Supporting Information

I₂-Catalyzed One-pot Synthesis of Pyrrolo[1,2-*a*]quinoxaline and

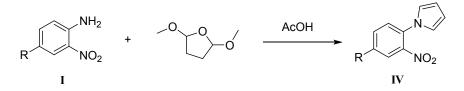
Imidazo[1,5-a]quinoxaline Derivatives via sp³ and sp²C-H Cross-

Dehydrogenative Coupling

Zeyuan Zhang," Caixia Xie," Xiaochen Tan," Gaolei Song," Leilin Wen," He Gao," Chen Ma*

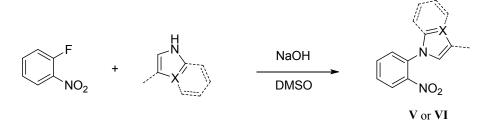
^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P R China. ^bState Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P R China E-mail: chenma@sdu.edu.cn

Table of Contents


1. General information	S2
2. Preparation of starting material	S2
3. General experimental procedures for the synthesis of Pyrrolo[1,2-a]quinoxa	line and
Imidazo[1,5-a]quinoxaline 4	S3
4. Spectra data	S4
5. References	S12
6. ¹ H NMR and ¹³ C NMR spectra	S13

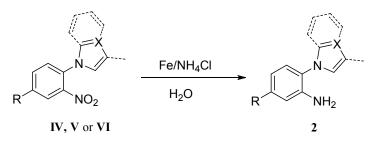
1. General information

2-(1*H*-pyrrol-1-yl)aniline, 2-(1*H*-indol-1-yl)aniline and 2-(1*H*-imidazol-1-yl)aniline were prepared according to literature procedures.¹⁻³ Other reagents were commercially available and were used without further purification. All reactions were monitored by thin-layer chromatography (TLC). ¹H NMR spectra were recorded on a Bruker Avance 300 spectrometer at 300 MHz, using CDCl₃, CD₂Cl₂ and DMSO- d_6 as solvent and tetramethylsilane (TMS) as internal standard. ¹³C NMR spectra were run in the same instrument at 75 MHz. HRMS spectra were determined on a Q-TOF6510 spectrograph (Agilent).

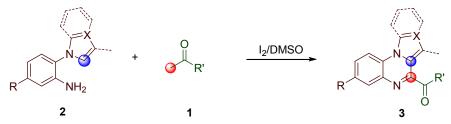

2. Preparation of starting material

2.1 General procedure for preparation of 1-(2-nitrophenyl)-1H-pyrrole IV¹

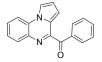
A mixture of *o*-nitroaniline I (10.00 mmol) and 2,5-dimethoxytetrahydrofuran (10.00 mmol) in acetic acid was refluxed for 1 h with vigorous stirring. The reaction mixture was cooled to ambient temperature and then poured into water. The precipitate was filtered and washed with water. The precipitate thus obtained was dissolved in ethyl acetate, dried over MgSO₄ and evaporated to dryness under reduced pressure. The residue thus obtained was filtered through a short pad of silica gel, using hexane/ethyl acetate as eluent, to afford compound **IV** which were directly used for next step without further purification.


2.2 General procedure for preparation of 1-(2-nitrophenyl)-1*H*-indole V and 1-(2-nitro Phenyl)-1*H*-imidazole VI²

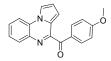
To a well-stirred solution of N-heterocycle (1.0 mmol) in DMSO (1.0 mL), NaOH (1.0 equiv.) and 1-fluoro-2-nitrobenzene (1.0 mmol) were added slowly. The reaction mixture was


stirred vigorously for 1–1.5 h at room temperature until no more starting material was detectable by TLC analysis. The reaction mixture was extracted with ethyl acetate and water and dried with MgSO₄. The solvent was evaporated *in vacuo* and the solid obtained was purified by column chromatography (petroleum ether/ethyl acetate) on silica gel to afford **V** or **VI** which were directly used for next step without further purification.

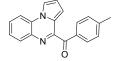
2.3 General procedure for preparation of 2-(1H-N-heterocycl-1-yl)aniline 2³


A mixture of iron powder (38.2 mmol), NH₄Cl (5.1 mmol) in H₂O (10 mL) was heated to 100 °C for 15 min. Then the mixture was added in substituted nitrobenzene **IV**, **V** or **VI** (10.0 mmol), and stirred for corresponding time (TLC monitored). Then the mixture was cooled to room temperature and neutralized with 5% NaHCO₃ solution(V/V) and extracted with ethyl acetate (4 × 30 mL) and dried with MgSO₄. The solvent was evaporated *in vacuo* and the solid obtained was purified by column chromatography (petroleum ether/ethyl acetate) on silica gel to afford **2** with good yields.

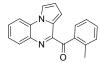
3. General experimental procedures for the synthesis of Pyrrolo[1,2-a]quinoxaline and Imidazo[1,5-a]quinoxaline 3


A mixture of arylethanone 1 (0.5 mmol), I_2 (0.1 mmol) in DMSO (2 mL) was heated to 120 °C (TLC monitored). Then the mixture was added in substituted aniline **2** (0.5 mmol), and stirred for corresponding time (TLC monitored). Then the mixture was cooled to room temperature and diluted with water (30 mL) and extracted with dichloromethane twice (2 × 30 mL). The extract was washed with 10% Na₂S₂O₃ solution(V/V), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **3**.

4. Spectra data Phenyl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3aa

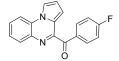

The title compound **3aa** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3aa** as a Yellow solid (0.118 g, 87%). ¹H NMR (300 M, DMSO-*d*₆): δ 8.64 (1H, *J* = 1.2, 2.7 Hz, dd), 8.41 (1H, *J* = 0.9, 8.4 Hz, dd), 8.07-8.04 (2H, m), 7.96 (1H, *J* = 1.5, 8.1 Hz, dd), 7.77-7.71 (2H, m), 7.61-7.53 (3H, m), 7.11 (1H, *J* = 1.2, 4.2 Hz, dd); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 192.12, 149.53, 135.48, 134.03, 133.85, 130.45, 130.27, 129.81, 128.56, 127.52, 125.78, 123.36, 116.83, 115.03, 114.87, 108.25; HRMS calcd for C₁₈H₁₂N₂O (M+H)⁺ 273.1022; found: 273.1009.

(4-Methoxyphenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3ab

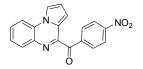

The title compound **3ab** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ab** as a Yellow solid (0.128 g, 85%). ¹H NMR (300 M, CDCl₃): δ 8.23-8.18 (2H, m), 8.08-8.04 (2H, m), 7.95 (1H, J = 0.9, 8.1 Hz, dd), 7.67-7.61 (1H, m), 7.54-7.48 (1H, m), 7.18 (1H, J = 1.2, 4.2 Hz, dd), 7.03-6.96 (3H, m), 3.92 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 190.81, 164.21, 150.76, 134.89, 133.45, 131.01, 129.17, 128.70, 127.97, 125.44, 124.51, 114.79, 114.69, 113.87, 113.76, 108.87, 55.55; HRMS calcd for C₁₉H₁₄N₂O₂ (M+H)⁺ 303.1128; found: 303.1157.

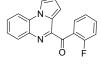
Pyrrolo[1,2-a]quinoxalin-4-yl(p-tolyl)methanone 3ac

The title compound **3ac** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ac** as a Yellow solid (00.123 g, 86%). ¹H NMR (300 M, CDCl₃): δ 8.10-8.05 (4H, m), 7.93 (1H, J = 0.6, 2.1 Hz, dd), 7.65-7.60 (1H, m), 7.52-7.46 (1H, m), 7.30 (2H, J = 8.1 Hz, d), 7.19 (1H, J = 1.2, 4.2 Hz, dd), 6.97 (1H, J = 2.7, 4.2 Hz, dd); ¹³C NMR (75 MHz, CDCl₃): δ 191.74, 150.25, 144.80, 134.39, 134.34, 133.22, 131.14, 130.82, 129.37, 129.16, 127.91, 125.57, 124.35, 115.03, 113.90, 109.34, 21.84; HRMS calcd for C₁₉H₁₄N₂O (M+H)⁺ 287.1179; found: 287.1174.

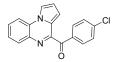

Pyrrolo[1,2-a]quinoxalin-4-yl(o-tolyl)methanone 3ad

The title compound **3ad** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ad** as a Yellow solid (0.123 g, 88%). ¹H NMR (300 M, CDCl₃): δ 8.03-8.02 (1H, m), 7.97 (1H, J = 1.2, 8.1 Hz, dd), 7.92 (1H, J = 8.1 Hz, d), 7.65-7.58 (2H, m), 7.45 (2H, J = 7.8 Hz, t), 7.34-7.31 (2H, m), 7.28-7.23 (1H, m), 6.98 (1H, J = 3.0, 4.2 Hz, dd), 2.54 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 195.79, 150.18, 139.37, 139.33, 136.66, 136.61, 134.86, 131.68, 131.64, 131.59, 131.55, 131.48, 131.29, 129.59, 127.99, 125.40, 125.18, 124.26, 115.05,

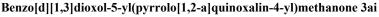

114.65, 113.82, 109.12, 21.06; HRMS calcd for $C_{19}H_{14}N_2O$ (M+H)⁺ 287.1179; found: 287.1195.

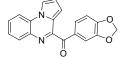

The title compound **3ae** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ae** as a Yellow solid (0.116 g, 80%). ¹H NMR (300 M, CD₂Cl₂): δ 8.26-8.21 (2H, m), 8.10 (1H, *J* = 1.5Hz, d), 8.03-7.93 (2H, m), 7.70-7.65 (1H, m), 7.55-7.50 (1H, m), 7.26-7.19 (3H, m), 7.01-6.99 (1H, m); ¹³C NMR (75 MHz, CD₂Cl₂): δ 190.91, 166.41 (¹*J*_{*C,F*} = 253.5, d), 149.77, 134.94, 134.06 (³*J*_{*C,F*} = 9, d), 132.87 (⁴*J*_{*C,F*} = 4, d), 131.20, 130.04, 128.36, 125.92, 124.67, 115.76 (²*J*_{*C,F*} = 21.75, d), 115.50, 115.23, 114.43, 109.30; HRMS calcd for C₁₈H₁₁FN₂O (M+H)⁺ 291.0928; found: 291.0935.

(4-Nitrophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3af

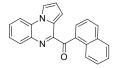

The title compound **3af** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3af** as a Yellow solid (0.130 g, 82%). ¹H NMR (300 M, CD₂Cl₂): δ 8.38-8.32 (4H, m), 8.15 (1H, *J* = 1.2, 2.7 Hz, dd), 8.05-8.00 (2H, m), 7.75-7.69 (1H, m), 7.58-7.52 (1H, m), 7.45 (1H, *J* = 0.9, 4.2 Hz, dd), 7.07 (1H, *J* = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.10, 148.11, 141.88, 134.69, 132.34, 131.39, 130.76, 128.48, 126.10, 124.40, 123.52, 115.77, 115.68, 114.54, 109.78; HRMS calcd for C₁₈H₁₁N₃O₃ (M+H)⁺ 318.0873; found: 318.0857.

(2-Fluorophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3ag


The title compound **3ag** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ag** as a Yellow solid (0.117 g, 81%). ¹H NMR (300 M, CDCl₃): δ 8.04 (1H, J = 0.9, 2.7 Hz, dd), 7.97 (1H, J = 1.5, 2.1 Hz, dd), 7.91(1H, J = 0.9, 8.1 Hz, dd), 7.88-7.83 (1H, m), 7.64-7.54 (2H, m), 7.48-7.41 (2H, m), 7.33-7.27 (1H, m), 7.17-7.11 (1H, m), 7.00 (1H, J = 2.7, 4.2 Hz, dd); ¹³C NMR (75 MHz, CDCl₃): δ 191.71, 161.54 (¹ $_{CF} = 258.8, d$), 148.96, 134.78, 134.19 (³ $_{CF} = 8.3, d$), 131.67 (⁴ $_{CF} = 2.3, d$), 131.26, 129.84, 128.18, 126.29 (² $_{J_{CF}} = 12.8, d$), 125.45, 124.10 (³ $_{J_{CF}} = 3.8, d$), 123.67, 116.30 (² $_{J_{CF}} = 21.8, d$), 115.21, 114.79, 113.89, 109.06; HRMS calcd for C₁₈H₁₁FN₂O (M+H)⁺ 291.0928; found: 291.0904.

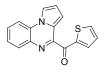

(4-Chlorophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3ah

The title compound **3ah** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ah** as a Yellow solid (0.127 g, 83%). ¹H NMR (300 M, CDCl₃): δ 8.16-8.12 (2H, m), 8.08-8.05 (2H, m), 7.94 (1H, *J* = 10.8 Hz, t), 7.68-7.62 (1H, m), 7.54-7.47 (3H, m), 7.29-7.26 (1H, m), 7.00 (1H, *J* = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz,


CDCl₃): δ 190.79, 157.87, 149.01, 140.18, 134.27, 132.47, 130.93, 129.79, 128.70, 125.69, 115.26, 115.18, 113.96, 109.50; HRMS calcd for C₁₈H₁₁ClN₂O (M+H)⁺ 307.0633; found: 307.0607.

