Supporting Information

for

Synthesis of P-Chiral Phosphonates by Stereoselective Intramolecular Cyclization

GuangqingXu, ${ }^{\ddagger}$ Minghong Li, ${ }^{\ddagger}$ Shouliang Wang, ${ }^{\ddagger}$ Wenjun Tang** ${ }^{\ddagger}$\#State Key Laboratory of Bio-organic and Natural Products Chemistry, ShanghaiInstitute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu,Shanghai 200032, ChinaE-mail:tangwenjun@sioc.ac.cn
Table of contents

1. General information and materials S2
2. Synthetic procedures of ligands L1-L6 S2
3. Synthetic procedures of Substrates S4
4. General procedure of intramolecular cyclization for construction P-chiral center S9
5. Experimental procedure for the reactions in Scheme 2 S15
6. References 18
7. X-ray of $2 f$ S19
8. NMR Spectra S20
9. HPLC Charts S86

1. General information and materials:

${ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded on a Bruker DRX500, DRX400. NMR Spectrometer with CDCl_{3} as the solvent. ${ }^{31} \mathrm{P}$ shifts were referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ at 0.0 ppm as external standard and obtained with ${ }^{1} \mathrm{H}$ decoupling. ${ }^{13} \mathrm{C}$ shifts were obtained with ${ }^{1} \mathrm{H}$ decoupling. MS was measured on Agilent 1100 Series LC/MSD mass spectrometer. Enantiomeric excess was determined by chiral HPLC (Agilent Series 1260). Column chromatography was performed with silica gel (300-400 mesh).

All reagents were used as received from commercial sources, unless otherwise specified, or prepared as described in the literature. All solvents were dried and stored under N_{2}. All reagents were weighed and handled in air and refilled with nitrogen.

Abbreviations in this text: $\mathrm{PE}=$ petroleum ether; $\mathrm{EA}=$ ethyl acetate; $\mathrm{DCM}=$ dichloromethane;

2. Synthetic procedures of ligands L1-L6

L1 R = H
L2 $\mathrm{R}=\mathrm{Me}$

L3

L4

$\mathrm{L} 5 \mathrm{R}=\mathrm{H}$
L6 R = Me

The synthesis of $\mathbf{L} 1$ and $\mathbf{L} 2$ were followed according to procedures described in our previous report: (1) W. Tang, A. G. Capacci, X. Wei, W. Li, A. White, N. D. Patel, J. Savoie, J. Gao, S. Rodriguez,; B. Qu, N. Haddad, B. Z. Lu, D. Krishnamurthy, N. K. Yee and C. H. Senanayake, Angew. Chem., Int. Ed. 2010, 49, 5879. (2) W. Tang, N. D. Patel, G. Xu, X. Xu, J. Savoie, S. Ma, M.-H. Hao, S. Keshipeddy, A. G. Capacci, X. Wei, Y. Zhang, J. Gao, W. Li, S. Rodriguez, B. Z. Lu, N. K. Yee and C. H. Senanayake, Org. Lett. 2012, 14, 2258.

The syntheses of $\mathbf{L} 5$ and $\mathbf{L} \mathbf{6}$ were followed according to procedures described in our previous report: (3) W. Tang, S. Keshipeddy, Y. Zhang, X. Wei, J. Savoie, N. D. Patel, N. K. Yee and C. H. Senanayake, Org. Lett. 2011, 13, 1366. (4) G. Xu, W. Fu, G. Liu, C. H. Senanayake and W. Tang, J. Am. Chem. Soc. 2014, 136, 570.

Synthesis of L3:

Compound S1 was synthesized according to the procedure described in reference 5: J. C. GonzálezGómez, L. Santana and E. Uriarte, Tetrahedron 2005, 61, 4805.

Synthesis of boronic acid S2: To a solution of S1 ($2.5 \mathrm{~g}, 15.4 \mathrm{mmol}, 1.0$ equiv) in THF (150 mL) was added $n-\mathrm{BuLi}\left(6.9 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexane, 1.1 equiv) dropwise at $0^{\circ} \mathrm{C}$ over 15 min . After stirred at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{B}(\mathrm{Oi} \operatorname{Pr})_{3}(7.1 \mathrm{~mL}, 30.8 \mathrm{mmol}, 2.0$ equiv) was added, the resulting mixture was stirred for further 30 min before warmed to room temperature, then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) was added and the aqueous phase was extracted by EtOAc
($20 \mathrm{~mL} \mathrm{X} \mathrm{2)} ,\mathrm{the} \mathrm{organic} \mathrm{phase} \mathrm{was} \mathrm{washed} \mathrm{with} \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and brine (15 mL), dried over sodium sulfate, concentrated and purified by silica gel column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}, 2 / 1$) to provide boronic acid $\mathbf{S 2}(2.1 \mathrm{~g}, 10.2 \mathrm{mmol}, 68 \%)$ as white solid. S2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.11(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$.

Synthesis of S4: To a mixture of S3 ($400 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.0$ equiv), S2 ($692 \mathrm{mg}, 3.36 \mathrm{mmol}$, 3.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(31 \mathrm{mg}, 0.034 \mathrm{mmol}, 3 \%)$, SPhos ($28 \mathrm{mg}, 0.067 \mathrm{mmol}, 6 \%$) and $\mathrm{KF}(260 \mathrm{mg}$, $4.48 \mathrm{mmol}, 4.0$ equiv) was charged dried dioxane (5 mL). The mixture was stirred under N_{2} for 12 h at $100^{\circ} \mathrm{C}$, concentrated, partitioned with water $(10 \mathrm{~mL})$ and $\mathrm{DCM}(20 \mathrm{~mL})$, the organic phase was wash with brine and dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: EtOAc) to provide S4 ($394 \mathrm{mg}, 1.06 \mathrm{mmol}, 95 \%$) as white solid. S4: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=7.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33-4.65(\mathrm{~m}, 6 \mathrm{H}), 3.01-3.17(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 158.2,157.2,136.3(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 134.6,124.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 120.5$, $119.3,117.5,114.5(\mathrm{~d}, J=90.9 \mathrm{~Hz}), 113.2(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 106.9,72.3(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 65.5,64.9$, $33.3(\mathrm{~d}, J=72.1 \mathrm{~Hz}), 29.6,29.4,23.8 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.4$. ESI-MS: m/z 371.6 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of L3: To a solution of compound S4 ($400 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) at rt was added $\mathrm{PMHS}(2.5 \mathrm{~g})$ and $\mathrm{Ti}(\mathrm{O} i \operatorname{Pr})_{4}(1.4 \mathrm{~mL}, 4.7 \mathrm{mmol}, 4.3$ equiv). The mixture was stirred at reflux for 12 h , and then concentrated under vacuum to remove most THF. 30% aqueous NaOH solution (10 mL) was carefully added to the residue. Gas was generated during addition. The resulting mixture was further stirred at $60^{\circ} \mathrm{C}$ for 0.5 h . To the mixture at rt was added ether $(8 \mathrm{~mL}$ X 4). The ether layer was separated and the aqueous layer was further washed with ether (4 mL) under nitrogen. The combined ether solution was dried, concentrated, and purified by passing through a neutral alumina plug to afford the desired product $\mathbf{L} 3(326 \mathrm{mg}, 0.67 \mathrm{mmol}, 84 \%)$ as white solid. L3: $[\alpha]_{\mathrm{D}}{ }^{25}=176.7^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=12.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.55-4.66 (m, 4H), $4.41(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.22(\mathrm{~m}, 4 \mathrm{H}), 0.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,157.6,156.6,136.7(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 131.1,124.0(\mathrm{~d}, J=15.0 \mathrm{~Hz})$, $122.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 119.7,118.9,118.1,110.1,109.1,72.1,72.0,70.1(\mathrm{~d}, J=27.7 \mathrm{~Hz}), 31.1(\mathrm{~d}, J$ $=18.9 \mathrm{~Hz}), 29.7,26.5(\mathrm{~d}, J=13.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.2$. ESI-MS: m/z 355.3 $[\mathrm{M}+\mathrm{H}]^{+}, 377.4[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{H}, \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{P}\right]^{+}$: 355.1458 ; found: 355.1459 .

