Supporting Information

Chiral dirhodium catalysts derived from L-serine, L-threonine and L-cysteine: Design, synthesis and application

Jian Kang, Baofu Zhu, Jiewei Liu, Li Zhang,* and Cheng-Yong Su*

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

Table of Contents

Figure S1a: ¹ H NMR spectrum of 4S-NOSO	S1
Figure S1b: ¹³ C NMR spectrum of 4S-NOSO	S1
Figure S2a: ¹ H NMR spectrum of 4S-FLSO	S2
Figure S2b: ¹³ C NMR spectrum of 4S-FLSO	S2
Figure S2c: ¹⁹ F NMR spectrum of 4S-FLSO	S3
Figure S3a: ¹ H NMR spectrum of 4S-TFSO	S4
Figure S3b: ¹³ C NMR spectrum of 4S-TFSO	S4
Figure S3c: ¹⁹ F NMR spectrum of 4S-TFSO	
Figure S3d: DEPT 90 NMR spectrum of 4S-TFSO	
Figure S4a: ¹ H NMR spectrum of 4S-MESO	S6
Figure S4b: ¹³ C NMR spectrum of 4S-MESO	S6
Figure S5a: ¹ H NMR spectrum of 4S-TBSO	S7
Figure S5b: ¹³ C NMR spectrum of 4S-TBSO	
Figure S6a: ¹ H NMR spectrum of 4S-MOSO	S8
Figure S6b: ¹³ C NMR spectrum of 4S-MOSO	S8
Figure S7a: ¹ H NMR spectrum of 4S-DOSO	
Figure S8a: ¹ H NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MNOSO	S10
Figure S8b: ¹³ C NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MNOSO	S10
Figure S9a: ¹ H NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MFLSO	S11
Figure S9b: ¹³ C NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MFLSO	S11
Figure S9c: ¹⁹ F NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MFLSO	S12
Figure S10a: ¹ H NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MTFSO	S13
Figure S10b: ¹³ C NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MTFLSO	S13
Figure S10c: ¹⁹ F NMR spectrum of 4S,5R-MTFSO	S14
Figure S11a: ¹ H NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MMESO	
Figure S11b: ¹³ C NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MMESO	
Figure S12a: ¹ H NMR spectrum of 4 <i>S</i> ,5 <i>R</i> -MTBSO	S16