The title compound **3ai** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ai** as a Yellow solid (0.135 g, 86%). ¹H NMR (300 M, CDCl₃): δ 8.04 (2H, J = 1.2, 8.4 Hz, dd), 7.92 (1H, J = 0.9, 8.1 Hz, dd), 7.79 (1H, J = 1.5, 8.1 Hz, dd), 7.69 (1H, J = 1.5 Hz, d), 7.65-7.59 (1H, m), 7.52-7.46 (1H, m), 7.13 (1H, J = 1.2, 4.2 Hz, dd), 6.95 (1H, J = 3.0, 4.2 Hz, dd), 6.88 (1H, J = 8.4 Hz, d), 6.07 (2H, s); ¹³C NMR (75 MHz, CDCl₃): δ 190.35, 152.54, 150.54, 148.04, 134.74, 130.97, 130.28, 129.25, 128.33, 127.91, 125.48, 124.41, 114.83, 114.79, 113.87, 110.23, 108.85, 107.98, 101.93; HRMS calcd for C₁₉H₁₂N₂O₃ (M+H)⁺ 317.0921; found: 317.0897.

Naphthalen-1-yl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3aj

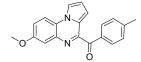


The title compound **3aj** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3aj** as a Yellow solid (130 g, 81%). ¹H NMR (300 M, CDCl₃): δ 8.62-8.58 (1H, m), 8.16 (1H, J = 1.2, 2.7 Hz, dd), 8.12 (1H, J = 8.1 Hz, d), 8.03-7.98 (2H, m), 7.95 (J = 1.2, 8.1 Hz, dd), 7.87 (J = 1.2, 7.2 Hz, dd), 7.71-7.60 (3H, m), 7.58-7.47 (2H, m), 7.40 (J = 1.2, 4.2 Hz, dd), 7.06 (J = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 194.75, 154.89, 150.42, 134.03, 133,87, 133.07, 131.60, 131.27, 130.64, 129.79, 128.56, 127.91, 126.49, 125.61, 124.25, 115.38, 115.17, 114.07, 109.46; HRMS calcd for C₂₂H₁₄N₂O (M+H)⁺ 323.1179; found: 323.1172. Naphthalen-2-yl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone 3ak

Naphthalen-2-yi(pyrrolo[1,2-a]quilloxann-4-yi)methan

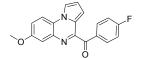
The title compound **3ak** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ak** as a Yellow solid (0.136 g, 85%). ¹H NMR (300 M, CDCl₃): δ 8.69 (1H, s), 8.24 (1H, J = 1.8, 8.7 Hz, dd), 8.07-8.04 (2H, m), 7.97-7.89 (4H, m), 7.68-7.59 (2H, m), 7.56-7.48 (2H, m), 7.23 (1H, J = 1.2, 3.9 Hz, dd), 6.98 (1H, J = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.13, 150.14, 135.80, 134.76, 133.55, 133.36, 132.34, 130.85, 129.78, 129.46, 128.80, 128.11, 128.00, 127.74, 126.73, 125.49, 124.44, 115.07, 114.76, 114.03, 108.77; HRMS calcd for C₂₂H₁₄N₂O (M+H)⁺ 323.1179; found: 323.1176.

Pyrrolo[1,2-a]quinoxalin-4-yl(thiophen-2-yl)methanone 3al

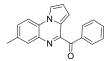

The title compound **3al** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3al** as a Yellow solid

(0.118 g, 85%). ¹H NMR (300 M, CD₂Cl₂): δ 8.34 (1H, J = 1.2, 3.9 Hz, dd), 8.15 (1H, J = 1.2, 8.1 Hz, dd), 8.03 (1H, J = 0.9, 2.7 Hz, dd), 7.93 (1H, J = 0.9, 8.1 Hz, dd), 7.79 (1H, J = 1.2, 4.8 Hz, dd), 7.68-7.62 (1H, m), 7.60 (1H, J = 1.2, 4.2 Hz, dd), 7.55-7.49 (1H, m), 7.21 (1H, J = 3.9, 4.8 Hz, dd), 7.00 (1H, J = 3.0, 4.2 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 182.88, 147.89, 140.19, 136.61, 136.35, 134.39, 130.77, 129.96, 128.21, 127.50, 125.51, 123.75, 115.05, 114.96, 114.05, 109.60; HRMS calcd for C₁₆H₁₀N₂OS (M+H)⁺ 279.0587; found: 279.0583.

(7-Methoxypyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone 3ba

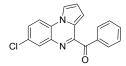

The title compound **3ba** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 10 : 1 : 1 gave **3ba** as a Yellow solid (0.129 g, 86%). ¹H NMR (300 M, CD₂Cl₂): δ 8.12-8.10 (2H, m), 8.02 (1H, J = 1.5 Hz, d), 7.89 (1H, J = 9.0 Hz, d), 7.68-7.64 (1H, m), 7.55-7.47 (3H, m), 7.27 (1H, J = 2.7, 9.0 Hz, dd), 7.18 (1H, J = 0.9, 3.9 Hz, dd), 6.95 (1H, J = 2.7, 4.2 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.75, 157.84, 150.32, 136.61, 136.14, 133.79, 131.16, 128.67, 124.55, 122.66, 119.08, 115.33, 115.07, 114.88, 112.18, 108.77, 56.20; HRMS calcd for C₁₉H₁₄N₂O₂ (M+H)⁺ 303.1128; found: 303.1120.

(7-Methoxypyrrolo[1,2-a]quinoxalin-4-yl)(p-tolyl)methanone 3bc

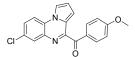

The title compound **3bc** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 10 : 1 : 1 gave **3bc** as a Yellow solid (0.129 g, 82%). ¹H NMR (300 M, CD₂Cl₂): δ 8.03-8.00 (3H, m), 7.88 (1H, J = 9.0 Hz, d), 7.47 (1H, J = 2.7 Hz, d), 7.33 (2H, J = 8.1 Hz, d), 7.25 (1H, J = 2.7, 9.0 Hz, dd), 7.13 (1H, J = 1.2, 4.2 Hz, dd), 6.93 (1H, J = 2.7, 4.2 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.31, 157.82, 150.77, 145.12, 136.14, 133.90, 131.24, 129.42, 124.57, 122.62, 118.87, 115.31, 115.06, 114.80, 112.13, 108.72, 56.19, 21.91; HRMS calcd for C₂₀H₁₆N₂O₂ (M+H)⁺ 317.1285; found: 317.1286.

(4-Fluorophenyl)(7-methoxypyrrolo[1,2-a]quinoxalin-4-yl)methanone 3be

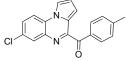
The title compound **3be** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 10 : 1 : 1 gave **3be** as a Yellow solid (0.137 g; 86%). ¹H NMR (300 M, CD₂Cl₂): δ 8.21 (2H, J = 2.7, 8.7 Hz, dd), 8.02 (1H, J = 1.2 Hz, d), 7.89 (1H, J = 9.0 Hz, d), 7.47 (1H, J = 2.7 Hz, d), 7.29-7.18 (4H, m), 6.97-6.95 (1H, m), 3.92 (1H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.03, 167.09 (¹ $J_{C,F}$ = 253.5, d), 157.86, 149.98, 136.07, 134.04 (³ $J_{C,F}$ = 9.8, d), 132.93 (⁴ $J_{C,F}$ = 3.0, d), 124.50, 122.67, 119.17, 115.77 (² $J_{C,F}$ = 21.8, d), 115.35, 115.11, 114.93, 112.20, 108.83, 56.20; HRMS calcd for C₁₉H₁₃FN₂O₂ (M+H)⁺ 321.1034; found: 321.1033.


(7-Methylpyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone 3ca

The title compound 3ca was prepared according to general procedure 3. A purification by flash


chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ca** as a Yellow solid (0.121 g, 85%). ¹H NMR (300 M, CD₂Cl₂): δ 8.14-8.10 (2H, m), 8.05 (1H, *J* = 1.5, 2.7 Hz, dd), 7.87 (1H, *J* = 8.7 Hz, d), 7.81 (1H, *J* = 0.6 Hz, d), 7.68-7.63 (1H, m), 7.54-7.47 (3H, m), 7.20 (1H, *J* = 1.2, 4.2 Hz, dd), 6.96 (1H, *J* = 2.4, 3.9 Hz, dd), 2.51 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.74, 149.99, 136.62, 136.00, 134.96, 133.74, 131.18, 131.12, 130.89, 128.61, 126.22, 124.67, 115.16, 114.91, 114.11, 108.89, 21.10; HRMS calcd for C₁₉H₁₄N₂O (M+H)⁺ 287.1179; found: 287.1184.

(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone 3da

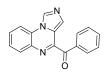

The title compound **3da** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3da** as a Yellow solid (0.119 g, 78%). ¹H NMR (300 M, CD₂Cl₂): δ 8.13-8.10 (4H, m), 8.06 (2H, J = 0.9, 2.4 Hz, dd), 7.99-7.99 (2H, J = 0.9, 2.4 Hz, d), 7.91 (2H, J = 9.0 Hz, d), 7.69-7.64 (2H, m), 7.60 (2H, J = 2.4, 8.7 Hz, dd), 7.55-7.50 (4H, m), 7.22 (2H, J = 0.9, 3.9 Hz, dd), 7.00 (2H, J = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.34, 151.14, 136.22, 136.02, 134.00, 131.18, 130.90, 130.39, 129.74, 128.71, 127.04, 124.68, 115.88, 115.73, 115.57, 109.80; HRMS calcd for C₁₈H₁₁ClN₂O (M+H)⁺ 307.0633; found: 307.0610.

(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(4-methoxyphenyl)methanone 3db

The title compound **3db** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3db** as a Yellow solid (0.129 g, 77%). ¹H NMR (300 M, CD₂Cl₂): δ 8.05-8.01 (2H, m), 7.96 (1H, *J* = 0.9, 2.4 Hz, dd), 7.92 (1H, *J* = 2.4 Hz, d), 7.82 (1H, *J* = 9.0 Hz, d), 7.51 (H, *J* = 2.4, 9.0 Hz, dd), 7.05 (1H, *J* = 1.2, 4.2 Hz, dd), 6.93-6.88 (3H, m), 3.81(3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 190.63, 164.73, 151.95, 136.05, 133.58, 130.86, 130.22, 129.47, 128.83, 126.99, 124.74, 115.87, 115.71, 115.44, 114.09, 109.74, 56.00; HRMS calcd for C₁₉H₁₃ClN₂O₂ (M+H)⁺ 337.0738; found: 337.0730.

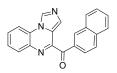
(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(p-tolyl)methanone 3dc

The title compound **3dc** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3dc** as a Yellow solid (0.123 g, 77%). ¹H NMR (300 M, CD₂Cl₂): δ 8.08 (1H, J = 1.2, 2.7 Hz, dd), 8.06-8.02 (3H, m), 7.94 (1H, J = 9.0 Hz, d), 7.63 (1H, J = 2.4, 8.7 Hz, dd), 7.36 (2H, J = 7.8 Hz, d), 7.20 (1H, J = 1.2, 3.9 Hz, dd), 7.02 (1H, J = 2.7, 3.9 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.90, 151.60, 145.37, 136.06, 133.55, 131.25, 130.87, 130.31, 129.58, 129.47, 127.02, 124.70, 115.84, 115.71, 115.48, 109.73, 21.92; HRMS calcd for C₁₉H₁₃ClN₂O (M+H)⁺ 321.0789; found: 321.0762.


(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(4-fluorophenyl)methanone 3de

The title compound **3de** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3de** as a Yellow solid (0.126 g, 78%). ¹H NMR (300 M, CD₂Cl₂): δ 8.24-8.18 (4H, m), 8.07 (2H, J = 1.2, 2.7 Hz, dd), 8.01 (2H, J = 2.4 Hz, d), 7.93 (2H, J = 8.7 Hz, d), 7.62 (2H, J = 2.1, 8.7 Hz, dd), 7.26-7.17 (6H, m), 7.01 (2H, J = 3.0, 4.2 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 190.61, 166.51 (¹*J*_{C,F} = 253.5, d), 150.78, 135.91, 134.12, 133.99, 132.59 (⁴*J*_{C,F} = 3.0, d), 130.96, 130.13 (²*J*_{C,F} = 37.5, d), 127.06, 124.62, 115.98, 115.71(³*J*_{C,F} = 8.3, d), 115.69, 109.93; HRMS calcd for C₁₈H₁₀ClFN₂O (M+H)⁺ 325.0539; found: 325.0549.

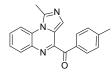
(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(furan-2-yl)methanone 3dm


The title compound **3dm** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3dm** as a Yellow solid (0.126 g, 85%). ¹H NMR (300 M, CD₂Cl₂): δ 8.06-8.04 (2H, m), 7.91 (1H, *J* = 3.3 Hz, t), 7.87 (1H, s), 7.81 (1H, s), 7.60 (1H, *J* = 2.1, 9.0 Hz, dd), 7.48 (1H, *J* = 3.6 Hz, d), 7.02-7.00 (1H, m), 6.67 (1H, *J* = 1.8 Hz, d); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.17, 185.01, 178.50, 151.49, 149.45, 148.67, 135.95, 130.90, 130.47, 130.05, 127.24, 124.62, 124.19, 115.82, 112.90, 110.38; HRMS calcd for C₁₆H₉ClN₂O₂ (M+H)⁺ 297.0425; found: 297.0405.