Synthesis of L4

Compound S5 was synthesized according to the procedures descried in reference 6: T. J. Reddy, T. Iwama, H. J. Halpern and V. H. Rawal, J. Org. Chem. 2002, 67, 4635

Synthesis of boronic acid S6: To a solution of S5 ($2.0 \mathrm{~g}, 9.1 \mathrm{mmol}, 1.0$ equiv) in THF (50 mL) was added dropwise $n-\mathrm{BuLi}\left(4.3 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in Hexane, $10.8 \mathrm{mmol}, 1.2$ equiv) at $0{ }^{\circ} \mathrm{C}$ over 15 min . After stirred at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{B}(\mathrm{Oi} \operatorname{Pr})_{3}(8.4 \mathrm{~mL}, 36.4 \mathrm{mmol}, 4.0$ equiv) was added. The resulting mixture was stirred for 30 min and then warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added and the organic phase was separated. The aqueous phase was washed by EtOAc (10 mL X 2) and the combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \mathrm{X} 2)$ and brine (10 mL), dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: PE/EA, 3/1) to provide boronic acid $\mathbf{S 6}(1.53 \mathrm{~g}, 5.75$ mmol, 64\%) as white solid. S6: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.98$ ($\mathrm{s}, 2 \mathrm{H}$), 6.45 (s, 1H), 1.53 (s, $12 \mathrm{H})$.

Synthesis of S7
The procedure was similar to that described for the synthesis of S4. S7: white solid. 66% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ $8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=13.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.7(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 140.7,139.6,139.2,138.3,134.6(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=6.3$ $\mathrm{Hz}), 124.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 119.1,117.9,114.2(\mathrm{~d}, J=89.4 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 107.1,92.5$, $65.7(\mathrm{~d}, J=60.4 \mathrm{~Hz}), 33.3(\mathrm{~d}, J=71.8 \mathrm{~Hz}), 26.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 25.6,24.2 .{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 61.4. ESI-MS: $\mathrm{m} / \mathrm{z} 431.3[\mathrm{M}+\mathrm{H}]^{+}, 453.4[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of L4

The procedure was similar to that described for the synthesis of $\mathbf{L 3}$. $\mathbf{L 4}$: white solid. 83% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=169.6^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}$, $J=7.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{dd}, J=25.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 6 \mathrm{H}), 1.59(\mathrm{br}, 6 \mathrm{H}), 0.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8,135.2(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 131.1,124.2(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 122.9(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 117.9,110.5,109.4,91.9,70.2(\mathrm{~d}, J=29.0 \mathrm{~Hz}), 31.4(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 26.8(\mathrm{~d}, J=15.1 \mathrm{~Hz})$, 25.8 (br). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.8$. ESI-MS: m/z $415.5[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{H}, \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{P}\right]^{+}: 415.1669$; found: 415.1668 .

3. Synthetic procedures of Substrates

Procedure A:

Synthesis of 1a
To a solution of 2-bromophenol ($7.5 \mathrm{~g}, 43.1 \mathrm{mmol}$) and pyridine $(4.2 \mathrm{~mL}, 51.7 \mathrm{mmol})$ in DCM $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was charged $\mathrm{Tf}_{2} \mathrm{O}(8.0 \mathrm{~mL}, 47.4 \mathrm{mmol})$. The resulting mixture was stirred for further 20 min and then quenched with water $(50 \mathrm{~mL})$. The DCM layer was separated, washed with water (50 mL X 2) and brine (25 mL), dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: $\mathrm{PE} / \mathrm{DCM}, 5 / 1$) to give the desired product $\mathbf{S 8}(12.7 \mathrm{~g}, 97 \%)$ as colorless oil. S8: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.24-7.28 (m, 1H).

To a mixture of $\mathbf{S 8}(3.0 \mathrm{~g}, 9.8 \mathrm{mmol}),(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(2.8 \mathrm{~g}, 11.8 \mathrm{mmol}), i \mathrm{Pr}_{2} \mathrm{EtN}(2.6 \mathrm{~mL}$, $14.8 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(225 \mathrm{mg}, \quad 0.25 \mathrm{mmol})$ and dppp ($203 \mathrm{mg}, 0.49 \mathrm{mmol}$) was charged toluene $(20 \mathrm{~mL})$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h and then cooled to rt . Water (30 mL) was added and the toluene was separated. The organic phase was washed with water (30 mLX 2) and brine (25 mL), dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: PE/EA, 10/1 then 5/1) to give the desired product $\mathbf{1 a}(1.26 \mathrm{~g}, 33 \%$ yield) as white solid. 1a: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 137.2$ (d, $J=8.7 \mathrm{~Hz}$), $134.6(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 129.7,128.0(\mathrm{~d}, J=197.5 \mathrm{~Hz}), 127.1$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.7; ESI-MS: m/z $389.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{H}$, $\left.\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{P}\right]^{+}: 388.9937$; found: 388.9940 .

Preparation of $\mathbf{1 c}, \mathbf{1 k}, \mathbf{1 n}$ was carried out according to a procedure similar to that for the synthesis of 1a with its related arylphenol.

1c: White solid. 31% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=16.7,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5$ (d, $J=18.2 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 129.7,128.5(\mathrm{~d}, J=195.0$ $\mathrm{Hz}), 125.3(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 122.0(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 120.6(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 55.7 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6$; ESI-MS: $\mathrm{m} / \mathrm{z} 440.8$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNaO}_{4} \mathrm{P}\right]^{+}: 440.9862$; found: 440.9867 .

