Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Supporting Information

Metal free access to amide compounds via peroxide-

mediated N=N double bond cleavage of azobenzenes

Gang Hong,^a Dan Mao,^a Xiaoyan Zhu,^a Shengying Wu^{*a} and Limin Wang^{*a}

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China Phone (fax): +86-21-64253881; E-mail: wanglimin@ecust.edu.cn; wsy1986wsy@126.com

1. General experimental details	
2. Experimental characterization data for products	S4
3. References	S12
4. NMR spectra	S13

1. General experimental details

¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz, respectively using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in parts per million and hertz, respectively. Melting points were uncorrected. High Resolution Mass spectra (HRMS) were performed on an ESI-TOF spectrometer. All reagents were obtained from commercial sources and used without further purification except as indicated below: DCE and benzaldehyde were purified according to the Purification of Laboratory Chemicals book, and azobenzenes were prepared according to the literature procedure.¹

1.1 Optimization study for the reaction of azobenzene with benzyl amine^a

N	+		oxidant NH ₂ additive		N N N N N N N N N N N N N N N N N N N	
1a		3a			4a	
Entry	Oxidant	Additive	Solvent	Т	Yield $(\%)^b$	
		(equiv)		(°C)		
1	TBHP	KOH (1.0)	DCE	120	34	
2	TBHP	$K_2CO_3(1.0)$	DCE	120	23	
3	TBHP	^t BuOK (1.0)	DCE	120	57	
4	TBHP	KI (1.0)	DCE	120	N.P.	
5	TBHP	NBS (1.0)	DCE	120	17	
6	TBHP	TBAB (1.0)	DCE	120	70	
7	TBHP	TBAI (0.2)	DCE	120	N.P.	
8	TBHP	CuBr (0.2)	DCE	120	N.P.	
9	TBHP	/	DCE	120	72	
10	DTBP	/	DCE	120	N.P.	
11	$K_2S_2O_8$	/	DCE	120	N.P.	
12	TBPB	/	DCE	120	44	
13	TBHP	/	CH ₃ CN	120	54	
14	TBHP	/	Dioxane	120	57	
15	TBHP	/	DMF	120	N.P.	
16	TBHP	/	DMSO	120	N.P.	
17	TBHP		DCE	80	17	
18	TBHP		DCE	rt	N.P.	
^{<i>a</i>} Reaction conditions: 1a (0.25 mmol), 3a (0.5 mmol), oxidant (4.0 equiv), additive, solvent (1.0 mL), 24 h, air. ^{<i>b</i>} Isolated yield.						

1.2 General procedure for preparation of azobenzenes: Arylamine (1.0 mmol), CuBr (4.2 mg. 0.03 mmol), pyridine (8.7 mg, 0.09 mmol), and toluene (4 mL) were added together. The mixture was stirred at 60 $^{\circ}$ C under air for 20 h, then cooled down to room temperature. The mixture was evaporated under vacuum. The corresponding azobenzene was isolated by silica gel column chromatography with a petroleum ether/ethyl acetate mixture as eluent.

1.3 Typical procedure for TBHP-mediated reaction of aldehydes or benzyl amines with azobenzenes:

The mixture of azobenzenes 1 (0.25 mmol), aldehydes 2 (0.25 mmol) (or benzyl amines 3 (0.5 mmol)), TBHP (1.0 mmol) and DCE (1 mL) were added into a sealed tube. After being stirred vigorously at 120 $^{\circ}$ C for 24 h, the mixture was evaporated under vacuum. The corresponding product was isolated by silica gel column chromatography with a petroleum ether/ethyl acetate mixture as eluent.

1.4 The GC-MS and HRMS spectra about the reaction mixture.

The mixture of azobenzene **1a** (0.25 mmol), benzaldehyde **2a** (0.25 mmol), TBHP (1.0 mmol) and DCE (1 mL) were added into a sealed tube. After being stirred vigorously at 120 $^{\circ}$ C for 24 h, part of the mixture was analyzed by GC-MS and HRMS, respectively.

The by-product azoxybenzene was detected by HRMS spectrum of reaction mixture:

Figure S1. The HRMS spectrum of the reaction mixture

The corresponding GC-MS spectra about the by-product nitrobenzene was shown in Figure 2 and Figure 3.