Imidazo[1,5-a]quinoxalin-4-yl(phenyl)methanone 3ea

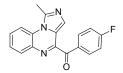
The title compound **3ea** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3ea** as a Yellow solid (0.114 g, 84%). ¹H NMR (300 M, CD₂Cl₂): δ 8.79 (1H, s), 8.23-8.19 (3H, m), 8.07-8.02 (2H, m), 7.75-7.58 (3H, m), 7.57-7.52 (2H, m); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.51, 149.79, 136.07, 135.34, 133.89, 131.70, 131.35, 131.11, 129.84, 129.29, 128.67, 127.63, 125.85, 122.91, 114.96; HRMS calcd for C₁₇H₁₁N₃O (M+H)⁺ 274.0975; found: 274.0959.

Imidazo[1,5-a]quinoxalin-4-yl(naphthalen-2-yl)methanone 3ej



The title compound **3ej** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3ej** as a Yellow solid (0.135 g, 84%). ¹H NMR (300 M, CD₂Cl₂): δ 8.72 (2H, *J* =4.2 Hz, d), 8.17-8.10 (2H, m), 8.02-7.96 (2H, m), 7.92-7.85 (3H, m), 7.68-7.63 (1H, m), 7.60-7.46 (3H, m); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.31, 150.14, 136.17, 135.42, 134.13, 133.29, 132.69, 131.76, 131.09, 130.25, 129.85, 129.31, 129.25, 128.52, 128.15, 127.66, 127.19, 126.07, 125.86, 114.99; HRMS calcd for C₂₁H₁₃N₃O (M+H)⁺ 324.1131; found: 324.1136.

(1-Methylimidazo[1,5-a]quinoxalin-4-yl)(phenyl)methanone 3fa


The title compound **3fa** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3fa** as a Yellow solid (0.126 g, 88%). ¹H NMR (300 M, CD₂Cl₂): δ 8.30 (1H, J = 0.6, 8.4 Hz, dd), 8.21-8.19 (2H, m), 8.07-8.04 (2H, m), 7.73-7.68 (2H, m), 7.63-7.54 (3H, m), 3.16 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.69, 150.21, 142.64, 136.45, 136.14, 133.89, 131.55, 131.27, 130.20, 128.66, 128.04, 127.56, 126.94, 124.33, 116.23, 19.01; HRMS calcd for C₁₈H₁₃N₃O (M+H)⁺ 288.1131; found: 288.1149.

(1-Methylimidazo[1,5-a]quinoxalin-4-yl)(p-tolyl)methanone 3fc

The title compound **3fc** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3fc** as a Yellow solid (0.129 g, 86%). ¹H NMR (300 M, CD₂Cl₂): δ 8.31 (1H, J = 1.2, 8.4 Hz, dd), 8.12-8.09 (2H, m), 8.06 (1H, J = 1.8, 8.1 Hz, dd), 7.99 (1H, s), 7.74-7.68 (1H, m), 7.64-7.58 (1H, m), 7.37 (2H, J = 8.1 Hz, d), 3.16 (3H, s), 2.50 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.26, 150.63, 145.25, 142.59, 136.51, 133.45, 131.49, 131.36, 130.05, 129.42, 128.01, 127.37, 126.94, 124.38, 116.23, 21.91, 18.96; HRMS calcd for C₁₉H₁₅N₃O (M+H)⁺ 302.1288; found: 302.1289.

(4-Fluorophenyl)(1-methylimidazo[1,5-a]quinoxalin-4-yl)methanone 3fe

The title compound **3fe** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3fe** as a Yellow solid (0.126 g, 83%). ¹H NMR (300 M, CD₂Cl₂): δ 8.35-8.28 (3H, m), 8.09-8.05 (2H, m), 7.76-7.70 (1H, m), 7.65-7.59 (1H, m), 7.29-7.22 (2H, m), 3.17 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 189.91, 166.46 (¹*J*_{CF} = 253.5, d), 149.96, 142.67, 136.38, 134.25 (³*J*_{CF} = 9.8, d), 132.54 (⁴*J*_{CF} = 3.0, d), 131.58, 130.34, 128.03, 127.54, 127.02, 124.24, 116.26, 115.92, 115.63(²*J*_{CF} = 21.8, d), 18.94; HRMS calcd for C₁₈H₁₂FN₃O (M+H)⁺ 306.1037; found: 306.1036.

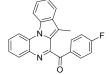
(3-Methylimidazo[1,5-a]quinoxalin-4-yl)(phenyl)methanone 3ga

The title compound **3ga** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3ga** as a Yellow solid (0.129 g, 90%). ¹H NMR (300 M, CD₂Cl₂): δ 8.68 (1H, s), 8.07-8.04 (2H, m), 7.99-7.93 (2H, m), 7.72-7.61 (2H, m), 7.58-7.51 (3H, m), 2.35 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.23, 152.78, 137.95, 135.48, 135.34, 134.80, 130.89, 130.76, 129.84, 129.17, 128.68, 127.36, 125.89, 119.14, 114.63, 15.18; HRMS calcd for C₁₈H₁₃N₃O (M+H)⁺ 288.1131; found: 288.1125.

(4-Methoxyphenyl)(3-methylimidazo[1,5-a]quinoxalin-4-yl)methanone 3gb

The title compound **3gb** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 5 : 1 : 1 gave **3gb** as a Yellow solid (0.138 g, 87%). ¹H NMR (300 M, CD₂Cl₂): δ 8.70 (1H, s), 8.08-8.04 (2H, m), 8.01-7.96 (2H, m), 7.69-7.63 (1H, m), 7.60-7.55 (1H, m), 7.05-7.02 (2H, m), 3.93 (3H, s), 2.37 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 190.78, 165.20, 153.22, 137.83, 135.46, 133.29, 130.69, 129.62, 128.59, 128.40, 127.31, 125.85, 119.14, 114.61, 114.50, 15.05; HRMS calcd for C₁₉H₁₅N₃O₂ (M+H)⁺ 318.1237; found: 318.1238.

Indolo[1,2-a]quinoxalin-6-yl(phenyl)methanone 3ha


The title compound **3ha** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ha** as a Red solid (0.116 g, 72%). ¹H NMR (300 M, CD₂Cl₂): δ 8.63 (1H, J = 0.9, 8.4 Hz, dd), 8.57 (1H, J = 0.6, 8.7 Hz, dd), 8.22-8.18 (2H, m), 8.10-8.04 (2H, m), 7.83-7.77 (1H, m), 7.75-7.64 (2H, m), 7.60-7.51 (5H, m); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.35, 152.10, 136.30, 135.19, 134.04, 133.13, 131.68, 131.47, 131.17, 130.85, 129.88, 128.78, 127.91, 125.17, 124.73, 123.50, 123.39, 115.38, 114.91, 102.64; HRMS calcd for C₂₂H₁₄N₂O (M+H)⁺ 323.1179; found: 323.1180.

(7-Methylindolo[1,2-a]quinoxalin-6-yl)(phenyl)methanone 3ia

The title compound **3ia** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ia** as a Red solid (0.146 g, 81%). ¹H NMR (300 M, CD₂Cl₂): δ 8.55-8.49 (2H, m), 8.08-8.05 (2H, m), 7.97-7.93 (2H, m), 7.72-7.60 (3H, m), 7.56-7.41 (4H, m), 2.35 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 193.40, 154.89, 135.80, 135.21, 134.78, 132.58, 131.44, 130.79, 130.75, 130.19, 129.84, 129.27, 125.47, 124.41, 124.35, 122.73, 121.23, 115.16, 114.75, 110.47, 10.15; HRMS calcd for C₂₃H₁₆N₂O (M+H)⁺ 337.1335; found: 337.1320.

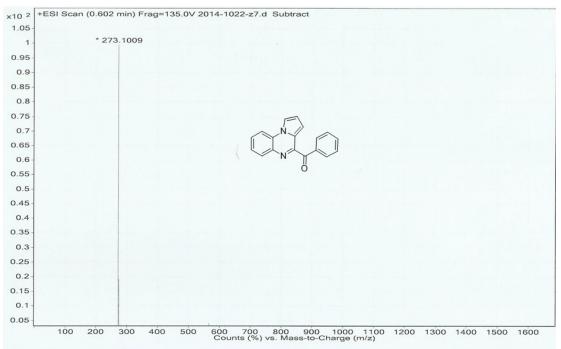
(4-Fluorophenyl)(7-methylindolo[1,2-a]quinoxalin-6-yl)methanone 3ie

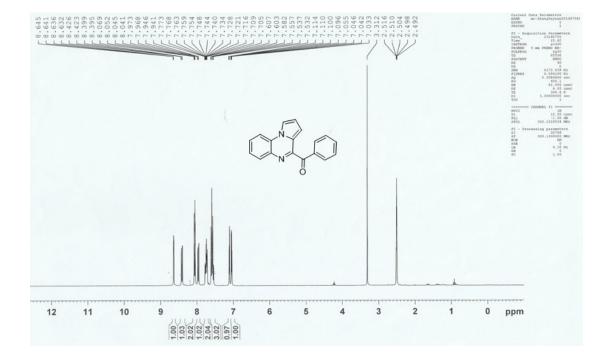
The title compound **3ie** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3ie** as a Red solid (0.141 g, 80%). ¹H NMR (300 M, CD₂Cl₂): δ 8.54-8.48 (2H, m), 8.16-8.09 (2H, m), 7.95 (2H, *J* = 1.8, 8.1 Hz, dd), 7.72-7.60 (2H, m), 7.52-7.41 (2H, m), 7.25-7.17 (2H, m), 2.35 (3H, s); ¹³C NMR (75 MHz, CD₂Cl₂): δ 191.73, 166.96 (¹*J*_{C,F} = 255.0, d), 154.44, 135.04, 133.76 (³*J*_{C,F} = 9.8, d), 132.60, 132.31 (⁴*J*_{C,F} = 3.0, d), 131.43, 130.75, 130.18, 129.96, 125.58, 124.39, 124.29, 122.79, 121.25, 116.50 (²*J*_{C,F} = 21.8, d), 115.18, 114.75, 110.59, 10.17; HRMS calcd for C₂₃H₁₅FN₂O (M+H)⁺ 355.1241; found: 355.1243.

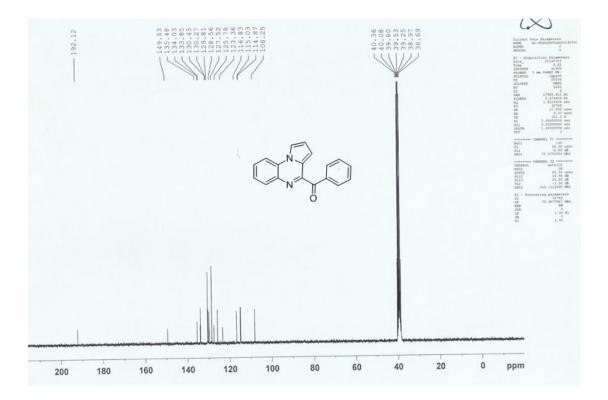
(7-fluoropyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone 3la

The title compound **3la** was prepared according to general procedure 3. A purification by flash chromatography in petroleum ether : ethyl acetate : dichloromethane = 8 : 1 : 1 gave **3la** as a yellow solid (0.109 g, 75%). ¹H NMR (300 M, CD₂Cl₂): δ 8.12-8.10 (3H, m), 8.07 (2H, J = 1.8, 2.7 Hz, dd), 7.95 (1H, J = 5.1, 9.3 Hz, dd), 7.71-7.64 (2H, m), 7.55-7.50 (2H, m), 7.44-7.37 (1H, m), 7.20 (1H, J = 1.2, 3.9 Hz, dd), 6.99 (1H, J = 2.7, 4.2 Hz, dd); ¹³C NMR (75 MHz, CD₂Cl₂): δ 192.37, 160.30 (¹ J_{CF} = 242.3, d), 151.23, 136.23, 136.20 (³ J_{CF} = 11.3, d), 134.02, 131.14, 128.73, 125.08, 124.59, 117.54 (² J_{CF} = 24.0, d), 116.14 (² J_{CF} = 22.5, d), 115.84, 115.71, 115.35, 109.64; HRMS calcd for C₁₈H₁₁FN₂O (M+H)⁺ 291.0928; found: 291.0911.

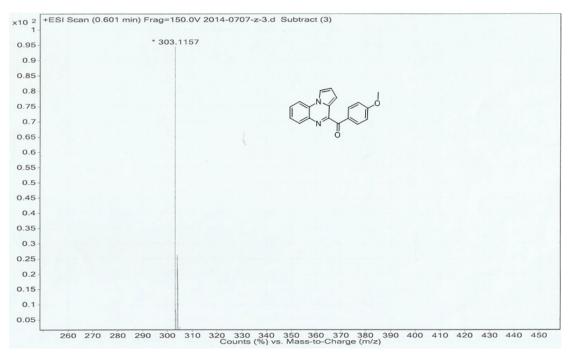
5. References

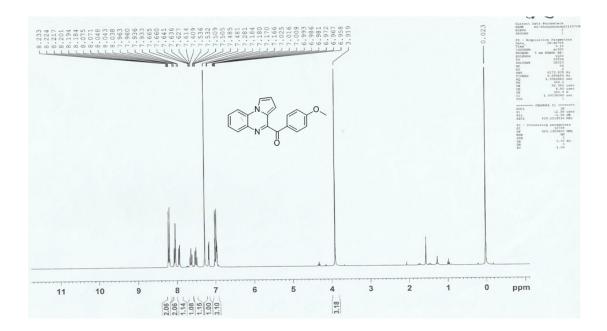

1. Patil, N. T.; Kavthe, R. D.; Shinde, V. S.; Sridhar, B. J. Org. Chem., 2010, 10, 3371.

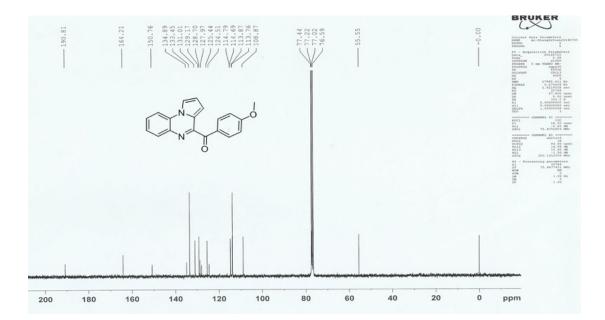

2. Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. *Eur. J.* Org. Chem., 2011, 6998.