1k: Colorless oil. 32% yield. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=14.5$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 9 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 150.3(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}), 129.7,129.5(\mathrm{~d}, J=195.0 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.3(\mathrm{~d}, J$ $=17.5 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=5.0 \mathrm{~Hz})$, 56.6; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.7$; ESI-MS: m/z $419.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNaO}_{4} \mathrm{P}\right]^{+}$: 440.9862; found: 440.9861.

1n: White solid. 74\% yield. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}),{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.4$; ESI-MS: m/z $439.4[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}: 460.9913$; found: 460.9911 .

Procedure B:

The synthesis of S10 was carried out according to a procedure similar to that for the synthesis of S8.

To a mixture of $\mathbf{S 8}(2.0 \mathrm{~g}, 6.2 \mathrm{mmol}),(\mathrm{EtO})_{2} \mathrm{POH}(1.0 \mathrm{~g}, 7.4 \mathrm{mmol}), i \operatorname{Pr}{ }_{2} \mathrm{NEt}(1.6 \mathrm{~mL}, 9.3$ $\mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(56 \mathrm{mg}, \quad 0.06 \mathrm{mmol}), \mathrm{dppp}(51 \mathrm{mg}, 0.12 \mathrm{mmol})$ was charged toluene $(20 \mathrm{~mL})$. The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h and then cooled to rt . Water (30 mL) was added and the toluene layer was separated. The organic phase was washed with water (30 mLX 2) and brine (25 mL), dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: PE/EA, 10/1 then $2 / 1$) to give the desired product $\mathbf{S 1 1}(1.11 \mathrm{~g}, 58 \%$ yield) as colorless oil. To a mixture of $\mathbf{S 1 1}(1.87 \mathrm{~g}, 6.03 \mathrm{mmol})$ and $\mathrm{PCl}_{5}(2.5 \mathrm{~g}, \quad 12.06 \mathrm{mmol})$ was charged $\mathrm{POCl}_{3}(4 \mathrm{~mL})$ in sealed tube, the mixture was heated at $170^{\circ} \mathrm{C}$ for 2 h and then cooled to rt , concentrated in vaccum to removed most of the POCl_{3}. The residue was dissolved in THF $(5 \mathrm{~mL})$ to provide the phosphorus oxychloride solution. To a separated flask was charged PhOH ($1.03 \mathrm{~g}, 10.85 \mathrm{mmol}$) and THF (10 $\mathrm{mL}) . \mathrm{NaH}(60 \%, 482 \mathrm{mg}, \quad 12.06 \mathrm{mmol})$ was added into the solution at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 20 min before added to the aforementioned phosphorus oxychloride solution. The resulting mixture was stirred at rt for 1 h and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. EtOAc $(20 \mathrm{~mL})$ was added and the organic phase was separated, washed with water ($25 \mathrm{~mL} \mathrm{X} \mathrm{2)} \mathrm{and} \mathrm{brine}$ $(15 \mathrm{~mL})$, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (eluent: PE/EA, $5 / 1$ then $2 / 1$) to give the desired product $\mathbf{1 b}(538 \mathrm{mg}, 22 \%)$ as yellow solid. $\mathbf{1 b}$: ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~m}, 3$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1(\mathrm{dd}, J=259.7,3.8 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 139.4(\mathrm{dd}$,
$J=10.5,9.7 \mathrm{~Hz}), 129.8,126.5(\mathrm{dd}, J=9.9,5.2 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 124.1(\mathrm{dd}, J=202.0,3.4$ $\mathrm{Hz}), 122.3(\mathrm{dd}, J=24.5,13.1 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 114.7(\mathrm{dd}, J=20.8,15.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.9$; ESI-MS: m/z $407.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FBrNaO}_{3} \mathrm{P}\right]^{+}: 428.9662$; found: 428.9660 .

Other substrates were prepared according to procedure B with various substituted phenols. The yields were calculated on the basis of phenols.

1d: Yellow solid. 17% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~m}, 1 \mathrm{H})$, $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9,152.9,151.0,143.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 137.3$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}), 137.2(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=27.5 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=$ $196.0 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=16.2$ Hz), $114.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 55.6,55.4 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.5$; ESI-MS: m/z 449.1 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNaO}_{5} \mathrm{P}\right]^{+}: 470.9967$; found: 470.9967.

1e: Yellow oil. 15% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~m}, 1 \mathrm{H}), 7.58$ $(\mathrm{d}, J=5.0 \mathrm{~Hz}), 7.30(\mathrm{~m}, 7 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 2.39$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 145.8(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 137.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 129.7,128.0(\mathrm{~d}, J=14.9$ $\mathrm{Hz}), 125.1(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 125.1,124.6(\mathrm{~d}, J=198.7 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.7$ Hz), 21.2; ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta 8.4$; ESI-MS: m/z $403.5[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}: 424.9913$; found: 424.9913.

1f: Yellow solid. 21% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~m}, 1 \mathrm{H}), 8.24$ (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{t}, J=10 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.61$, $146.56,137.1,137.0,135.0,134.9,134.8,134.7,134.5,129.4,127.8,127.7$, $127.6,127.4,127.3,127.2,126.8,126.6,126.5,126.3,125.6,125.51,125.48$, $125.4,125.2,125.0,122.19,122.16,121.7,121.6,115.5,115.3$ (Due to C-P coupling and the complexity of the spectrum, doublets in the aromatic region cannot be assigned and they are lisetd as singlets); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.2$; ESI-MS: m/z $489.4[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{26} \mathrm{H}_{18} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}$: 511.0069; found: 511.0054.

1g: Yellow solid. 10% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~m}, 1 \mathrm{H})$, $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8 \mathrm{~Hz}$, 4H) $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 156.7(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 143.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 138.9(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=12.6$ $\mathrm{Hz}), 118.8(\mathrm{~d}, J=204.3 \mathrm{~Hz}), 114.6,112.5(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 55.7,55.5 ;{ }^{31} \mathrm{P}$
NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.6$; ESI-MS: m/z $479.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNaO}_{6} \mathrm{P}\right]^{+}$: 501.0073; found: 501.0075.

1h: Yellow oil. 11% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~m}, 1 \mathrm{H}), 7.27$ $(\mathrm{m}, 9 \mathrm{H}), 7.12(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 3,83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 150.3(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 138.8(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}), 129.7,126.3(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 125.1,120.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 120.5$, $118.9(\mathrm{~d}, J=205.5 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 55.7 ;{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.8; ESI-MS: $\mathrm{m} / \mathrm{z} 419.1[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNaO}_{4} \mathrm{P}\right]^{+}$: 440.9862; found: 440.9863 .

1i: White solid. 17% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.20(\mathrm{~m}, 1 \mathrm{H})$, 7.73 (dd, $J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (ddd, $J=8.1,4.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dt}, J=$ $8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{td}, J=$ $7.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8(\mathrm{~d}, J=4.6$ $\mathrm{Hz}), 139.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 133.7$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=203.4 \mathrm{~Hz}), 126.6(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=1.4$ $\mathrm{Hz}), 125.4(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 122.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 112.8,55.8 ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.1$; ESI-MS: m/z $471.0[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNaO}_{5} \mathrm{P}\right]^{+}:\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNaO}_{5} \mathrm{P}\right]^{+}: 470.9967$; found: 470.9971 .