Figure S1	2b: ¹³ C NMI	R spectrur	n of 4<i>S</i>,5<i>R</i>-N	MTBSO		S16
Figure S1	3a: ¹ H NMR	spectrum	n of 4<i>S</i>,5<i>R</i>-M	IMOSO		S17
Figure S1	3b: ¹³ C NMI	R spectrur	n of 4<i>S</i>,5<i>R</i>-N	MMOSO		S17
Figure S1	4a: ¹ H NMR	spectrum	n of 4<i>S</i>,5<i>R</i>-M	IDOSO		S18
Figure S1	5a: ¹ H NMI	R spectrui	m of (4<i>R</i>)-3 -	-((4-nitropheny	l)sulfony	vl)thiazolidine-4-
carboxyli	ic acid					S19
Figure S1	6a: ¹ H NMR	spectrun	n of (4<i>R</i>)-3-((4-fluoropheny	l)sulfony	l)thiazolidine-4-
carboxyli	ic acid					
Figure S1	6b: ¹⁹ F NM	R spectru	um of (4 R)-3	8-((4-fluorophe	nyl)sulfo	nyl)thiazolidine-
4-carbox	ylic acid					
Figure	S17a:	¹ H	NMR	spectrum	of	(4 <i>R</i>)-3-((4-
trifluorop	phenyl)sulfo	onyl)thiaz	olidine-4-ca	rboxylic acid		
Figure	S17b:	¹⁹ F	NMR	spectrum	of	(4 <i>R</i>)-3-((4-
trifluorop	phenyl)sulfo	nyl)thiaz	olidine-4-ca	rboxylic acid		
Figure S1	8a: ¹ H NMR	spectrum	n of (4<i>R</i>)-3-t	osylthiazolidine	e-4-carbo	xylic acid
Figure	S19a:	$^{1}\mathrm{H}$	NMR	spectrum	of	(4R)-3-((4-(<i>tert</i> -
butyl)phe	enyl)sulfony	l)thiazoli	dine-4-carbo	oxylic acid		
Figure	S20a:	$^{1}\mathrm{H}$	NMR	spectrum	of	(4 <i>R</i>)-3-((4-
methoxy	phenyl)sulfo	onyl)thiaz	olidine-4-ca	rboxylic acid		
Figure	S21a:	$^{1}\mathrm{H}$	NMR	spectrum	of	(4 <i>R</i>)-3-((4- <i>n</i> -
dodecylp	henyl)sulfor	ıyl)thiazo	lidine-4-car	boxylic acid		
Figure S2	2a: ¹ H NMR	spectrum	n of 4R-NOS	Т		S26
Figure S2	2b: ¹³ C NMI	R spectrur	n of 4R-NO S	ST		
Figure S2	3a: ¹ H NMR	spectrum	n of 4R-FLS	Γ		
Figure S2	3b: ¹³ C NMI	R spectrur	n of 4R-FLS	5 T		
Figure S2	3c: ¹⁹ F NMF	R spectrun	n of 4R-FLS	Τ		S28
Figure S2	4a: ¹ H NMR	spectrum	n of 4R-TFS	Γ		
Figure S2	4b: ¹³ C NMI	R spectrur	n of 4R-TFS	ST		
Figure S2	4c: ¹⁹ F NMF	R spectrun	n of 4R-TFS	Т		
Figure S2	4d: DEPT 90) NMR sp	ectrum of 41	R-FLST		
Figure S2	5a: ¹ H NMR	spectrum	of 4R-MES	5 T		

Figure S25b: ¹³ C NMR spectrum of 4<i>R</i>-MEST	.S31
Figure S26a: ¹ H NMR spectrum of 4<i>R</i>-TBST	
Figure S26b: ¹³ C NMR spectrum of 4<i>R</i>-TBST	
Figure S27a: ¹ H NMR spectrum of 4<i>R</i>-MOST	
Figure S27b: ¹³ C NMR spectrum of 4<i>R</i>-MOST	. \$33
Figure S28a: ¹ H NMR spectrum of 4<i>R</i>-DOST	
Figure S29a: ¹ H NMR spectrum of Rh₂(4S-NOSO) ₄	.S35
Figure S29b: ¹³ C NMR spectrum of Rh₂(4S-NOSO) ₄	.835
Figure S30a: ¹ H NMR spectrum of Rh₂(4S-FLSO) ₄	. S36
Figure S30b: ¹³ C NMR spectrum of Rh₂(4S-FLSO) ₄	. S36
Figure S30c: ¹⁹ F NMR spectrum of Rh₂(4S-FLSO) ₄	
Figure S31a: ¹ H NMR spectrum of Rh₂(4S-TFSO) ₄	. S38
Figure S31b: ¹³ C NMR spectrum of Rh₂(4S-TFSO) ₄	. \$38
Figure S31c: ¹⁹ F NMR spectrum of Rh₂(4S-TFSO) ₄	. \$39
Figure S32a: ¹ H NMR spectrum of Rh₂(4S-MESO) ₄	. S40
Figure S32b: ¹³ C NMR spectrum of Rh₂(4S-MESO) ₄	.S40
Figure S33a: ¹ H NMR spectrum of Rh₂(4S-TBSO) ₄	. S41
Figure S33b: ¹³ C NMR spectrum of Rh₂(4S-TBSO) ₄	.S41
Figure S34a: ¹ H NMR spectrum of Rh₂(4S-MOSO) ₄	. S42
Figure S34b: ¹³ C NMR spectrum of Rh₂(4S-MOSO) ₄	
Figure S35a: ¹ H NMR spectrum of Rh₂(4S-DOSO) ₄	. \$43
Figure S36a: ¹ H NMR spectrum of Rh₂(4S,5<i>R</i>-MNOSO) ₄	.S44
Figure S36b: ¹³ C NMR spectrum of Rh₂(4S,5R-MNOSO) ₄	.S44
Figure S37a: ¹ H NMR spectrum of Rh₂(4S,5<i>R</i>-MFLSO) ₄	. \$45
Figure S37b: ¹³ C NMR spectrum of Rh₂(4S,5R-MFLSO) ₄	. \$45
Figure S37c: ¹⁹ F NMR spectrum of Rh₂(4<i>S</i>,5<i>R</i>-MFLSO)₄	. S46
Figure S38a: ¹ H NMR spectrum of Rh₂(4S,5<i>R</i>-MTFSO) ₄	.S47
Figure S38b: ¹³ C NMR spectrum of Rh₂(4S,5<i>R</i>-MTFSO) ₄	S47
Figure S38c: ¹⁹ F NMR spectrum of Rh₂(4<i>S</i>,5<i>R</i>-MTFSO)₄	. S48