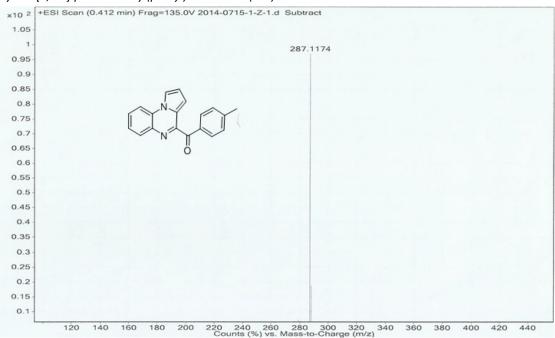

3. Kelly, T. R.; Cavero, M. Org. Lett., 2002, 16, 2653.

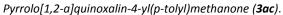
6. HRMS, ¹H NMR and ¹³C NMR spectra

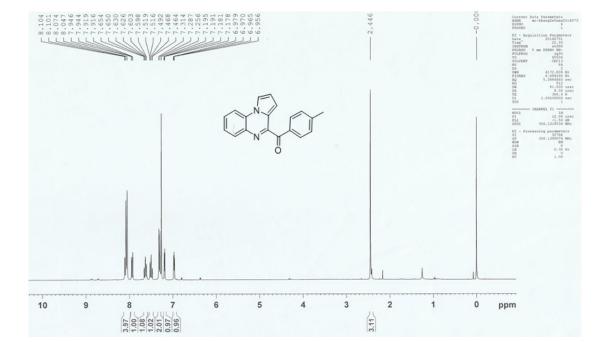

Phenyl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (3aa).

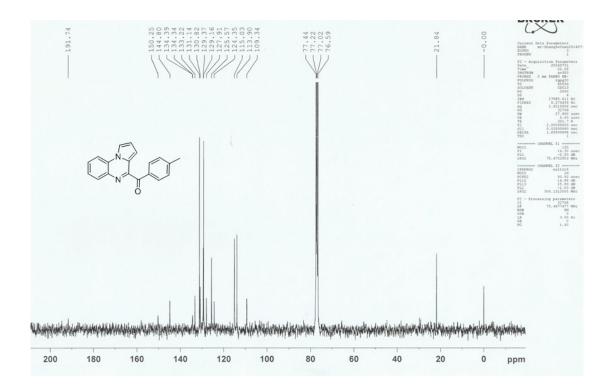


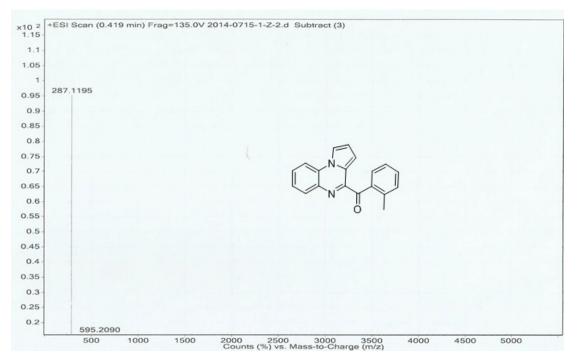


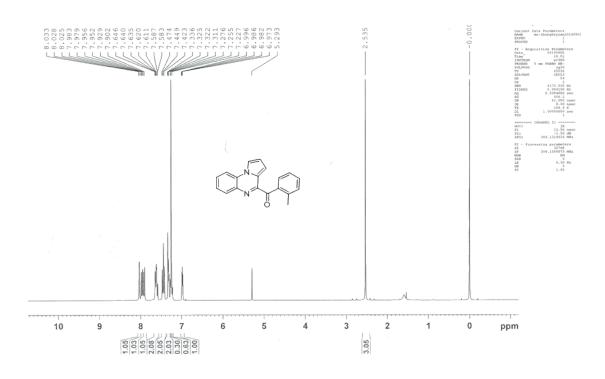


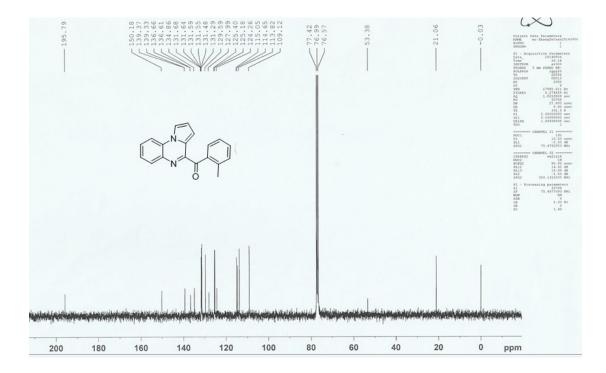

(4-Methoxyphenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3ab**).

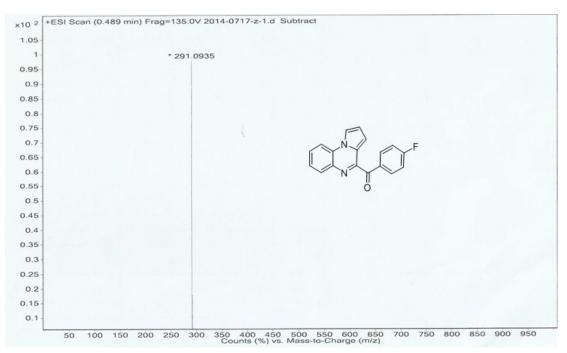




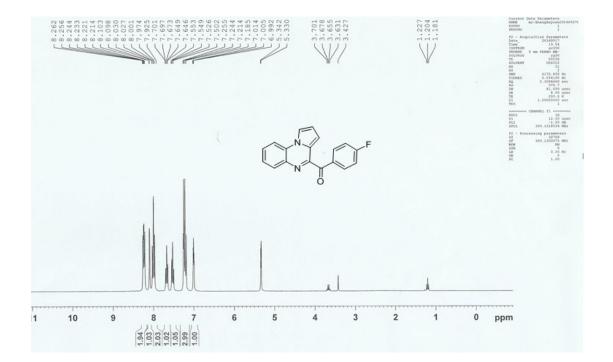


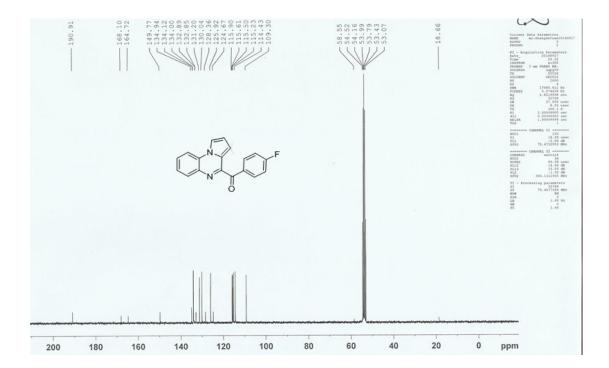


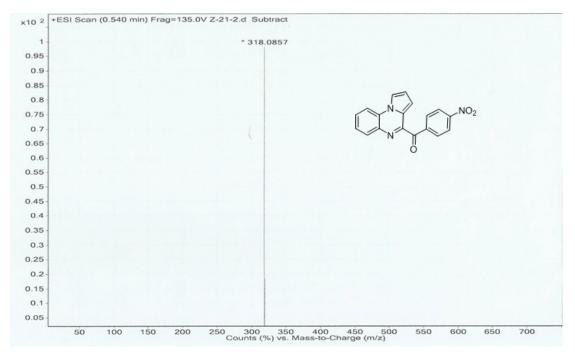


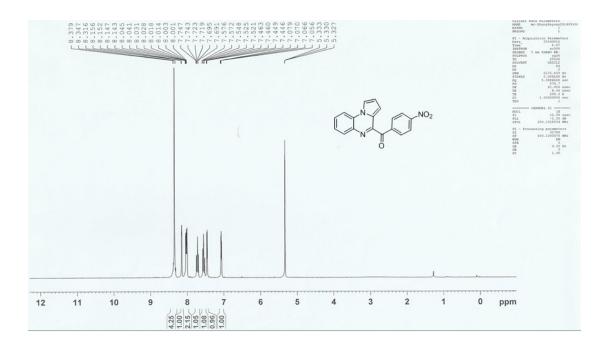


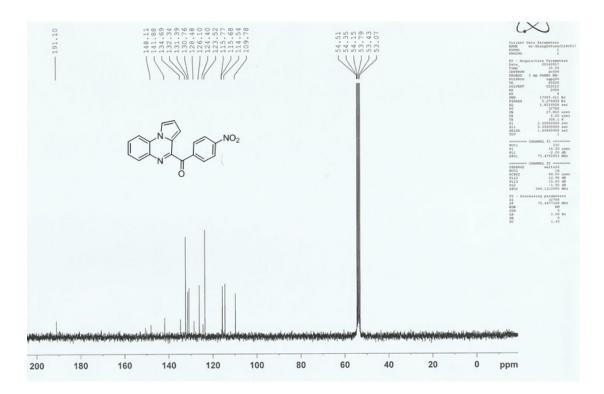
Pyrrolo[1,2-a]quinoxalin-4-yl(o-tolyl)methanone (**3ad**).

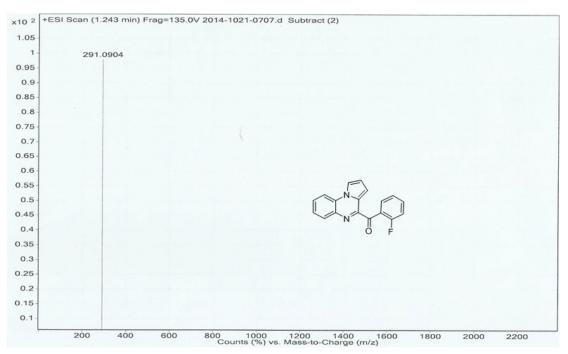




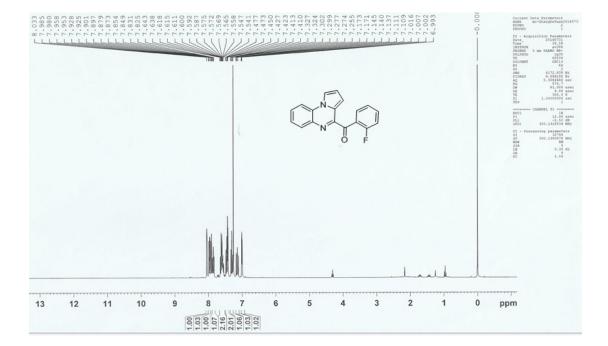


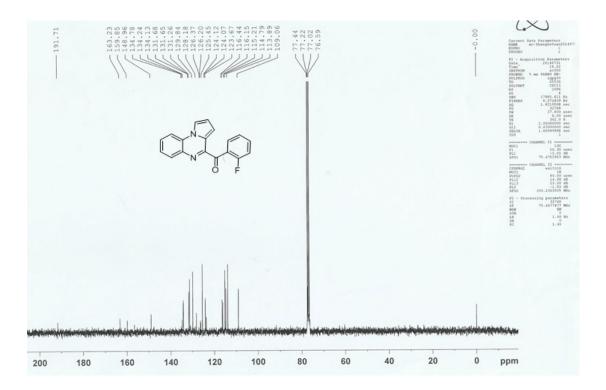

(4-Fluorophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3ae**).

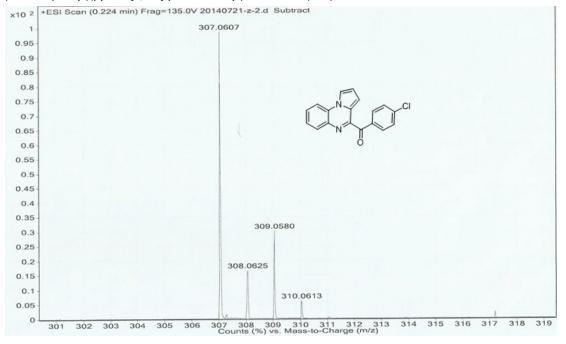


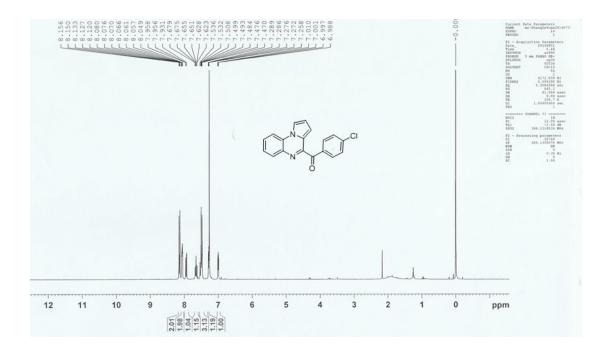


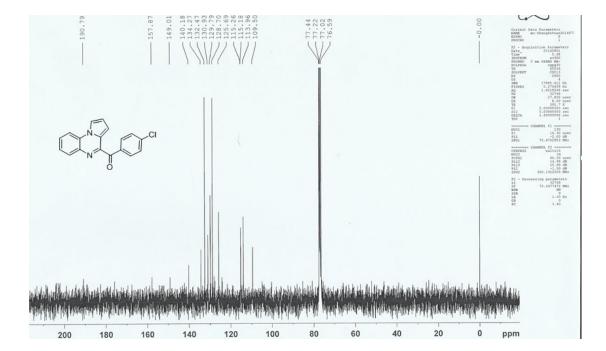
(4-Nitrophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3af**).