$\mathbf{1 j}$: Yellow oil. 15% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~m}, 1 \mathrm{H}), 7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 5 \mathrm{H}), 8.80(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) ; \delta 7.78 ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1(\mathrm{dd}, J=259.5,3.8 \mathrm{~Hz}), 156.9(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 151.0$, $143.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 139.4(\mathrm{t}, J=9.9 \mathrm{~Hz}), 126.4(\mathrm{dd}, J=9.9,5.3 \mathrm{~Hz})$, $124.0(\mathrm{dd}, J=200.6,3.4 \mathrm{~Hz}), 122.3(\mathrm{dd}, J=24.3,13.0 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=$ 4.4 Hz), 114.7, 55.5, 55.4; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8$; ESI-MS: $\mathrm{m} / \mathrm{z} 467.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FBrNaO}_{5} \mathrm{P}\right]^{+}$: 488.9873; found: 488.9872.

11: Yellow oil. 19% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~m}, 1 \mathrm{H}), 7.74$ $(\mathrm{m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.8(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 145.9(\mathrm{dd}, J=7.5,2.7 \mathrm{~Hz}), 137.4(\mathrm{dd}, J=$ $14.5,9.3 \mathrm{~Hz}), 134.8(\mathrm{dd}, J=22.5,11.2 \mathrm{~Hz}), 134.6(\mathrm{dd}, J=22.5,11.2 \mathrm{~Hz})$, $127.3(\mathrm{dd}, J=31.0,14.8 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=196.2 \mathrm{~Hz}), 125.2,122.0(\mathrm{~d}, J=$ $23.4 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=22.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.6$; ESI-MS: m/z $425.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}: 446.9568$; found: 446.9569 .

1m: Colorless oil. 19% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (dd, $J=$ $16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{~m}, 4 \mathrm{H})$, $3.74(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,145.7$, $143.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 137.3(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 127.9$ ($\mathrm{t}, J=13.7 \mathrm{~Hz}$), $125.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=198.7 \mathrm{~Hz}), 121.4(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 55.5,21.2(\mathrm{~d}, J=18.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.2$; ESI-MS: m/z $463.5[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNaO}_{5} \mathrm{P}\right]^{+}$: 485.0124; found: 485.0126 .

10: Colorless oil. 18% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.59-8.52 (m, $1 \mathrm{H}), 8.24(\mathrm{dd}, J=13.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}$, $J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, 2H), 7.11-7.03 (m, 4H), 2.31 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=6.2 \mathrm{~Hz})$, $128.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=197.5 \mathrm{~Hz}), 127.0$, 125.9, 120.3 (d, $J=18.7$), 16.9; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.2$; ESI-MS: m/z $467.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for [M+Na; $\left.\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}$: 489.0226; found: 489.0226.

1p: Yellow oil. 15% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{td}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,143.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 136.3,132.5(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=3.7$ $\mathrm{Hz}), 128.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 126.19(\mathrm{~d}, J=195.6 \mathrm{~Hz})$, $121.5(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 55.6 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.2 ;$ ESI-MS: m/z $499.3[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrNaO}_{5} \mathrm{P}\right]^{+}$: 521.0124; found: 521.0106.

1q: White solid. 19% yield. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35(\mathrm{dd}, J=13.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{dd}$, $J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.67$ (m, 2H), $7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7$ (d, $J=$ $8.0 \mathrm{~Hz}), 136.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 135.0,132.6(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}), 129.4,129.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 128.7,128.5,128.4,128.2,128.1,127.8,126.7,126.6(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}), 126.4,125.5(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 125.1,122.2,115.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.8; ESI-MS: $\mathrm{m} / \mathrm{z} 539.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{30} \mathrm{H}_{20} \mathrm{BrNaO}_{3} \mathrm{P}\right]^{+}$: 561.0226; found: 561.0210.

1r: Yellow solid. 17% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~m}, 1 \mathrm{H})$, $8.13(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,158.9,146.0,136.6,136.4,132.5,132.4$, $130.57,130.5,130.4,130.1,129.91,129.85,129.8,129.5,129.3,128.6$, 128.54, 128.47, 128.3, 128.1, 128.0, 127.8, 127.2, 126.2, 125.5, 124.6, 122.0, 116.5, 116.3 (Due to C-P coupling and the complexity of the spectrum, doublets in the aromatic region cannot be assigned and they are listed as singlets); ${ }^{31} \mathrm{P}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.3(\mathrm{~d}, J=21.4 \mathrm{~Hz})$; ESI-MS: m/z $475[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{H}$; $\left.\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~F}_{2} \mathrm{P}\right]^{+}: 474.9905$; found: 474.9904 .
4. General procedure of intramolecular cyclization for constructing the P-chiral center

To a mixture of bromide (0.2 mmol), base (0.3 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{L}(10 \mathrm{~mol} \%)$ was charged toluene (1 mL). The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ under nitrogen for 24 h , and then cooled to room temperature, and concentrated under vacumm. The residue was directly subjected for column chromatography on silica gel to afford the desired product.

2a: Yellow solid; 83% yield. 88% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: 80/20, $254 \mathrm{~nm}, 15.9 \mathrm{~min}(S), 18.0 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-28.4^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2 f . ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.08-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 149.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 137.1(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133.9$, $130.7,130.6,129.7,128.3(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 125.3,125.0,124.2(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 122.5,122.4,121.5$ $(\mathrm{d}, J=182.0 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.4$; ESI-MS: m/z $309.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}: 331.0495$; found: 331.0496.

2b: White solid. 83% yield. 84% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $60 / 40,254 \mathrm{~nm}, 8.3 \mathrm{~min}(S), 9.3 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-24.1^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $\mathbf{2 f}$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (ddd, $\left.J=14.4,8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66$ (ddd, $J=10.4,5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (ddd, $J=8.9,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{td}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3(\mathrm{dd}, J=254.3,3.6 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 149.7(\mathrm{~d}, J=8.5 \mathrm{~Hz})$, $140.3(\mathrm{t}, J=8.7 \mathrm{~Hz}), 133.6(\mathrm{dd}, J=10.5,9.7 \mathrm{~Hz}), 131.4,129.7(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=28.6$ $\mathrm{Hz}), 125.4(\mathrm{dd}, J=3.2,1.1 \mathrm{~Hz}), 125.1,121.7(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=186.8 \mathrm{~Hz}), 116.0(\mathrm{dd}, J=22.1,16.9 \mathrm{~Hz}), 111.3(\mathrm{dd}, J=23.5,13.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.8$; ESI-MS: $\mathrm{m} / \mathrm{z} 327.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FNaO}_{3} \mathrm{P}\right]^{+}$: 349.0400; found: 349.0407.