Figure S39a: ¹ H NMR spectrum of Rh₂(4S,5R-MMESO) ₄	S49
Figure S39b: ¹³ C NMR spectrum of Rh₂(4S,5<i>R</i>-MMESO) ₄	
Figure S40a: ¹ H NMR spectrum of Rh₂(4<i>S</i>,5<i>R</i>-MTBSO)₄	
Figure S40b: ¹³ C NMR spectrum of Rh₂(4S,5<i>R</i>-MTBSO) ₄	
Figure S41a: ¹ H NMR spectrum of Rh₂(4<i>S</i>,5<i>R</i>-MMOSO)₄	
Figure S41b: ¹³ C NMR spectrum of Rh₂(4S,5<i>R</i>-MMOSO) ₄	
Figure S42a: ¹ H NMR spectrum of Rh₂(4<i>S</i>,5<i>R</i>-MMOSO)₄	
Figure S43a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-NOST) ₄	
Figure S43b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-NOST) ₄	
Figure S44a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-FLST) ₄	
Figure S44b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-FLST)₄	
Figure S44c: ¹⁹ F NMR spectrum of Rh₂(4<i>R</i>-FLST) ₄	
Figure S45a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-TFST) ₄	
Figure S45b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-TFST)₄	
Figure S45c: ¹⁹ F NMR spectrum of Rh₂(4<i>R</i>-TFST) ₄	
Figure S46a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-MEST) ₄	
Figure S46b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-MEST) ₄	
Figure S47a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-TBST) ₄	
Figure S47b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-TBST) ₄	
Figure S48a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-MOST) ₄	
Figure S48b: ¹³ C NMR spectrum of Rh₂(4<i>R</i>-MOST) ₄	
Figure S49a: ¹ H NMR spectrum of Rh₂(4<i>R</i>-DOST) ₄	
NMR spectrum of the obtained products	
Chiral HPLC traces	
X-ray crystallography data	

Figure S1s: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4S-NOSO

Figure S1b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4S-NOSO

Figure S2a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4S-FLSO

Figure S2b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4S-FLSO

Figure S2c: ¹⁹F NMR (282 MHz, DMSO-d₆) spectrum of 4S-FLSO

Figure S3a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4S-TFSO

Figure S3b: ¹⁹F NMR (282 MHz, DMSO-d₆) spectrum of 4S-TFSO

Figure S3c: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of 4*S*-TFSO

Figure S3d: DEPT 90 NMR (100 MHz, DMSO-d₆) spectrum of 4S-TFSO

Figure S4a: ¹H NMR (300 MHz, CDCl₃) spectrum of 4S-MESO

Figure S4b: ¹³C NMR (75 MHz, CDCl₃) spectrum of 4*S*-MESO

Figure S5a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4S-TBSO

Figure S5b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4S-TBSO

Figure S6a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4*S*-MOSO

Figure S6b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4*S*-MOSO

Figure S7a: ¹H NMR (400 MHz, CDCl₃) spectrum of 4S-DOSO

Figure S8a: ¹H NMR (400 MHz, acetone-d₆) spectrum of 4*S*,5*R*-MNOSO

Figure S8b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of 4*S*,5*R*-MNOSO