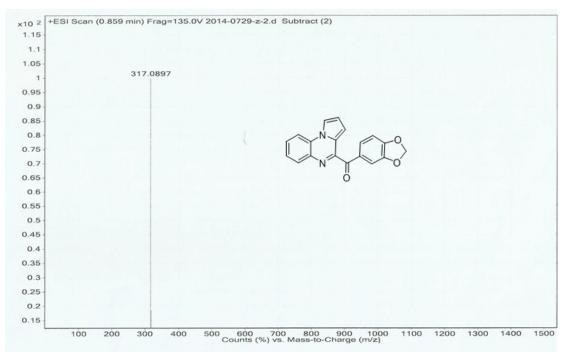




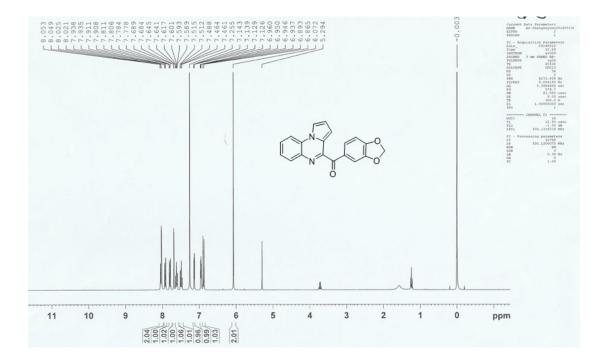


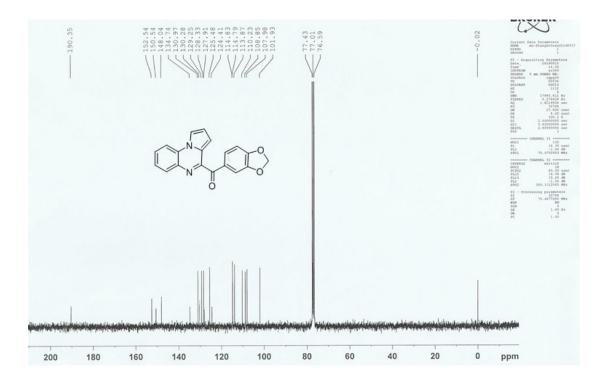

(2-Fluorophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3ag**).

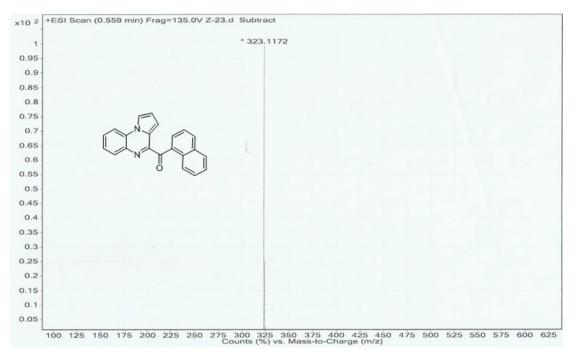


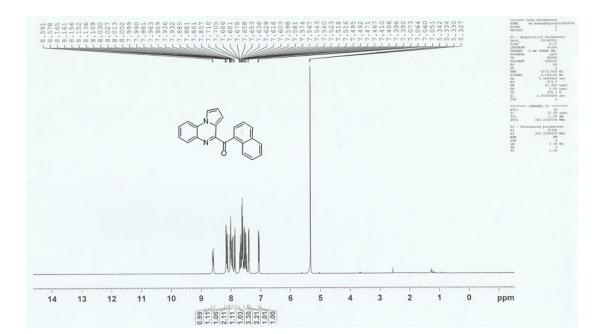


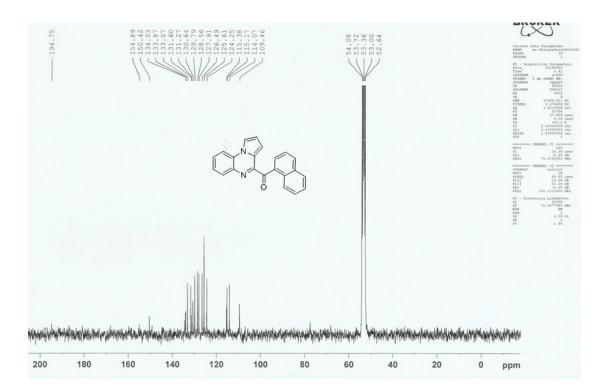
(4-Chlorophenyl)(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3ah**).

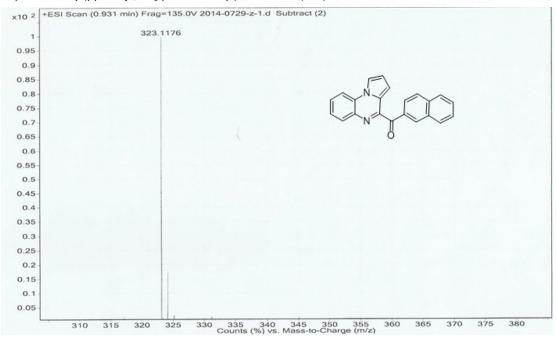


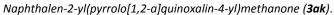


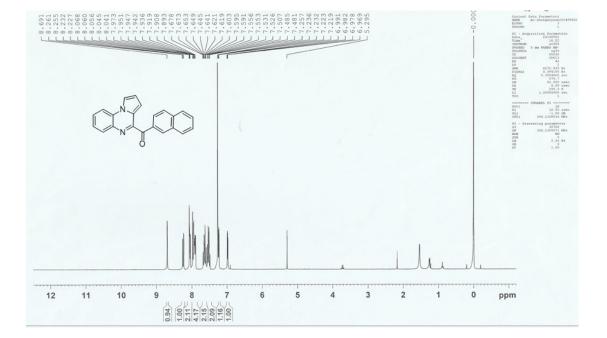


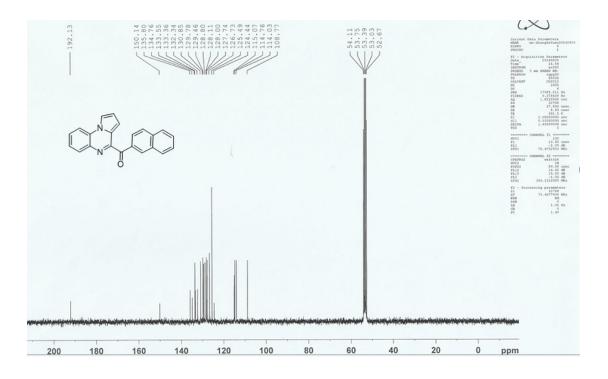

Benzo[d][1,3]dioxol-5-yl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (**3ai**).

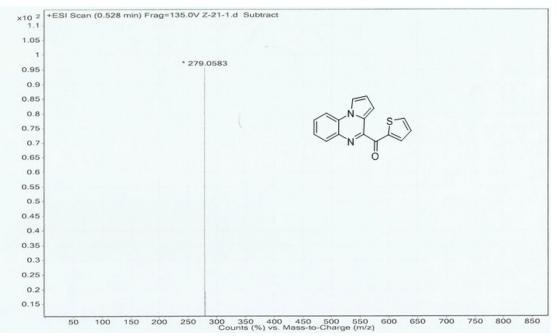


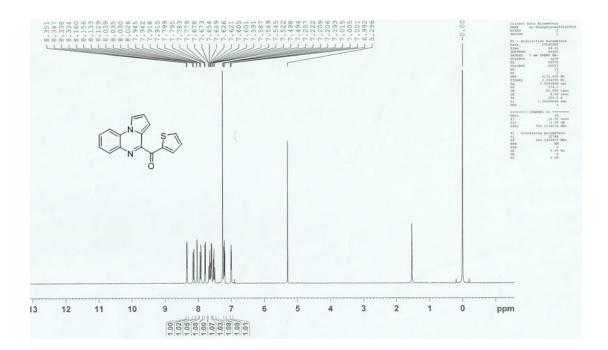


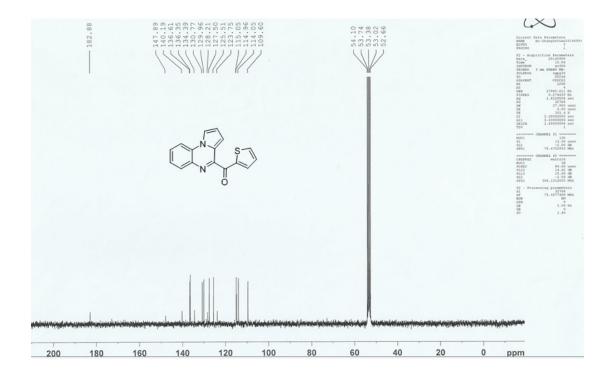

Naphthalen-1-yl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (3aj).

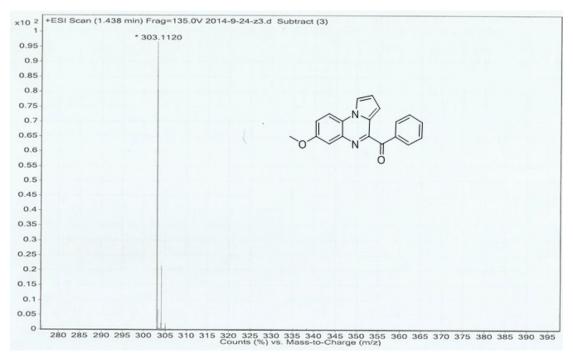




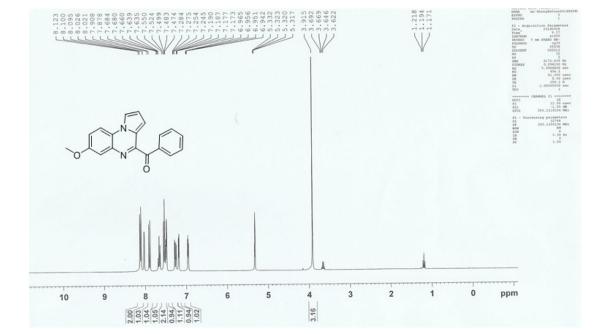


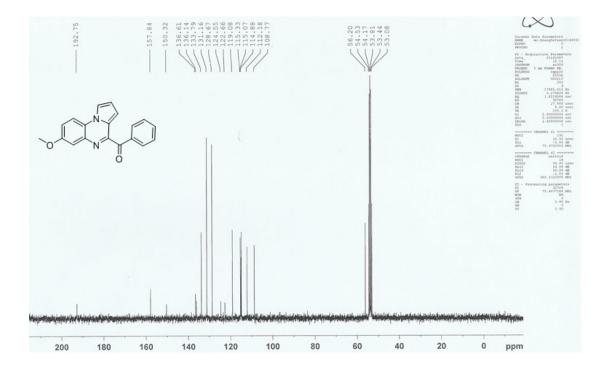


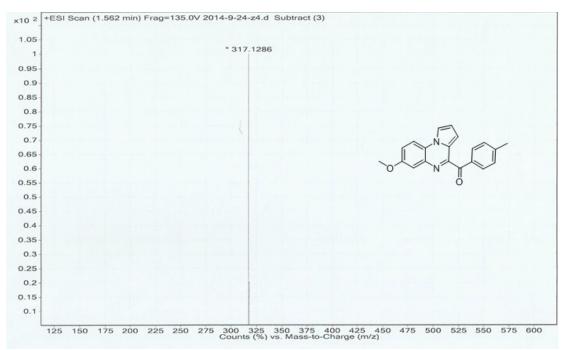


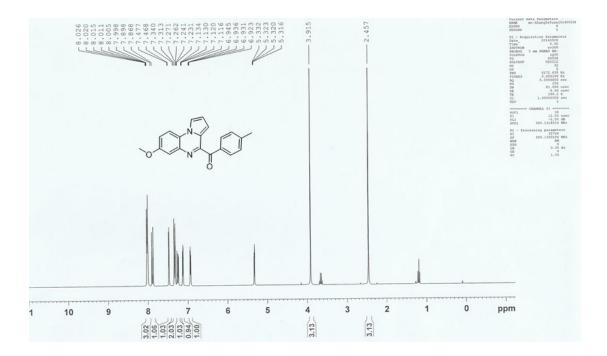


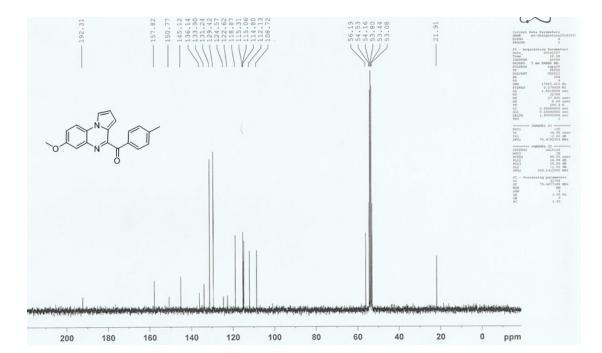
Pyrrolo[1,2-a]quinoxalin-4-yl(thiophen-2-yl)methanone (**3al**).