2c: White solid. 61% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20$, $254 \mathrm{~nm}, 18.4 \min (S), 21.7 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-19.3^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=8.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=$ $16.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4(\mathrm{~d}$,
$J=19.4 \mathrm{~Hz}), 149.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 149.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 129.5,128.7,126.0$ (d, $J=14.8 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 124.9,124.7,122.7(\mathrm{~d}, J=180.0 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=12.0 \mathrm{~Hz})$, $121.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 55.8 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.5$; ESI-MS: m/z $339.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NaO}_{4} \mathrm{P}\right]^{+}: 361.0600$; found: 361.0601 .

2d: Colorless oil. 82% yield. 83% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: 60/40, $254 \mathrm{~nm}, 12.0 \mathrm{~min}(S), 15.6 \mathrm{~min}(R)$; $[\alpha]_{\mathrm{D}}{ }^{27}=-17.4^{\circ}\left(c=0.58, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.97 (ddd, $J=14.7,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 3 \mathrm{H})$, 6.77-6.71 (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8(\mathrm{~d}, J=1.3 \mathrm{~Hz})$, $156.5,143.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 143.2(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.8$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=$ $181.2 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 116.0,114.6(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 110.0,55.8$, 55.5 ; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.1$; ESI-MS: m/z $369.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NaO}_{5} \mathrm{P}\right]^{+}$: 391.0706; found: 391.07081.

2e: White solid. 88% yield. 81% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $60 / 40,254 \mathrm{~nm}, 8.3 \mathrm{~min}(S), 10.0 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-34.5^{\circ}\left(c=0.3, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $\mathbf{2 f}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=14.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, J=4.3,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dt}, J=8.5,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 149.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 144.6(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}), 137.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 130.5,129.6(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=29.2 \mathrm{~Hz}), 125.2,124.8,124.6(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 120.7$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 118.6(\mathrm{~d}, J=184.5 \mathrm{~Hz}), 22.2 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.3$; ESI-MS: m/z $323.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}: 345.0651$; found: 345.0654 .

2f: White solid. 81% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: 60/40, $254 \mathrm{~nm}, 10.3 \mathrm{~min}(R), 18.5 \mathrm{~min}(S) ;[\alpha]_{\mathrm{D}}{ }^{27}=-227.2^{\circ}\left(c=0.61, \mathrm{CHCl}_{3}\right)$; The absolute configuration was determined by its X-ray structure. CCDC 1062715 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-$ $7.70(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J$
$=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 137.7(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}), 134.6,134.5,134.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 128.3,128.1,127.7,127.4(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}), 127.0,126.4(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 126.3,126.0,125.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, $125.2(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 124.8,124.6(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 122.2,121.6(\mathrm{~d}, J=181.2 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}), 121.2,117.5(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.7$; ESI-MS: m/z $409.4[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{26} \mathrm{H}_{17} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}: 431.0808$; found: 431.0811.

2g: Colorless oil. 85% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: 60/40, $254 \mathrm{~nm}, 15.0 \mathrm{~min}(S), 20.2 \mathrm{~min}(R)$; $[\alpha]_{\mathrm{D}}{ }^{27}=-22.9^{\circ}\left(c=1.14, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $2 f .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.91 (dd, $J=14.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=9.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.77-6.72$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 156.8(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 156.3,144.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 143.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 139.1(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, $132.9(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=31.3 \mathrm{~Hz}), 123.1(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 121.0$ (d, $J=7.1 \mathrm{~Hz}), 116.0,114.5(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 110.2,109.9(\mathrm{~d}, J=13.1 \mathrm{~Hz})$, $55.8,55.6,55.5 ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.4$; ESI-MS: m/z $399.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NaO}_{6} \mathrm{P}\right]^{+}: 421.0811$; found: 421.0814 .

2h: Colorless oil. 85% yield. 88% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $60 / 40,254 \mathrm{~nm}, 9.7 \mathrm{~min}, 12.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{27}=-27.6^{\circ}(\mathrm{c}=$ $0.37, \mathrm{CHCl}_{3}$); The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $J=14.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.90(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=8.3$, 3.9, 2.3 Hz, 3H), $3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}), 149.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 139.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 130.7,129.6(\mathrm{~d}, J=1.1$ $\mathrm{Hz}), 128.6(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 125.3,125.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 124.9$, $122.4(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 120.7(\mathrm{~d}, J$ $=4.3 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 109.7(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 55.6 ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.7$; ESI-MS: m/z $339.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $[\mathrm{M}+\mathrm{Na}$; $\left.\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NaO}_{4} \mathrm{P}\right]^{+}$: 361.0600 ; found: 361.0603 .

2i: Colorless oil. 17\% yield. 78\% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $70 / 30,254 \mathrm{~nm}, 10.9 \min (R), 14.1 \mathrm{~min}(S) ;[\alpha]_{\mathrm{D}}{ }^{27}=-$ $42.9^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ (ddd, $J=14.9,7.6,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$150.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 137.5,133.5,130.9(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 128.6,128.1(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 128.0,126.0$ (d, $J=1.6 \mathrm{~Hz}), 124.3,124.2,123.7(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 123.0,122.4(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 121.5,120.7$, 116.6, 113.1, 112.3, 56.4, 55.5; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.9$; ESI-MS: m/z $369.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{H} ; \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{P}\right]^{+}: 369.0886$; found: 369.0889 .

2j: Colorless oil. 92% yield. 81% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: 60/40, $254 \mathrm{~nm}, 12.0 \mathrm{~min}(S), 15.0 \mathrm{~min}(R)$; $[\alpha]_{\mathrm{D}}{ }^{27}=-13.3^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.98 (ddd, $J=14.3,8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (ddd, $J=10.4,5.2,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=8.9,2.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.2(\mathrm{dd}, J=254.1,3.7 \mathrm{~Hz}), 156.9(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 156.5,144.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 143.1$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}), 140.2(\mathrm{t}, J=8.7 \mathrm{~Hz}), 133.7(\mathrm{t}, J=10.0 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=28.3 \mathrm{~Hz}), 122.4(\mathrm{dd}, J=$ $11.5,2.5 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 116.9,116.0(\mathrm{dd}, J=22.0,16.7 \mathrm{~Hz}), 114.6$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}), 111.4(\mathrm{dd}, J=23.4,13.5 \mathrm{~Hz}), 110.0,55.8,55.5 ;{ }^{31} \mathrm{PNMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.5$; ESI-MS: m/z $387.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNaO}_{5} \mathrm{P}\right]^{+}: 409.0612$; found: 409.0615 .

2k: Colorless oil. 49% yield. 58% ee; Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20,254 \mathrm{~nm}, 19.3 \mathrm{~min}(S), 20.7 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-43.9^{\circ}\left(c=0.12, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $2 \mathrm{f} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=14.7$, $7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.2,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32$ (dd, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{dd}, J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.00$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 149.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 149.1(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 129.8,129.6(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=18.7 \mathrm{~Hz}), 125.48(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}), 125.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 124.3,124.2(\mathrm{~d}, J=181.2 \mathrm{~Hz}), 122.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 122.0(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.5 ;$ ESI-MS: $\mathrm{m} / \mathrm{z} 339.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NaO}_{4} \mathrm{P}\right]^{+}$: 361.0600; found: 361.0606 .