Figure S9b: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of 4*S*,5*R*-MFLSO

Figure S9c: ¹⁹F NMR (377 MHz, DMSO-d₆) spectrum of 4*S*,5*R*-MFLSO

Figure S10b: ¹³C NMR (100 MHz, CDCl₃) spectrum of 4*S*,5*R*-MTFSO

Figure S10c: ¹⁹F NMR (377 MHz, CDCl₃) spectrum of 4*S*,5*R*-MTFSO

Figure S11a: ¹H NMR (400 MHz, CDCl₃) spectrum of 4*S*,5*R*-MMESO

Figure S11b: ¹³C NMR (100 MHz, CDCl₃) spectrum of 4*S*,5*R*-MMESO

Figure S12a: ¹H NMR (400 MHz, CDCl₃) spectrum of 4*S*,5*R*-MTBSO

Figure S12b: ¹³C NMR (100 MHz, CDCl₃) spectrum of 4*S*,5*R*-MTBSO

Figure S13b: ¹³C NMR (100 MHz, CDCl₃) spectrum of 4*S*,5*R*-MMOSO

Figure S14a: ¹H NMR (400 MHz, CDCl₃) spectrum of 4*S*,5*R*-MDOSO

Figure S15: ¹H NMR (300 MHz, CDCl₃) spectrum of (4*R*)-3-((4-nitrophenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S16a: ¹H NMR (300 MHz, acetone-d₆) spectrum of (4*R*)-3-((4-fluorophenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S16b: ¹⁹F NMR (282 MHz, acetone-d₆) spectrum of (4*R*)-3-((4-fluorophenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S17a: ¹H NMR (300 MHz, CDCl₃) spectrum of (4*R*)-3-((4-trifluoromethyl)phenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S17b: ¹⁹F NMR (282 MHz, CDCl₃) spectrum of (4*R*)-3-((4-trifluoromethyl)phenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S18: ¹H NMR (300 MHz, CDCl₃) spectrum of (4*R*)-3-tosylthiazolidine-4carboxylic acid

Figure S19: ¹H NMR (300 MHz, CDCl₃) spectrum of (4*R*)-3-((4-(*tert*-butyl)phenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S20: ¹H NMR (300 MHz, DMSO-d₆) spectrum of (4*R*)-3-((4-methoxyphenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S21: ¹H NMR (400 MHz, CDCl₃) spectrum of (4*R*)-3-((4-*n*-dodecylphenyl)sulfonyl)thiazolidine-4-carboxylic acid