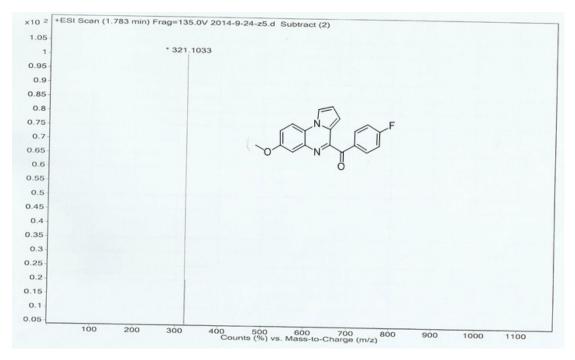




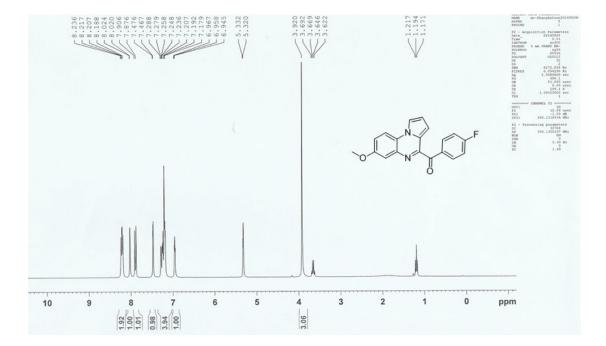


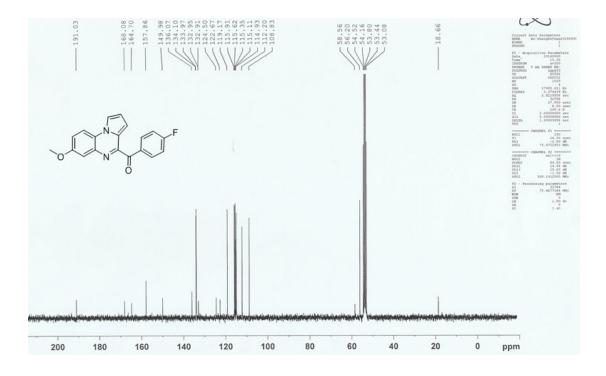

(7-Methoxypyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone (3ba)

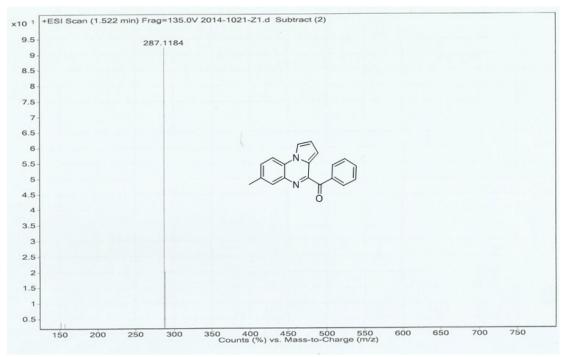


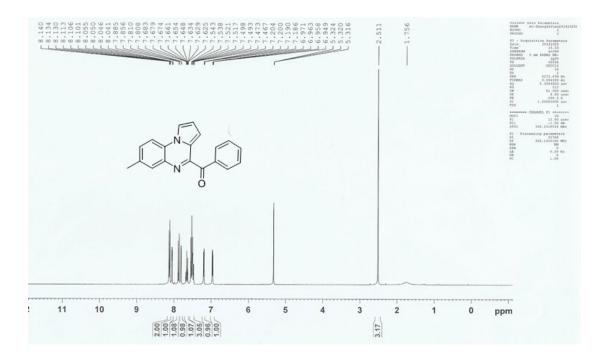


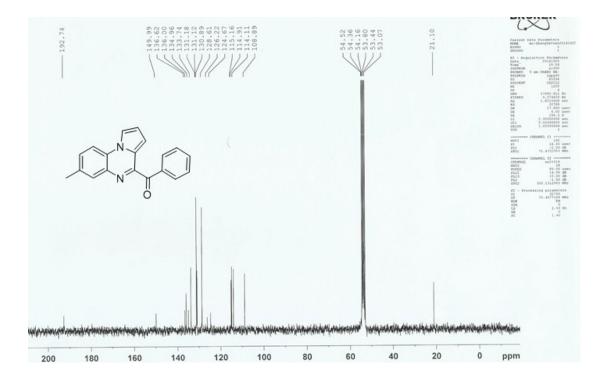
(7-Methoxypyrrolo[1,2-a]quinoxalin-4-yl)(p-tolyl)methanone (3bc)

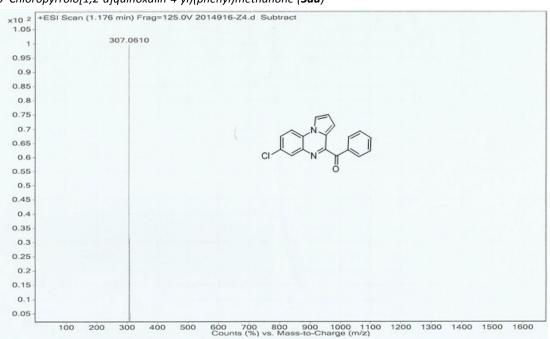




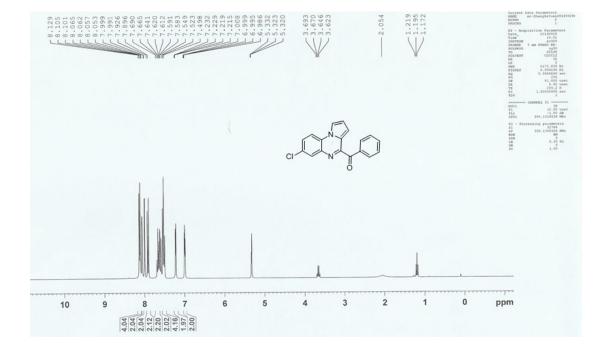


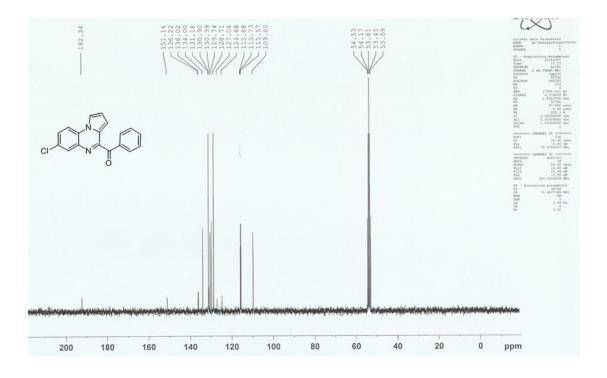

(4-Fluorophenyl)(7-methoxypyrrolo[1,2-a]quinoxalin-4-yl)methanone (3be)

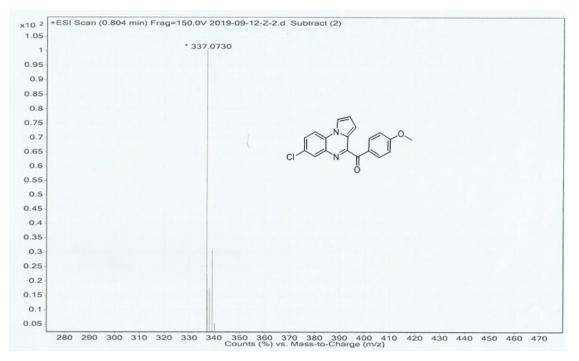


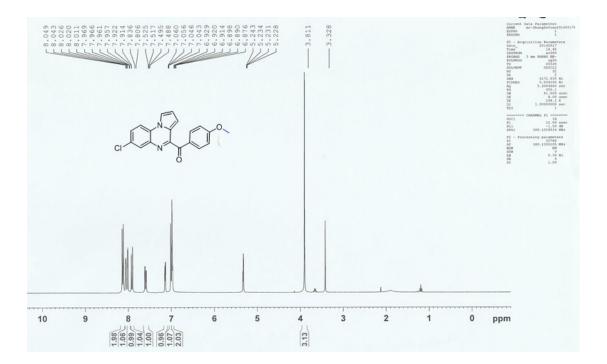


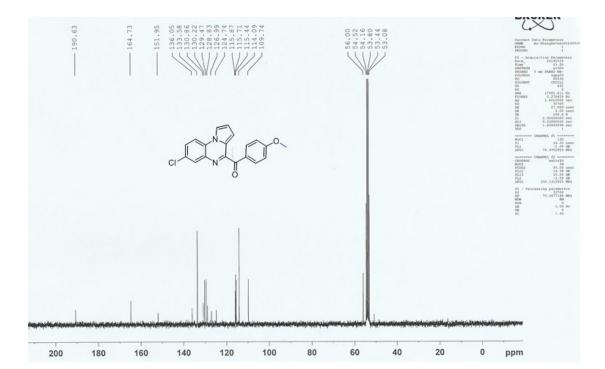
(7-Methylpyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone (3ca)

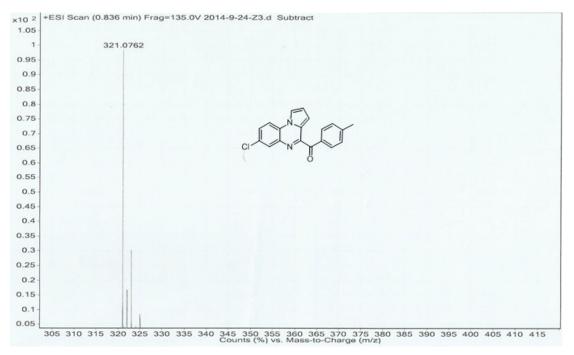


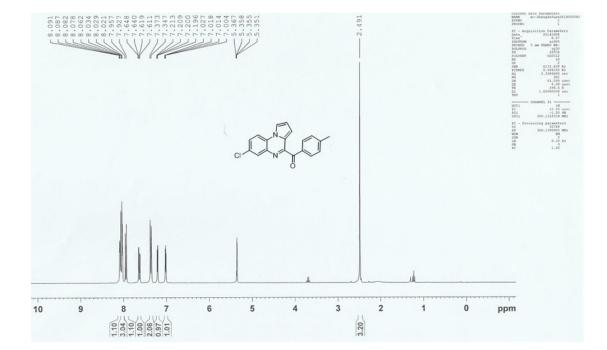


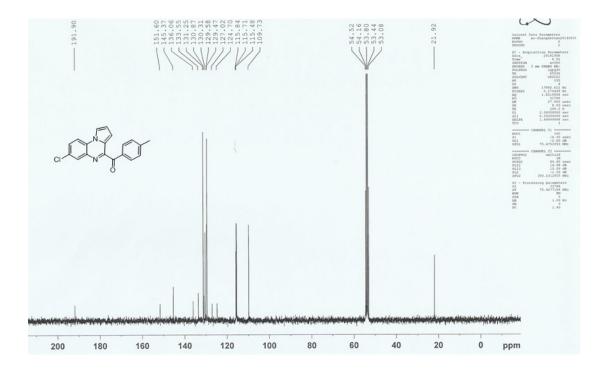


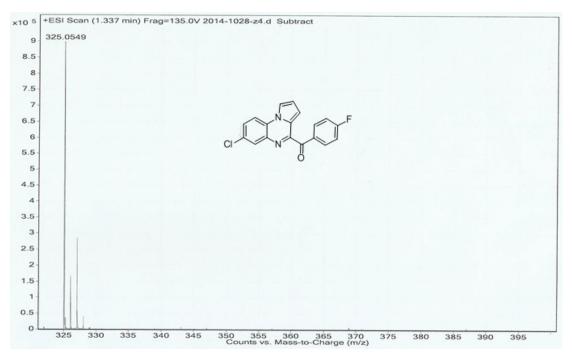


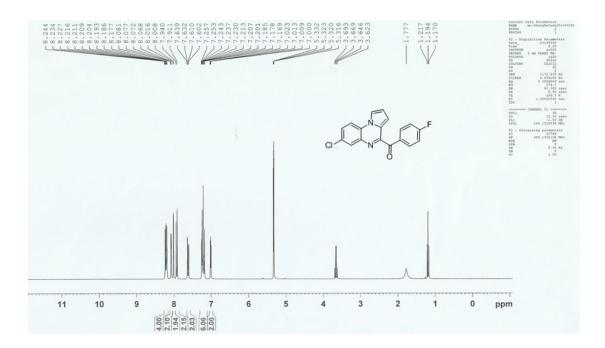


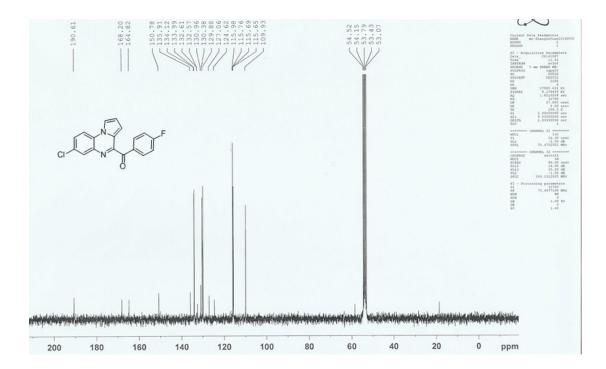

(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(4-methoxyphenyl)methanone (3db)