Figure S2. The GC-MS spectra from the reaction mixture which was carried out for 24 h

Figure S3. The GC-MS spectra of nitrobenzene

2. Experimental characterization data for products

N-phenylbenzamide $(4a)^2$

White soild. 40 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 7.2 Hz, 2H), 7.80 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.59-7.47 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 137.9, 135.0, 131.9, 129.1, 128.8, 127.0, 124.6, 120.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₂NO 198.0919; Found 198.0930

N-(o-tolyl)benzamide $(4b)^2$

White soild. 25 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 7.2 Hz, 2H), 7.78 (s, 1H), 7.67-7.55 (m, 3H), 7.37-7.30 (m, 2H), 7.20 (t, J = 7.6 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 134.7, 134.0, 132.6, 130.8, 129.5, 127.8, 126.0, 125.9, 124.4, 122.0, 16.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO 212.1075; Found 212.1066

N-(*m*-tolyl)benzamide $(4c)^2$

White soild. 37 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 6.8 Hz, 1H), 7.93 (s, 1H), 7.85 (d, *J* = 7.2 Hz, 2H), 7.63-7.39 (m, 4H), 7.23 (t, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 139.0, 137.8, 135.0, 133.7, 131.8, 130.2, 128.5, 127.1, 125.4, 121.0, 117.4, 21.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO 212.1075; Found 212.1067

N-(p-tolyl)benzamide $(4d)^2$

White soild. 38 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 7.2 Hz, 1H), 7.86 (d, J = 6.8 Hz, 2H), 7.80 (s, 1H), 7.54-7.45 (m, 4H), 7.18 (d, J = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 135.4, 135.1, 134.2, 131.7, 129.6, 128.7, 127.0, 120.4, 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO 212.1075; Found 212.1078

N-(4-methoxyphenyl)benzamide (4e)²

Pale yellow solid. 24 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.56-7.51 (m,

3H), 7.47 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 135.6, 135.0, 131.7, 131.0, 128.7, 128.4, 127.0, 122.1, 114.2, 55.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO₂ 228.1025; Found 228.1024

N-(4-fluorophenyl)benzamide (4f)²

Pale yellow soild. 34 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 7.2 Hz, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.84 (s, 1H), 7.52-7.47 (m, 4H), 7.07 (t, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 160.8, 158.3, 134.7, 133.6, 131.9, 130.2, 128.8, 128.5, 127.0, 122.1 (J = 7.7 Hz), 115.9, 115.7. HRMS (ESI-TOF) m/z: [M - H]⁻Calcd for C₁₃H₉FNO 214.0668; Found 214.0661

N-(4-chlorophenyl)benzamide $(4g)^2$

Pale yellow soild. 43 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.2 Hz, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.83 (bs, 1H), 7.53-7.46 (m, 4H), 7.34 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 136.5, 134.6, 132.1, 130.2, 129.6, 129.1, 128.9, 127.0, 121.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁ClNO 232.0529; Found 232.0513

N-(4-bromophenyl)benzamide (4h)³

Pale yellow soild. 62 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 7.2 Hz, 1H), 7.86 (d, J = 7.2 Hz, 1H), 7.82 (s, 1H), 7.58-7.47 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ 162.6, 134.6, 133.7, 132.1, 132.0, 128.9, 127.0, 121.7. 117.2. HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd for C₁₃H₉BrNO 273.9868; Found 273.9833

N-(3-chlorophenyl)benzamide (4i)²

Pale yellow soild. 33 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.2 Hz, 1H), 8.04 (s, 1H), 7.77-7.75 (m, 1H), 7.50-7.42 (m, 5H), 7.28-7.23 (m, 1H), 7.13-7.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 139.1, 134.7, 134.5, 132.1, 130.0, 128.8, 127.1, 124.6, 120.4, 118.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁ClNO 232.0529; Found 232.0523

N-(3-bromophenyl)benzamide $(4j)^2$

White soild. 40 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.91-7.82 (m, 3H), 7.54 (t, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.28-7.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 139.2, 134.5, 132.1, 130.3, 128.5, 127.6, 127.1, 123.2, 122.7, 118.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁BrNO 276.0024; Found 276.0021

ethyl 4-benzamidobenzoate (4k)⁴

EtOOC

White soild. 55 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.57-7.53 (m, 1H), 7.45 (t, J = 7.2 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 166.0, 142.2, 134.5, 132.2, 130.8, 128.8, 127.1, 126.1, 119.3, 60.9, 14.4. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₆H₁₆NO₃ 270.1130; Found 270.1129

N-(4-(trifluoromethoxy)phenyl)benzamide (4l)

White soild. 49 mg, 70% yield. mp: 176-178 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 6.8 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.61-7.46 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 136.5, 134.5, 133.7, 132.1, 130.2, 128.9, 128.5, 127.0, 121.9, 121.3. HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd for C₁₄H₉F₃NO₂ 280.0585; Found 280.0573