Figure S22a: ¹H NMR (300 MHz, acetone-d₆) spectrum of 4*R*-NOST

Figure S22b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4*R*-NOST

Figure S23a: ¹H NMR (300 MHz, acetone-d₆) spectrum of 4*R*-FLST

Figure S23b: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of 4*R*-FLST

Figure S23c: ¹⁹F NMR (377 MHz, acetone-d₆) spectrum of 4*R*-FLST

Figure S24a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4*R*-TFST

Figure S24b: ¹⁹F NMR (377 MHz, acetone-d₆) spectrum of 4*R*-TFST

Figure S24c: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4*R*-TFST

Figure S24d: DEPT 90 NMR (75 MHz, DMSO-d₆) spectrum of 4R-TFST

Figure S25a: ¹H NMR (300 MHz, acetone-d₆) spectrum of 4*R*-MEST

Figure S25b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4*R*-MEST

Figure S26a: ¹H NMR (300 MHz, DMSO-d₆) spectrum of 4*R*-TBST

Figure S26b: ¹³C NMR (75 MHz, DMSO-d₆) spectrum of 4*R*-TBST

Figure S27b: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of 4*R*-MOST

Figure S28: ¹H NMR (400 MHz, CDCl₃) spectrum of 4*R*-DOST

Figure S29a: ¹H NMR (300 MHz, acetone-d₆) spectrum of Rh₂(4S-NOSO)₄

Figure S29b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-NOSO)₄

Figure S30a: ¹H NMR (300 MHz, CDCl₃) spectrum of Rh₂(4S-FLSO)₄

Figure S30b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-FLSO)₄

Figure S30c: ¹⁹F NMR (282 MHz, CDCl₃) spectrum of Rh₂(4S-FLSO)₄

Figure S31a: ¹H NMR (300 MHz, CDCl₃) spectrum of Rh₂(4S-TFSO)₄

Figure S31b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-TFSO)₄

Figure S31c: ¹⁹F NMR (282 MHz, CDCl₃) spectrum of Rh₂(4S-TFSO)₄

Figure S32a: ¹H NMR (300 MHz, CDCl₃) spectrum of Rh₂(4S-MESO)₄

Figure S32b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-MESO)₄

Figure S33a: ¹H NMR (300 MHz, CDCl₃) spectrum of Rh₂(4S-TBSO)₄

Figure S33b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-TBSO)₄

Figure S34a: ¹H NMR (300 MHz, CDCl₃) spectrum of Rh₂(4S-MOSO)₄

Figure S34b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S-MOSO)₄

Figure S35a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4S-DOSO)₄

Figure S36a: ¹H NMR (400 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MNOSO)₄

Figure S36b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MNOSO)₄

Figure S37a: ¹H NMR (400 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MFLSO)₄

Figure S37b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MFLSO)₄

Figure S37c: ¹⁹F NMR (377 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MFLSO)₄

Figure S38a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MTFSO)₄

Figure S38b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MTFSO)₄

Figure S38c: ¹⁹F NMR (377 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MTFSO)₄

Figure S39a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MMESO)₄

Figure S39b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MMESO)₄

Figure S40a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MTBSO)₄

Figure S40b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MTBSO)₄

Figure S41a: ¹H NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4S,5R-MMOSO)₄

Figure S41b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*S*,5*R*-MMOSO)₄

Figure S42a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4S,5R-MDOSO)₄

Figure S43a: ¹H NMR (300 MHz, acetone-d₆) spectrum of Rh₂(4*R*-NOST)₄

Figure S43b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-NOST)₄

Figure S44a: ¹H NMR (300 MHz, acetone-d₆) spectrum of Rh₂(4*R*-FLST)₄

Figure S44b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-FLST)₄

Figure S44c: ¹⁹F NMR (377 MHz, acetone-d₆) spectrum of Rh₂(4*R*-FLST)₄

Figure S45a: ¹H NMR (300MHz, acetone-d₆) spectrum of Rh₂(4*R*-TFST)₄

Figure S45b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-TFST)₄

Figure S45c: ¹⁹F NMR (377 MHz, acetone-d₆) spectrum of Rh₂(4*R*-TFST)₄

Figure S46a: ¹H NMR (300 MHz, acetone-d₆) spectrum of Rh₂(4*R*-MEST)₄

Figure S46b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-MEST)₄

Figure S47a: ¹H NMR (300 MHz, acetone-d₆) spectrum of Rh₂(4*R*-TBST)₄

Figure S47b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-TBST)₄

Figure S48a: ¹H NMR (400 MHz, acetone-d₆) spectrum of Rh₂(4*R*-MOST)₄

Figure S48b: ¹³C NMR (100 MHz, acetone-d₆) spectrum of Rh₂(4*R*-MOST)₄

Figure S49a: ¹H NMR (400 MHz, CDCl₃) spectrum of Rh₂(4*R*-DOST)₄

Figure S50a: ¹H NMR (400 MHz, CDCl₃) spectrum of **1-((4-nitrophenyl)sulfonyl)**-**2-phenylaziridine (1)**

nitrophenyl)sulfonyl)-2-phenylaziridine (1)