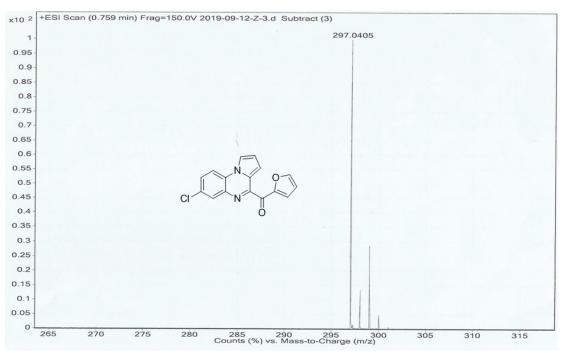




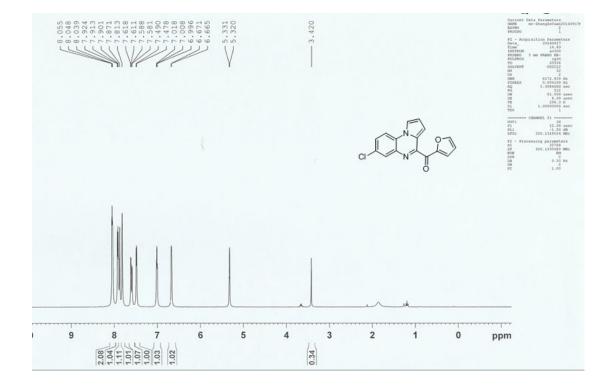


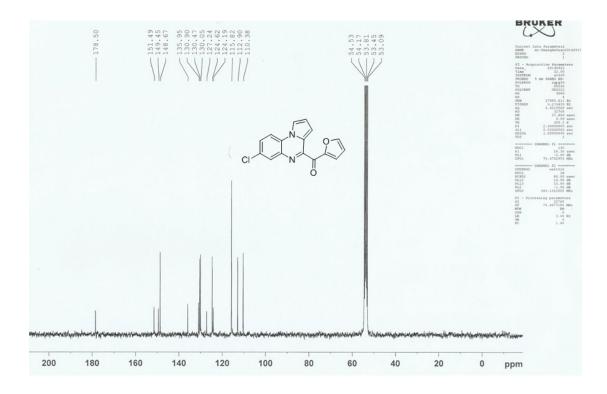


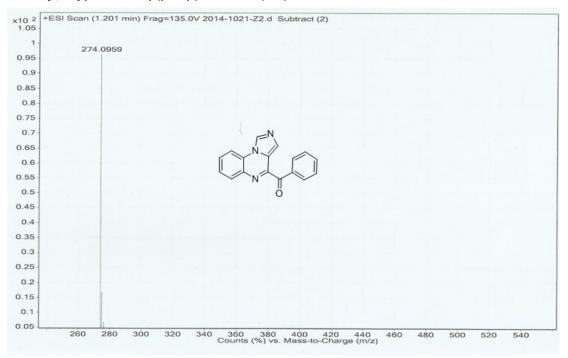


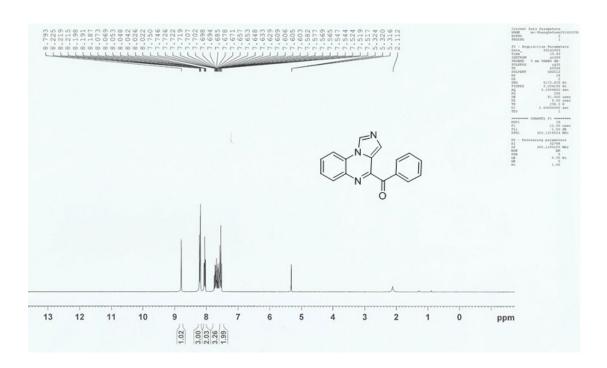


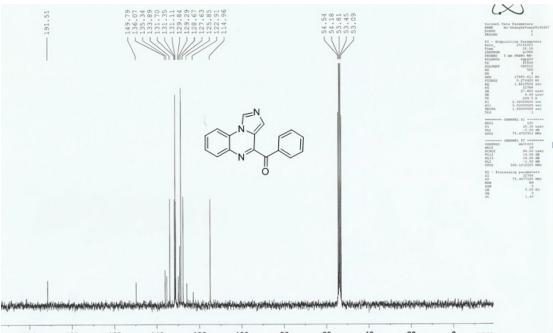
(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(4-fluorophenyl)methanone (3de)

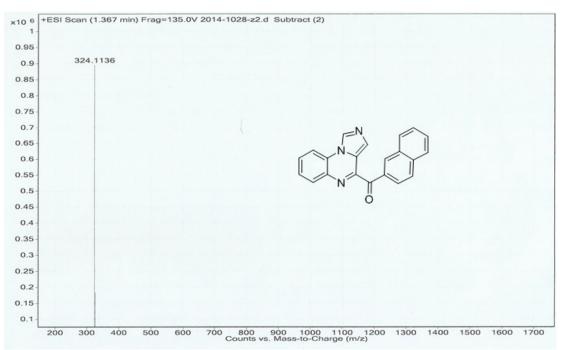


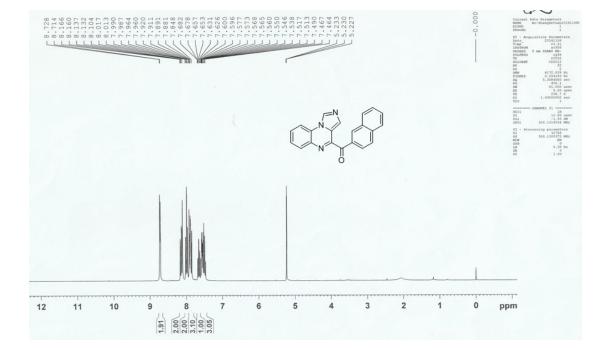


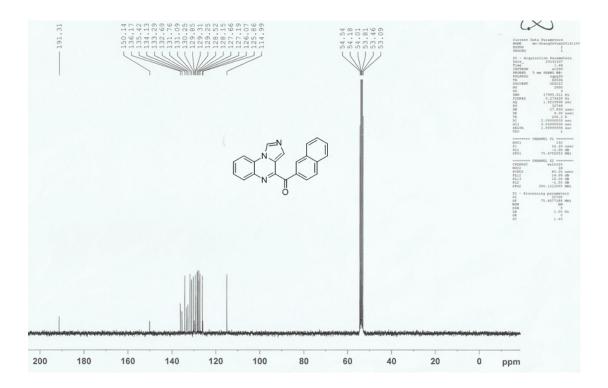



(7-Chloropyrrolo[1,2-a]quinoxalin-4-yl)(furan-2-yl)methanone (**3dm**)

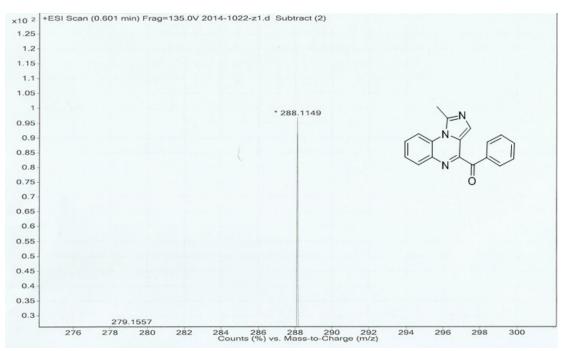


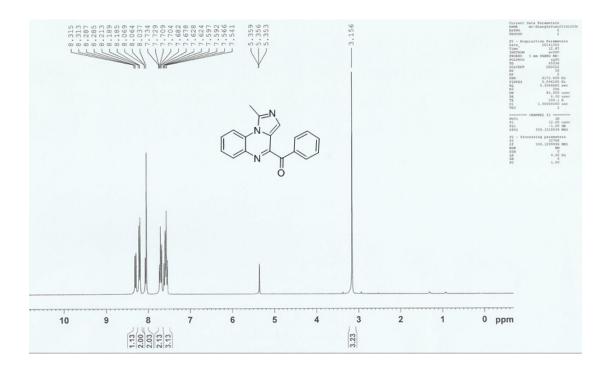

Imidazo[1,5-a]quinoxalin-4-yl(phenyl)methanone (3ea)

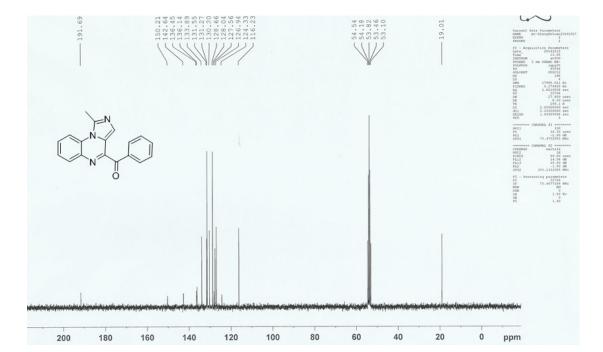


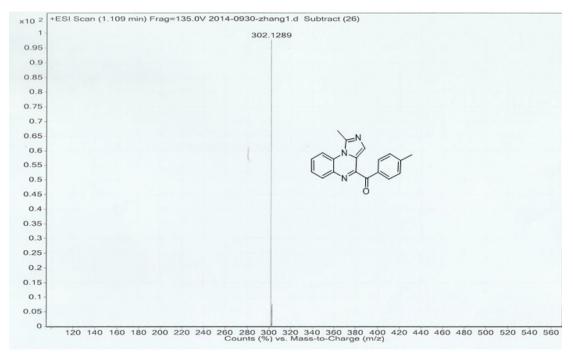


200 180 160 140 120 100 80 60 40 20 0 ppm

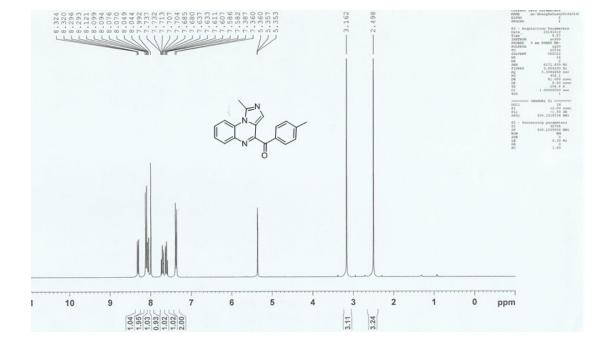


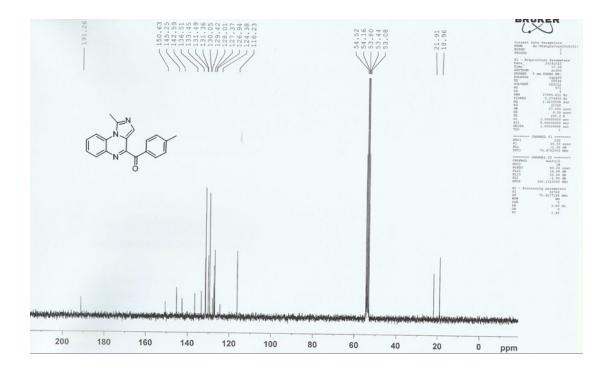

Imidazo[1,5-a]quinoxalin-4-yl(naphthalen-2-yl)methanone (3ej)

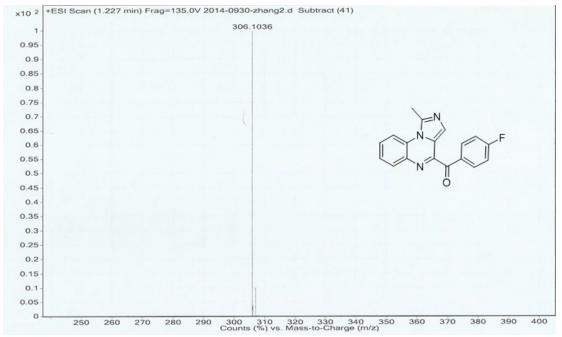




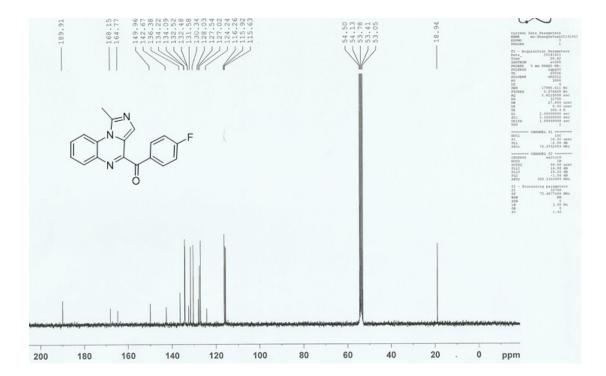
(1-Methylimidazo[1,5-a]quinoxalin-4-yl)(phenyl)methanone (3fa)