21: Colorless oil. 84\% yield. 75\% ee; Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20,254 \mathrm{~nm}, 8.8 \mathrm{~min}(R), 19.2 \min (S) ;[\alpha]_{D^{27}}=-24.0^{\circ}$ ($c=0.42, \mathrm{CHCl}_{3}$); The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{ddd}, J=14.8,7.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=9.4,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{tdd}, J=7.5,3.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.01$ (ddd, J $=9.1,4.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7(\mathrm{~d}, J=55.0 \mathrm{~Hz})$, $158.9(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 158.5,145.8(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}), 145.5(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}), 136.1(\mathrm{dd}, J=$
$7.0,2.2 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=12.3$ $\mathrm{Hz}), 123.8(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}), 122.0(\mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}), 121.6(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}), 117.5(\mathrm{~d}$, $J=23.8 \mathrm{~Hz}), 116.3(\mathrm{dd}, J=23.6,1.2 \mathrm{~Hz}), 111.7(\mathrm{dd}, \mathrm{J}=25.2,1.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.6$; ESI-MS: m/z $345.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}$: 367.0306; found: 367.0312 .

2m: Colorless oil. 92% yield. 74% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: 60/40, $254 \mathrm{~nm}, 11.5 \mathrm{~min}(S), 15.5 \mathrm{~min}(R)$; $[\alpha]_{\mathrm{D}}{ }^{27}=-24.0^{\circ}\left(c=0.84, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2 f . ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.69(\mathrm{~m}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8(\mathrm{~d}, J=1.3 \mathrm{~Hz})$, $156.4,144.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 144.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 143.3(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 130.8$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=30.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 115.9,114.5(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 110.0,55.8,55.5$, 22.1; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9$; ESI-MS: m/z $383.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NaO}_{5} \mathrm{P}\right]^{+}: 405.0862$; found: 405.0867.

2n: Yellow solid. 87\% yield. 88\% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20,254 \mathrm{~nm}, 13.2 \mathrm{~min}(S), 15.1 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-267.1^{\circ}\left(c=0.6, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $2 \mathbf{2 f}{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=15.1,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 149.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 136.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, $130.1,129.6,129.1,129.0,128.3,127.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=1.3 \mathrm{~Hz})$, $124.7(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 122.1,120.7,120.6,120.5(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.1$; ESI-MS: m/z $359.3[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}: 381.0651$; found: 381.0656 .

20: Yellow oil. 88% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $95 / 5,254 \mathrm{~nm}, 35.9 \mathrm{~min}(R), 38.2 \mathrm{~min}(S) ;[\alpha]_{\mathrm{D}}{ }^{27}=-$ $343.5^{\circ}\left(c=0.6, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $2 \mathbf{2 f} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.03-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21$ $(\mathrm{s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 147.8(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, $137.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 131.6,131.2,129.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=6.1$ $\mathrm{Hz}), 129.1(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 129.0,128.9(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.2,127.4,127.0$, $126.7,125.0,124.8(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 123.8,123.5(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=187.6 \mathrm{~Hz}), 120.1(\mathrm{~d}$,
$J=2.9 \mathrm{~Hz})$.; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.2$; ESI-MS: m/z $387.3[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}: 409.0964$; found: 409.0969 .

2p: Yellow solid. 62% yield. 75% ee; Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: 70/30, $254 \mathrm{~nm}, 15.5 \mathrm{~min}(S), 19.1 \mathrm{~min}(R)$; $[\alpha]_{\mathrm{D}}{ }^{27}=-201.3^{\circ}\left(c=0.22, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.67-8.60 (m, 1H), 8.02-7.89 (m, 3H), 7.65 (ddd, $J=10.0,6.8,2.1 \mathrm{~Hz}$, $3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=9.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 155.9$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}), 143.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 143.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 136.5(\mathrm{~d}, J=6.8$ $\mathrm{Hz}), 129.2,129.0,128.9,128.2,127.6(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 126.3,124.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}), 122.5,121.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 115.1,114.6(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}$), $55.9,55.6 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.7$; ESI-MS: m/z $419.3[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NaO}_{5} \mathrm{P}\right]^{+}: 441.0862$; found: 441.0866 .

2q: White solid. 68\% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $70 / 30,254 \mathrm{~nm}, 8.1 \mathrm{~min}(R), 16.8 \mathrm{~min}(S) ;[\alpha]_{\mathrm{D}}{ }^{27}=-$ $364.5^{\circ}\left(c=0.42, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound 2f. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66-8.56(\mathrm{~m}, 1 \mathrm{H})$, $8.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=12.9,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98$ (dd, $J=8.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45$ (ddd, $J=8.1,6.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, J=8.2$, $6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 137.0$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}), 134.5,134.1,129.1,129.0,128.3,127.8,127.5(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, 127.0, $126.8(\mathrm{~d}, J=0.9 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 126.24,126.18,126.1(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 125.8$, $125.15,125.13,124.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=0.7 \mathrm{~Hz}), 122.2,122.1,120.9,120.6,119.0(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.1$; ESI-MS: m/z 459.4 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{H} ; \mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{P}\right]^{+}: 459.1145$; found: 459.1142 .

2r: White solid. 64% yield. 87% ee; Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25{ }^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20,254 \mathrm{~nm}, 9.7 \mathrm{~min}(S), 12.5 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}{ }^{27}=-$ $232.2^{\circ}\left(c=0.42, \mathrm{CHCl}_{3}\right)$; The absolute configuration was assigned by analogy with compound $2 \mathbf{2 f}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61-8.51(\mathrm{~m}, 1 \mathrm{H})$, 8.06-7.91 (m, 3H), 7.85 (dd, $J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.33$ (dd, $J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{ddt}, J=17.1,14.6,5.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.3(\mathrm{~d}, J=133.1 \mathrm{~Hz}), 158.4(\mathrm{~d}, J=130.9 \mathrm{~Hz}), 145.6(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}), 145.2$ (dd, $J=8.8,2.6 \mathrm{~Hz}$), $136.8(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 135.5(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 129.3$, $128.8(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 128.6,128.1,125.9,124.8(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 122.0$ $(\mathrm{dd}, J=8.5,4.4 \mathrm{~Hz}), 121.8(\mathrm{dd}, J=8.6,6.0 \mathrm{~Hz}), 121.3(\mathrm{~d}, J=175.0 \mathrm{~Hz}), 117.2(\mathrm{dd}, J=25.7,1.8$
$\mathrm{Hz}), 116.8(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=23.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.3$; ESI-MS: $\mathrm{m} / \mathrm{z} 395.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NaO}_{3} \mathrm{P}\right]^{+}$: 417.0463; found: 417.0469 .