Figure S51a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-Phenyl-1-((*E*)-styryl)cyclopropanecarboxylate (2a)

Figure S51b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-Phenyl-1-((*E*)-styryl)cyclopropanecarboxylate (2a)

Figure S52a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 1-((*E*)-Styryl)-2-(*o*-tolyl)cyclopropanecarboxylate (2b)

Figure S52b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 1-((*E*)-Styryl)-2-(*o*-tolyl)cyclopropanecarboxylate (2b)

Figure S53a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 1-((*E*)-Styryl)-2-(*p*-tolyl)cyclopropanecarboxylate (2c)

Figure S53b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 1-((*E*)-Styryl)-2-(*p*-tolyl)cyclopropanecarboxylate (2c)

Figure S54a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Fluorophenyl)-1-((*E*)-styryl)cyclopropanecarboxylate (2d)

Figure S54b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Fluorophenyl)-1-((*E*)-styryl)cyclopropanecarboxylate (2d)

Figure S54c: ¹⁹F NMR (377 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Fluorophenyl)-1-((*E*)-styryl)cyclopropanecarboxylate (2d)

Figure S55a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Bromophenyl)-1-((E)-styryl)cyclopropanecarboxylate (2e)

Figure S55b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Bromophenyl)-1-((E)-styryl)cyclopropanecarboxylate (2e)

Figure S56a: ¹H NMR (400 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Methoxyphenyl)-1-((E)-styryl)cyclopropanecarboxylate (2f)

Figure S56b: ¹³C NMR (100 MHz, CDCl₃) spectrum of (1*S*,2*S*)-Methyl 2-(4-Methoxyphenyl)-1-((E)-styryl)cyclopropanecarboxylate (2f)

Figure S57a: ¹H NMR (400 MHz, CDCl₃) spectrum of Methyl 2-Butyl-1-((E)styryl)cyclopropanecarboxylate (2g)

Figure S57b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Methyl 2-Butyl-1-((E)styryl)cyclopropanecarboxylate (2g)

Figure S58a: ¹H NMR (400 MHz, CDCl₃) spectrum of **Methyl 2,2-Diphenyl-1**styrylcyclopropanecarboxylate (2h)

Figure S58b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Methyl 2,2-Diphenyl-1styrylcyclopropanecarboxylate (2h)

Figure S59a: ¹H NMR (400 MHz, CDCl₃) spectrum of **Methyl 2-Methyl-3-phenyl-**1-((*E*)-styryl)cyclopropanecarboxylate (2i)

Figure S59b: ¹³C NMR (100 MHz, CDCl₃) spectrum of Methyl 2-Methyl-3phenyl-1-((*E*)-styryl)cyclopropanecarboxylate (2i)

Figure S60: HPLC Trace of 1-((4-nitrophenyl)sulfonyl)-2-phenylaziridine (1)

S75

Figure S65: HPLC Trace of (1*S*,2*S*)-Methyl 2-(4-Bromophenyl)-1-((E)styryl)cyclopropanecarboxylate (2e)

styrylcyclopropanecarboxylate (2h)

Figure S69: HPLC Trace of Methyl 2,2-Diphenyl-1styrylcyclopropanecarboxylate (2i)