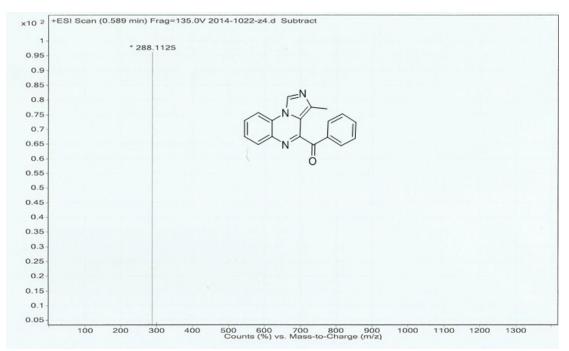




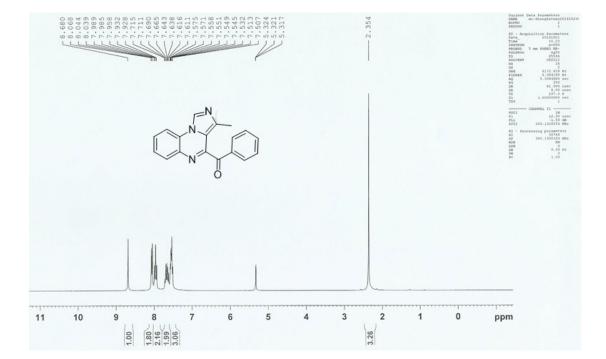


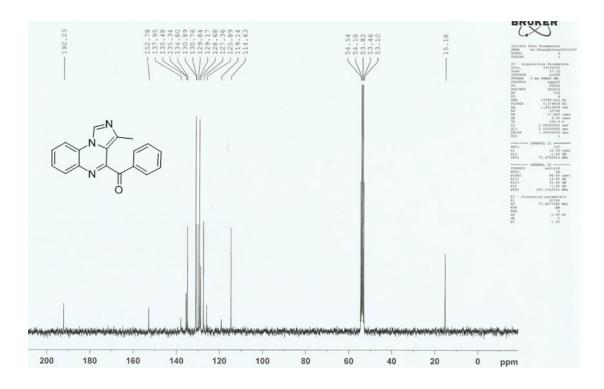

(1-Methylimidazo[1,5-a]quinoxalin-4-yl)(p-tolyl)methanone (3fc)

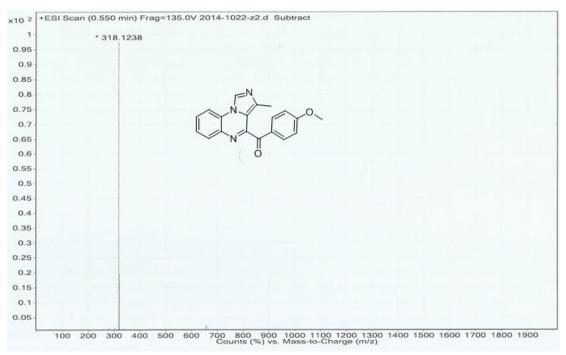


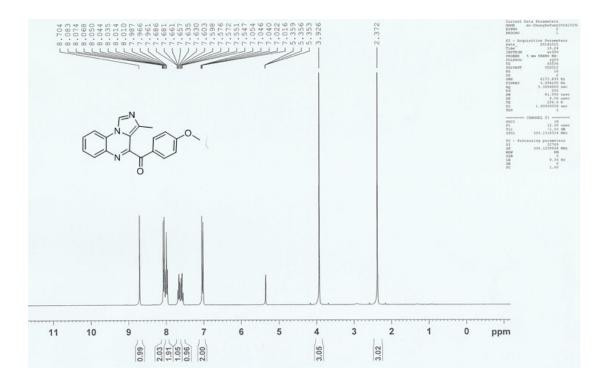


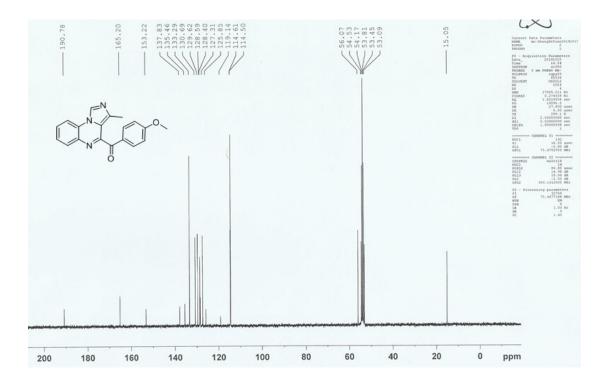
(4-Fluorophenyl)(1-methylimidazo[1,5-a]quinoxalin-4-yl)methanone (3fe)

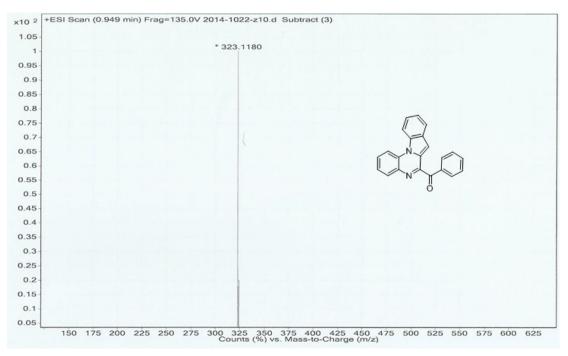


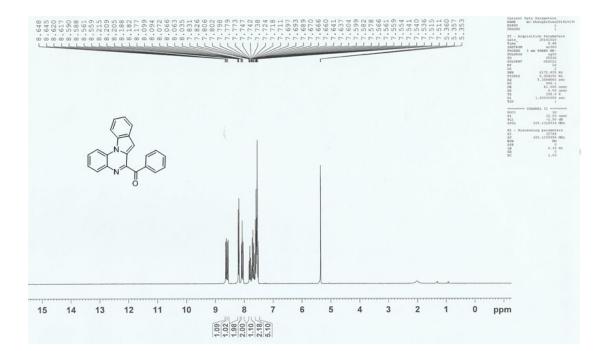


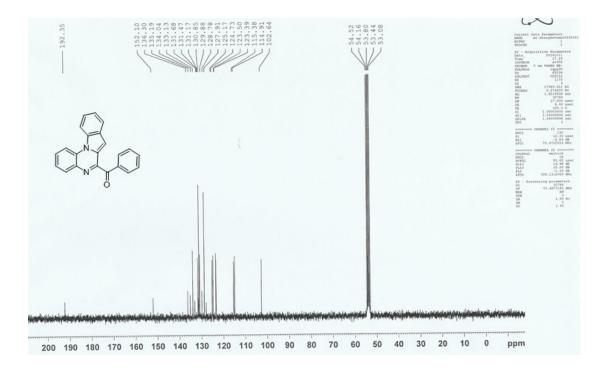


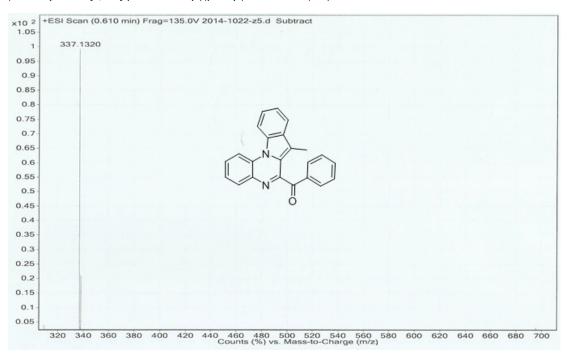

(3-Methylimidazo[1,5-a]quinoxalin-4-yl)(phenyl)methanone (3ga)

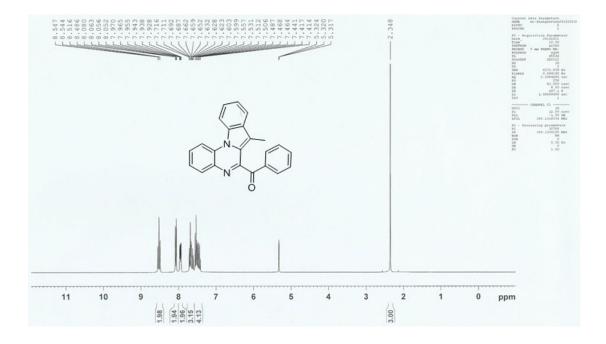


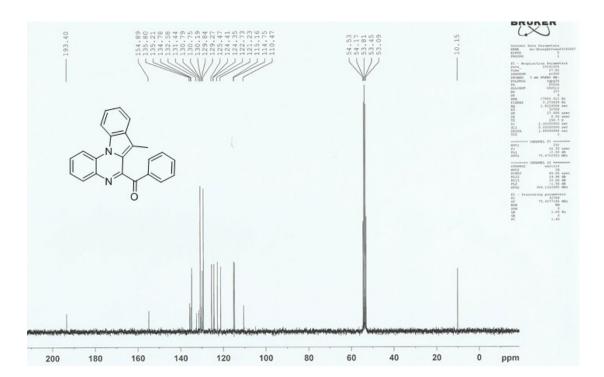

(4-Methoxyphenyl)(3-methylimidazo[1,5-a]quinoxalin-4-yl)methanone (3gb)

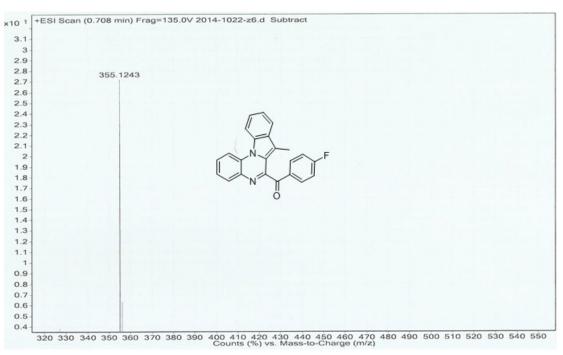




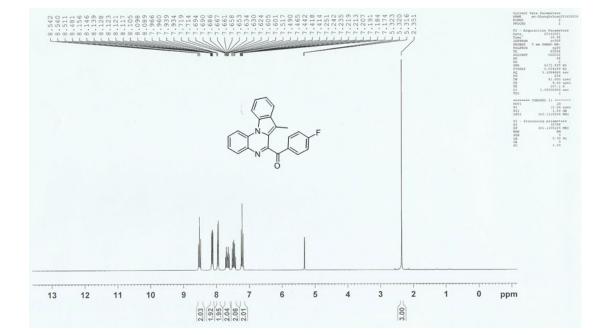

Indolo[1,2-a]quinoxalin-6-yl(phenyl)methanone (3ha)

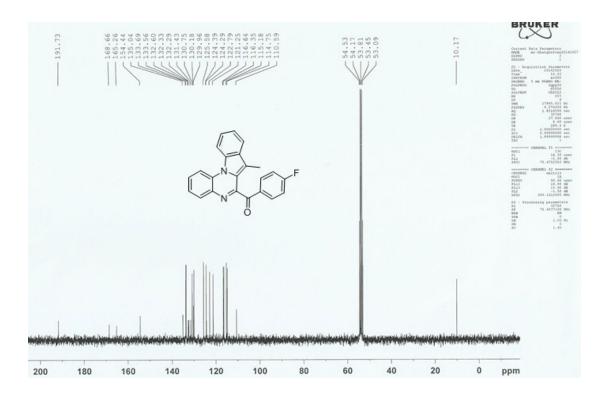


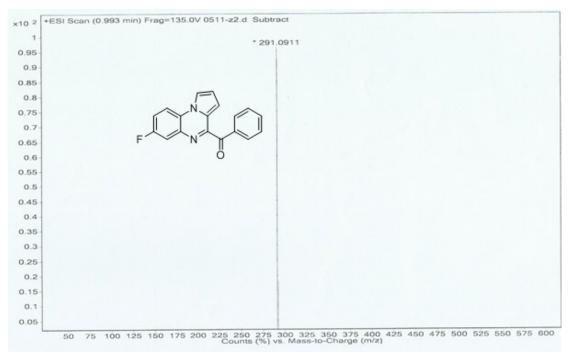


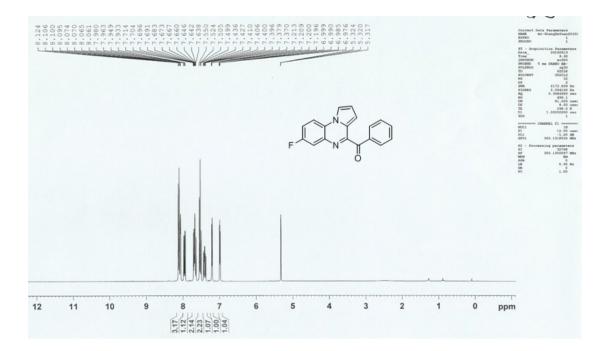


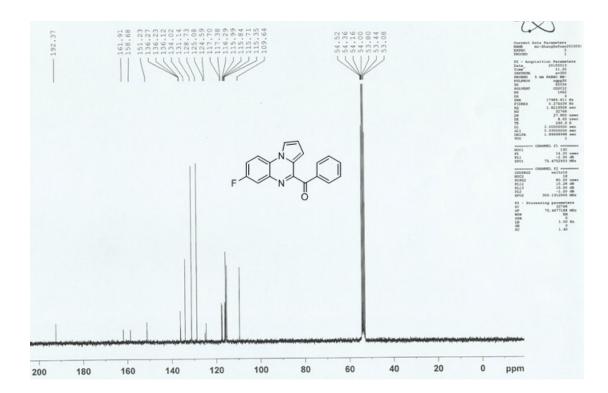
(7-Methylindolo[1,2-a]quinoxalin-6-yl)(phenyl)methanone (3ia)








(4-Fluorophenyl)(7-methylindolo[1,2-a]quinoxalin-6-yl)methanone (3ie)



(7-fluoropyrrolo[1,2-a]quinoxalin-4-yl)(phenyl)methanone (3la)