N-(2,4-dimethylphenyl)benzamide (4m)³

Pale yellow soild. 16 mg, 29% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 6.8 Hz, 1H), 7.63-7.46 (m, 5H), 7.12-7.02 (m, 1H), 2.32 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 139.1, 133.8, 131.8, 131.3, 130.2, 129.4, 128.8, 128.5, 127.4, 127.3, 20.9, 17.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NO 226.1232; Found 226.1226

2-methyl-*N*-phenylbenzamide (4n)²

White soild. 30 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 2H), 7.46-7.32 (m, 4H), 7.27-7.22 (m, 3H), 7.14 (d, J = 7.2 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.2, 138.0, 136.4, 131.3, 130.3, 129.1, 126.6, 125.9, 124.6, 119.9, 19.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO

212.1075; Found 212.1081

3-methyl-*N*-phenylbenzamide (40)²

Pale yellow soild. 38 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (bs, 1H), 7.69-7.63 (m, 3H), 7.39-7.35 (m, 5H), 7.15 (t, *J* = 7.2 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 138.7, 138.3, 135.0, 132.6, 129.1, 128.7, 127.8, 124.5, 123.9, 120.2, 21.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO 212.1075; Found 212.1079

4-methyl-*N*-phenylbenzamide (4p)²

White soild. 36 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.29-7.26 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 142.4, 138.0, 132.1, 129.4, 129.1, 127.0, 124.4, 120.2, 21.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₃NNaO 234.0895; Found 234.0893

2-methoxy-*N*-phenylbenzamide (4q)⁵

White soild. 26 mg, 46% yield. ¹H NMR (400 MHz, CDCl₃): δ 9.81 (s, 1H), 8.31-8.27 (m, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.50-7.47 (m, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.16-7.12 (m, 2H), 7.03 (d, J = 8.0 Hz, 1H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 157.2, 138.4, 133.3, 132.5, 129.0, 124.2, 121.7, 120.4, 111.5, 56.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO₂ 228.1025; Found 228.1022

3-methoxy-N-phenylbenzamide $(4r)^2$

White soild. 36 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.44 (s, 1H), 7.40-7.35 (m, 4H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.09-7.07 (m, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 159.9, 137.9, 136.5, 129.8, 129.1, 124.6, 120.2, 118.7, 118.0, 112.5, 55.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO₂ 228.1025; Found 228.1022

4-methoxy-N-phenylbenzamide (4s)²

White soild. 38 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.8 Hz, 2H), 7.80 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 162.5, 138.1, 129.1 129.0, 127.1, 124.3, 120.1, 114.0, 55.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO₂ 228.1025; Found 228.1029

4-(dimethylamino)-N-phenylbenzamide (4t)⁵

White soild. 25 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.8 Hz, 2H), 7.73 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.25-7.23 (m, 2H), 7.13-7.08 (m, 1H), 3.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 153.8, 138.5, 132.0, 131.4, 129.0, 128.6, 124.5, 123.9, 111.2, 40.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₇N₂O 241.1341; Found 241.1346

4-fluoro-N-phenylbenzamide (4u)³

Pale yellow soild. 22 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.91-7.87 (m, 2H), 7.77 (s, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.17 (t, J = 8.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 164.7, 163.7, 137.7, 131.2, 130.5 (J = 2.1 Hz), 129.4 (J = 8.9 Hz), 129.2, 124.7, 120.2, 115.9 (J = 21.8 Hz). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁FNO 216.0825; Found 216.0819

4-chloro-*N*-phenylbenzamide (4v)²

White soild. 31 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.77 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 138.2, 137.6, 133.3, 129.2, 129.1, 128.5, 124.8, 120.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁ClNO 232.0529; Found 232.0531

4-bromo-N-phenylbenzamide (4w)²

White soild. 27 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.8 Hz, 2H), 7.65-7.61 (m, 4H), 7.38 (t, J = 7.6 Hz, 2H), 7.17 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.7, 136.6, 132.8, 131.0, 128.1, 127.6, 125.6, 123.8, 119.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₃H₁₀BrNNaO 297.9843; Found 297.9829

3-fluoro-*N*-phenylbenzamide $(4x)^2$

White soild. 42 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (bs, 1H), 7.65-7.57 (m, 4H), 7.49-7.43 (m, 1H), 7.40-7.35 (m, 2H), 7.28-7.22 (m, 1H), 7.17 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 164.1, 161.6, 137.6, 137.2 (*J* = 6.8 Hz), 130.5 (*J* = 7.9 Hz), 129.2, 124.9, 122.4, 120.3, 118.9 (*J* = 21.1 Hz), 114.6 (*J* = 22.9 Hz). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁FNO 216.0825; Found 216.0831