Crystal structure determination

	4 <i>S</i> ,5 <i>R</i> -MNOSO	4R-MOST
Formula	$C_{11}H_{12}N_2O_7S$	$C_{11}H_{13}NO_7S_2$
Fw	316.29	335.34
T/K	293	299
Crystal system	tetragonal	orthorhombic
Space group	<i>P</i> 4 ₁ <i>P</i> 2 ₁ 2 ₁ 2 ₁	
$a/ m \AA$	15.41418(14)	7.82043(19)
$b/{ m \AA}$	15.41418(14)	10.2265(3)
$c/{ m \AA}$	5.95145(10)	17.4910(4)
$\alpha / ^{\circ}$	90.00	90.00
$eta / ^{\circ}$	90.00	90.00
γ/°	90.00	90.00
Volume/Å ³	1414.04(3)	1398.86(6)
Ζ	4	4
$ ho_{ m calc} g/ m cm^3$	1.471	1.592
μ/mm^{-1}	2.387	3.785
<i>F</i> (000)	644.0	696.0
Total/Unique	2557/16150	2188/6590
$R_{\rm int}$	0.0462	0.0298
Goodness-of-fit on F ²	0.879	0.945
<i>R1</i> , <i>wR</i> 2 [I>=2σ (I)]	0.0353, 0.1052	0.0355, 01101
R1, wR2 [all data]	0.0391, 0.1083	0.0375, 0.1128
Flack parameter	-0.03(2)	0.01(2)

 Table S1 Crystal data and structure refinement parameters for compounds 4S,5R-MNOSO and 4R-MOST.

4 <i>S</i> ,5 <i>R</i> -MNOSO				
	Length/Å		Angle/°	
S1-O4	1.424(2)	04-S1-O3	121.00(14)	
S1-O3	1.425(2)	O4-S1-N2	106.26(11)	
S1-N2	1.638(2)	Q4-S1-C4	107.61(12)	
S1-C4	1.767(2)	O3-S1-N2	105.85(12)	
O7-C10	1 317(3)	03-81-64	107.58(12)	
05-C7	1.414(3)	N2-S1-C4	107.97(11)	
05-C8	1.433(4)	C7-O5-C8	104.1(2)	
N1-C1	1.483(4)	02-N1-C1	117.4(4)	
N1-O2	1.213(5)	01-N1-C1	119.3(4)	
N1-01	1.192(6)	01-N1-02	123.3(4)	
N2-C9	1.469(3)	C9-N2-S1	119.88(17)	
N2-C7	1.469(3)	C7-N2-S1	117.59(17)	
C5-C4	1.393(4)	C7-N2-C9	106.8(2)	
C5-C6	1.381(4)	C6-C5-C4	119.0(3)	
C10-C9	1.510(3)	O7-C10-C9	110.3(2)	
C10-C6	1.210(3)	O6-C10-C9	125.3(2)	
C9-C8	1.565(4)	N2-C9-C10	111.50(19)	
C4-C3	1.389(4)	N2-C9-C8	102.6(2)	
C6-C1	1.378(5)	C10-C9-C8	111.35(19)	
C2-C3	1.384(4)	C5-C4-S1	120.0(2)	
C2-C1	1.380(4)	C3-C4-S1	118.06(19)	
C8-C11	1.512(4)	C3-C4-C5	122.0(2)	
	4 <i>R</i> -N	IOST		
	Length/Å		Angle/°	
C1-O1	1.425(5)	C3-C2-C7	120.3(3)	
C9-S2	1.776(3)	O1-C2-C3	125.6(3)	
C11-O6	1.326(4)	O1-C2-C7	114.1(3)	
C2-O1	1.365(4)	C2-C3-C4	119.9(3)	
C11-O7	1.190(4)	C5-C4-C3	119.9(3)	
C4-C5	1.381(5)	C4-C5-C6	119.8(3)	
C5-C6	1.395(5)	C4-C5-S1	120.7(3)	
C5-S1	1.741(3)	C6-C5-S1	119.5(3)	
O2-S1	1.429(2)	O7-C11-O6	124.9(3)	
O4-S2	1.438(3)	C8-N1-C10	115.5(2)	
O5-S2	1.419(3)	C8-N1-S1	118.3(2)	
O3-S1	1.417(3)	C10-N1-S1	116.8(2)	
N1-S1	1.655(2)	O4 S2-C8	108.20(16)	
C8-N1	1.447(4)	O5-S2-C9	113.32(18)	
C8-S2	1.932(6)	O5-S2-O4	118.48(18)	

 Table S2 Selected bond lengths (Å) and bond Angles (°) for 4S,5R-MNOSO and 4R-MOST.