5. Experimental procedure for the reactions in Scheme 1 Synthesis of compound 3

$\mathrm{Et}_{2} \mathrm{AlCl}(1.0 \mathrm{M}$ in Hexane, $1.95 \mathrm{~mL}, 1.95 \mathrm{mmol})$ was added to a solution of compound $\mathbf{2 a}(600$ $\mathrm{mg}, 1.95 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at room temperature, the resulting mixture was cooled to $-65^{\circ} \mathrm{C}$ and stirred at the same temperature for 20 min , then $i \operatorname{PrLi}(1.0 \mathrm{M}$ in Hexane, $3.9 \mathrm{~mL}, 3.9 \mathrm{mmol}$) was dropped into the above solution and the resulting mixture was stirred for further 10 min . After quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the mixture was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (eluent: PE/EA, 1/1) to give the desired product 3 ($362 \mathrm{mg}, 72 \%$) as yellow oil. 3: Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: 1 $\mathrm{mL} / \mathrm{min}$, hexanes/isopropanol: $80 / 20,254 \mathrm{~nm}, 7.8 \mathrm{~min}, 9.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=19.3^{\circ}\left(c=0.15, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.51(\mathrm{tdd}, J=7.5,2.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=12.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.11$ (m, 1H), 1.19 (ddd, $J=17.9,16.4,7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7$ (d, $J=8.7$ $\mathrm{Hz}), 136.0(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 130.5,128.2(\mathrm{~d}, J=12.5$ $\mathrm{Hz}), 125.1,124.3,123.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=112.0 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 120.2(\mathrm{~d}, \mathrm{~J}$ $=6.2 \mathrm{~Hz}), 28.0(\mathrm{~d}, J=97.5 \mathrm{~Hz}), 15.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 14.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 42.8 ;$ ESI-MS: m/z $259.1[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NaO}_{4} \mathrm{P}\right]^{+}$: 258.0810; found: 259.0881 .

Synthesis of compound 4

$\mathrm{Et}_{2} \mathrm{AlCl}(1.0 \mathrm{M}$ in Hexane, $0.19 \mathrm{~mL}, 0.19 \mathrm{mmol})$ was added to a solution of compound $\mathbf{3}(50$ $\mathrm{mg}, 0.19 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at room temperature, the resulting mixture was cooled to $-65^{\circ} \mathrm{C}$ and stirred at the same temperature for 20 min , then $\mathrm{MeLi}(1.6 \mathrm{M}$ in ether, $0.24 \mathrm{~mL}, 0.39 \mathrm{mmol})$ was dropped into the above solution and the resulting mixture was stirred for further 10 min . After quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the mixture was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (eluent: PE/EA, 1/1) to give the desired product $4(46 \mathrm{mg}, 90 \%$) as white solid. Compound 4 is a mixture of two atropisomers (2.2/1) at room temperature, however, the two
isomers could conversion to each other quickly at $100^{\circ} \mathrm{C}$ and the ${ }^{1} \mathrm{H}$ NMR shows one compound at this temperature. Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $90 / 10,230 \mathrm{~nm}, 7.6 \mathrm{~min}, 9.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=76.1^{\circ}(\mathrm{c}=0.125$, CHCl_{3}); The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 showed Mixtures at rt . However, the signals at $100{ }^{\circ} \mathrm{C}$ showed one isomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO at $100^{\circ} \mathrm{C}$) $\delta 9.1(\mathrm{br}, 1 \mathrm{H}), 8.03-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{dt}, J$ $=16.4,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{br}, 3 \mathrm{H}), 0.90(\mathrm{dd}, J=15.8,7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{dd}, J=15.8,7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ at rt) $\delta 154.3,142.7,142.6,133.2$, $133.1,132.89,132.87,132.75,132.68,132.20,132.18,131.92,131.90,131.2,131.1,130.8,130.5$, $130.3,130.3,130.1,130.0,129.8,127.7,127.6,127.44,127.36,122.1,121.3,120.8,119.8,27.0(\mathrm{~d}$, $J=72.5 \mathrm{~Hz}$) (minor), $26.9(\mathrm{~d}, J=70.0 \mathrm{~Hz}$) (major), $15.5(\mathrm{~d}, J=102.5 \mathrm{~Hz})$ (minor), $15.4(\mathrm{~d}, J=$ 153.7 Hz) (major), 12.0 ($\mathrm{d}, J=67.5 \mathrm{~Hz}$) (minor), $8.69(\mathrm{~d}, J=70.0 \mathrm{~Hz}$) (major) (Due to C-P coupling and rotamers at rt , doublets in the aromatic region cannot be assigned and they are lisetd as singlets); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ at rt) $\delta 53.2$ (major), 47.2 (minor); ESI-MS: m/z $275.2[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ (ESI) calculated for $\left[\mathrm{M}+\mathrm{Na} ; \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{P}\right]^{+}: 275.1201$; found: 275.1197.

Synthesis of compound 5

$\mathrm{Et}_{2} \mathrm{AlCl}(1.0 \mathrm{M}$ in Hexane, $0.4 \mathrm{~mL}, 0.40 \mathrm{mmol})$ was added to a solution of compound $\mathbf{2 a}(125$ $\mathrm{mg}, \quad 0.40 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at room temperature, the resulting mixture was cooled to $-65^{\circ} \mathrm{C}$ and stirred at the same temperature for 20 min , then $\operatorname{MeLi}(1.6 \mathrm{M}$ in ether, $0.38 \mathrm{~mL}, 0.6 \mathrm{mmol})$ was dropped into the above solution and the resulting mixture was stirred for further 10 min . After quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the mixture was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (eluent: PE/EA, 1/1) to give the desired product 5 ($27 \mathrm{mg}, 30 \%$) as yellow oil. 5: Enantiomeric excess was determined by chiral HPLC: Chiralpak AD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: 70/20, $230 \mathrm{~nm}, 7.0 \mathrm{~min}, 8.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=5.8^{\circ}\left(c=0.125, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 133.1,130.5,129.5(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 128.4$ (d, $J=13.5$ $\mathrm{Hz}), 126.4,125.1,124.6,123.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 14.8$ $(\mathrm{d}, J=100.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.3$; ESI-MS: m/z $231.1[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calculated for $\left[\mathrm{M}+\mathrm{H} ; \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}\right]^{+}$: 230.0497; found: 231.0566 .

