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$, $1.22-1.10(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 170.36,136.42,131.70,128.51,127.76,126.67$, $126.26,78.69,77.35,77.03,76.71,71.78,47.64,33.12,32.98,25.52,24.73,22.54,22.24$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 302.2120$, found 302.2107.


4aad

4aad was obtained in $61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{dd}, J=$ $16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=6.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.48-$ $1.32(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.13(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.80$, $136.31,132.51,128.52,127.85,126.69,125.52,81.07,77.37,77.05,76.73,69.97,47.63,33.12,33.01$, 31.81, 25.51, 24.75, 19.45, 13.92. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 316.2277$, found 316.2277 .


4aae was obtained in $53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J$ $=10.3,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=15.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (dd, $J=15.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.71(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 171.25,136.69,130.14,128.48,127.83,127.54,126.60,73.48,47.53$, $33.09,32.97,29.71,28.02,27.73,25.52,24.76$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 316.2277$, found 316.2272.


4baa

4baa was obtained in $81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $16.0,1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=16.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, 1.37 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.51,136.20,133.50,128.53,127.95,126.72,124.96$, 83.14, 77.39, 77.07, 76.75, 57.31, 50.92, 28.77. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1651, found 248.1653.


4caa was obtained in $82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=6.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.30(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 170.30,136.12,133.52,128.55,128.00,126.72,124.78,82.77,77.35,77.04,76.72,57.43,38.78$, 31.65, 29.71, 20.07, 13.76. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1651$, found 248.1651 .


4daa was obtained in $75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.49-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{qd}, J=14.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=$ $6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 170.36,138.00,136.06,133.86,128.76$, $128.58,128.08,127.83,127.58,126.75,124.56,82.72,77.35,77.03,76.72,57.42,43.12,29.72$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$282.1494, found 282.1482 .


4eaa

4eaa was obtained in $72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.00(\mathrm{~m}, 10 \mathrm{H})$, $6.85(\mathrm{dt}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=16.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}$, 3H), 2.24 (s, 6H) ${ }^{13}{ }^{2} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 168.84,136.14,135.29,133.53,132.97,128.64$, 128.27, 128.11, 127.37, 126.74, 124.63, 83.15, 77.35, 77.04, 76.72, 57.83, 18.48. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$296.1650, found 296.1637.


5aba

5aba was obtained in $85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 169.47, 137.86,


5aca

5aca was obtained in $64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.93(\mathrm{~m}$, 2H), $6.67(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ $6.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.63(\mathrm{~s}, 1 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.28,132.29$, 128.31, 128.23, 124.62, 115.58, 115.37, 82.65, 57.42, 47.74, 33.15, 33.04, 25.51, 24.81. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}$292.1713, found 292.1710.


5ada was obtained in $76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $3 \mathrm{H}), 6.65(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ $6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.09,135.13$, 132.07, 131.67, 128.22, 125.77, 121.79, 82.58, 77.34, 77.22, 77.02, 76.70, 57.54, 47.76, 33.14, 33.03, 25.50, 24.81. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{2}(\mathrm{M}+\mathrm{H})^{+} 352.0912$, found 352.0909.


5aea
5aea was obtained in $73 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~d}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $4 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=$ $6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.15,134.68,133.61$, 132.07, 128.72, 127.92, 125.62, 82.58, 57.53, 47.76, 33.16, 33.05, 25.50, 24.82. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{C}_{1} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 308.1417$, found 308.1423.


5afa

5afa was obtained in $91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ $-6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.56,159.50$, 133.26, 128.97, 127.96, 122.53, 113.93, 82.90, 77.36, 77.04, 76.72, 57.20, 55.29, 47.69, 33.15, 33.05, 25.52, 24.82. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$304.1913, found 304.1910.


5aga

5aga was obtained in $80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}$, $3 \mathrm{H}), 6.93(\mathrm{dd}, J=15.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}$, $J=6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.42,135.66,135.33,131.46,130.28,127.86,126.15,126.08,125.89,82.94,77.36,77.04,76.72$, $57.26,47.71,33.13,33.05,25.52,24.83,19.84$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$288.1964, found 288.1966 .


5aha was obtained in $83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=16.1,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{dd}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.58,156.90,129.02,128.55,127.19,125.23,125.16,120.55,110.87,83.21,77.36,77.04,76.72$, $57.26,55.44,47.67,33.16,33.04,25.53,24.84$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 304.1913$, found 304.1903.


5afa was obtained in $75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.87(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{dd}, J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}$, $1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.09(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.45,147.99,147.53,133.32,130.65,123.02,121.60,108.23$,
$105.95,101.11,82.76,77.35,77.03,76.71,57.27,47.71,33.15,33.05,25.52,24.82$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 318.1705$, found 318.1706.


5aja
5aja was obtained in $58 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=16.0,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-$ $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33$ (m, 2H), $1.26-1.13(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.73,148.54,137.98,132.47,130.59$, $129.51,128.48,122.51,121.36,82.27,77.37,77.26,77.05,76.74,57.82,47.85,33.14,33.02,25.48$, 24.81. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 319.1658$, found 319.1650.


5aka
5aka was obtained in $56 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=16.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 173-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.68,140.66,132.40,131.02,129.18,127.18,118.89,111.11,82.30,77.42,77.30,77.10,76.78$, $57.87,47.85,33.12,32.99,25.46,24.80$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 299.1760$, found 299.1752.


5ala was obtained in $70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7,1 \mathrm{H})$, $7.19-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J$ $=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.0,1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.80$ - $169(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.81,154.76,131.50,129.01,126.76,123.12,122.99,119.52,116.24,83.27,77.39,77.07$, $76.75,56.69,48.07,32.98,32.91,25.50,24.80$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 290.1756$, found 290.1750.

## Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra in table 2 and 3.








| $\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$ |  |
| :---: | :---: |
| \% |  |
| $\checkmark$ | $\checkmark-T \sim 5$ |


4baa
${ }^{13} \mathbf{C}$ NMR $\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$






4eaa
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$





(