4-nitro-N-phenylbenzamide (4y)⁵

White soild. 24 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.82 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 149.3, 140.7, 137.4, 129.2, 127.5, 125.9, 125.1, 120.3. HRMS (ESI-TOF) m/z: [M - H]⁻Calcd for C₁₃H₉N₂O₃ 241.0613; Found 241.0591

N-phenyl-4-(trifluoromethyl)benzamide (4z)⁶

White soild. 28 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.8 Hz, 2H), 7.82 (s, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 8.0 Hz, 2H), 7.21 (t, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 139.2, 133.5, 131.5, 128.3, 127.2, 124.3, 123.7, 123.0, 120.5. HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd for C₁₄H₉F₃NO 264.0636; Found 264.0615

4-cyano-*N*-phenylbenzamide (4aa)⁷

White soild. 21 mg, 38% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.91 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 138.9, 137.3, 132.6, 129.2, 127.8, 125.3, 120.4, 117.9, 115.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₁N₂O 223.0871; Found 223.0876

N-phenyl-2-(trifluoromethyl)benzamide (4ab)²

White soild. 28 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 7.6 Hz, 1H), 7.67-7.56 (m, 5H), 7.51 (s, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 137.4, 135.8, 132.2, 130.9, 130.2, 129.2, 128.6, 126.5 (J = 4.9 Hz), 125.1, 120.3. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₀F₃NNaO 288.0612; Found 288.0605

N-phenylcyclohexanecarboxamide (4ac)⁸

White soild. 17 mg, 34% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 2.27-2.20 (m, 1H), 1.85-1.65 (m, 5H), 1.57-1.43 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 138.1, 128.9, 124.1, 119.8, 46.6, 29.7, 25.7, 25.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₈NO 204.1388; Found 204.1386

N-phenylfuran-2-carboxamide (4ad)⁹

Brown soild. 18 mg, 38% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.52 (s, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.26-7.24 (m, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.58-6.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 155.0, 146.8, 143.1, 136.3, 128.1, 123.5, 118.9, 114.3, 111.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₀NO₂ 188.0712; Found 188.0719

N-phenylbutyramide (4ae)⁹

White soild. 19 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.46 (s, 1H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 2.33 (t, *J* = 7.6 Hz, 2H), 1.79-1.72 (m, 2H), 0.99 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 137.9, 128.9, 124.2, 119.9, 39.7, 19.1, 13.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO 164.1075; Found 164.1083

2-fluoro-*N*-phenylbenzamide (4af)²

White soild. 31 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.47 (bs, 1H), 8.20-8.15 (m, 1H), 7.66 (d, J =

7.6 Hz, 2H), 7.54-7.51 (m, 1H), 7.40-7.29 (m, 3H), 7.21-7.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 161.3, 159.2, 137.7, 133.8 (J = 9.4 Hz), 132.3, 129.1, 125.1, 124.8, 121.3 (J = 11.2 Hz), 120.5, 116.1 (J = 24.9 Hz). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₁FNO 216.0825; Found 216.0818

3. References

- 1 C. Zhang and N. Jiao, Angew. Chem. 2010, 122, 6310; Angew. Chem. Int. Ed. 2010, 49, 6174.
- 2 B. Y. H. Tan and Y. C. Teo, Org. Biomol. Chem., 2014, 12, 7478-7481.
- 3 F. H. Xiao, Y. Liu, C. L. Tang and G. J. Deng, Org. Lett., 2012, 14, 984-987.
- 4 C. H. Zheng, H. Yang, M. Zhang, S. H. Lu and Y. J. Zhang et.al Bioorg. Med. Chem. Lett., 2012, 22, 39-44.
- 5 L. J. Zhang, S. P. Su, H. P. Wu and S. W. Wang, Tetrahedron, 2009, 65, 10022–10024.
- 6 Q. Q. Wang, Y. Q. Deng and F. Shi, Catal. Sci. Technol., 2014, 4, 1710-1715.
- 7 D. A. Ockey, J. L. Dotson and T. R. Gadek et.al Bioorg. Med. Chem., 2004, 12, 37-44.
- 8 H. Z. Liu, G. Laurenczy, N. Yan and P. J. Dyson, Chem. Commun., 2014, 50, 341-343.
- 9 W. T. Wang, Y. Cong, L. L. Zhang, Y. Q. Huang, X. D. Wang and T. Zhang, *Tetrahedron Lett.*, 2014, 55, 124–127.

4. NMR spectra

4b

4d

4f

-0

S30

4u

4ae