Synthesis of compound ent-4

$\mathrm{Et}_{2} \mathrm{AlCl}(1.0 \mathrm{M}$ in Hexane, $22 \mu \mathrm{~L}, 0.022 \mathrm{mmol})$ was added to a solution of compound $5(5 \mathrm{mg}$, $0.022 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at room temperature, the resulting mixture was cooled to $-65^{\circ} \mathrm{C}$ and stirred at the same temperature for 20 min , then $i \operatorname{PrLi}(1.0 \mathrm{M}$ in Hexane, $44 \mu \mathrm{~L}, 0.044 \mathrm{mmol})$ was dropped into the above solution and the resulting mixture was stirred for further 10 min . After quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the mixture was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (eluent: PE/EA, 1/1) to give the desired product ent-4 ($2.1 \mathrm{mg}, 35 \%$) as white solid. Enantiomeric excess was determined by chiral HPLC: Chiralcel OD-H, $25^{\circ} \mathrm{C}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, hexanes/isopropanol: $90 / 10,230 \mathrm{~nm}, 7.6 \mathrm{~min}, 9.3 \mathrm{~min}$. Compound ent-4 is a mixture of two atropisomers $(2.2 / 1)$ at room temperature.

6. References

(1) W. Tang, A. G. Capacci, X. Wei, W. Li, A. White, N. D. Patel, J. Savoie, J. Gao, S. Rodriguez,; B. Qu, N. Haddad, B. Z. Lu, D. Krishnamurthy, N. K. Yee and C. H. Senanayake, Angew. Chem., Int. Ed. 2010, 49, 5879.
(2) W. Tang, N. D. Patel, G. Xu, X. Xu, J. Savoie, S. Ma, M.-H. Hao, S. Keshipeddy, A. G. Capacci, X. Wei, Y. Zhang, J. Gao, W. Li, S. Rodriguez, B. Z. Lu, N. K. Yee and C. H. Senanayake, Org. Lett. 2012, 14, 2258.
(3) W. Tang, S. Keshipeddy, Y. Zhang,; X. Wei, J. Savoie, N. D. Patel, N. K. Yee and C. H. Senanayake, Org. Lett. 2011, 13, 1366.
(4) G. Xu, W. Fu, G. Liu, C. H. Senanayake and W. Tang, J. Am. Chem. Soc. 2014, 136, 570.
(5) J. C. González-Gómez, L. Santana and E. Uriarte, Tetrahedron 2005, 61, 4805.
(6) T. J. Reddy, T. Iwama, H. J. Halpern and V. H. Rawal, J. Org. Chem. 2002, 67, 4635

7. X-ray of $\mathbf{2 f}$

Table 1. Crystal data and structure refinement for 289.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F (000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=67.01$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^2
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

289
C26 H17 03 P
408. 37

296 (2) K

1. 54178 A

Orthorhombic, P 212121
$\mathrm{a}=8.4926(17) \mathrm{A} \quad$ alpha $=90$ deg.
$\mathrm{b}=12.013(2) \mathrm{A} \quad$ beta $=90 \mathrm{deg}$.
$\mathrm{c}=19.248(4) \mathrm{A}$ gamma $=90 \mathrm{deg}$.
1963.7(7) A^3

4, $\quad 1.381 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$

1. $455 \mathrm{~mm}^{\wedge}-1$

848
$0.34 \times 0.28 \times 0.22 \mathrm{~mm}$
4. 34 to 67.01 deg.
$-10<=\mathrm{h}\langle=10, \quad-14<=\mathrm{k}\langle=14, \quad-22\langle=1<=22$
$8910 / 3380[R($ int $)=0.0281]$
98.5 \%

Semi-empirical from equivalents
0.7529 and 0.5721

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
$3380 / 0 / 272$

1. 098
$\mathrm{R} 1=0.0394, \quad \mathrm{wR} 2=0.1233$
$R 1=0.0398, \quad w R 2=0.1239$
0.08 (2)
2. 0020 (5)
0.344 and -0.264 e. A - 3

8. NMR Spectra

2010186XUGQ7-66-1
$\stackrel{1}{1}$
|
(ins
$\stackrel{8}{\square}$

$-8.5 \mathrm{E}+08$
$-8.0 \mathrm{E}+08$
$-7.5 \mathrm{E}+08$
$-7.0 \mathrm{E}+08$
$-6.5 \mathrm{E}+08$
$-6.0 \mathrm{E}+08$
$-5.5 \mathrm{E}+08$
$-5.0 \mathrm{E}+08$
$-4.5 \mathrm{E}+08$
$4.0 \mathrm{E}+08$
$-3.5 \mathrm{E}+08$
$3.0 \mathrm{E}+08$
$2.5 \mathrm{E}+08$
$2.0 \mathrm{E}+08$
$1.5 \mathrm{E}+08$
$1.0 \mathrm{E}+08$
$5.0 \mathrm{E}+07$
$0.0 \mathrm{E}+00$

PROTON 01
2010186xUGQ14-37-1

:

xugq15-72-1-c
Gradient Shimmin

PHOSPHORUS_01
2010186XUGQ16-14-1-
$\frac{8}{6}$
욱 $\underset{0}{8}$ 운
(

-140
-130
-110
-100
-90
-80
-70
-50
-40
-30
-20
-10
-10
-0
-80
-80

PHOSPRORUS 01
2010186KUCO15-38-1-P


```
M10sP10RLS_01 







Prosphorus 01








```

M10SPIORLS 01
2014730-2-74-IP5

```






































\begin{tabular}{llllllllll}
190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\
\(f 1(\mathrm{ppa})\)
\end{tabular}



\footnotetext{
\(\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}\)
}








\(\begin{array}{ccc}180 & 170 & 160\end{array}\)



















\section*{9．HPLC Charts}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \begin{tabular}{l}
峰面积 \\
［mAU＊s］
\end{tabular} & \[
\begin{aligned}
& \text { 峰高 } \\
& {[\mathrm{mAU}]}
\end{aligned}
\] & \begin{tabular}{l}
峰面积 \\
\％
\end{tabular} \\
\hline & 15.927 & & 0.4569 & 1649.40674 & 55.15456 & 94.1011 \\
\hline & 18.048 & BB & 0.4764 & 103.39570 & 3.23915 & 5.8989 \\
\hline
\end{tabular}
DAD1 B，Sig＝254，4 Ref＝off（D：HPLC DA．UPLC－2ITO 20141208DATALXUGQIZGQ 2014－12－01 16－27－43011－0101．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \begin{tabular}{l}
峰面积 \\
［mAU＊s］
\end{tabular} & \[
\begin{array}{r}
\text { 峰高 } \\
\hline \text { [mAU] }
\end{array}
\] & 峰面积 \\
\hline & & & & & & \\
\hline 1 & 8.293 & BV & 0.2844 & 1623.65710 & 86.75245 & 49.9039 \\
\hline 2 & 9.349 & vB & 0.3224 & 1629.91235 & 76.56569 & 50.0961 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 ［min］ & 类型 & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & 峰面积 \\
\hline & 8.307 & & 0.2778 & 823.65344 & 45.36678 & 7.8672 \\
\hline 2 & 9.361 & & 0.3219 & 9645.76953 & 454.00473 & 92.1328 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \＃ & \[
\begin{gathered}
\text { 保留时间 } \\
\text { [min] }
\end{gathered}
\] & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & 峰面积 응 \\
\hline 1 & 18.483 & BB & 0.5431 & 966.84210 & 27.57523 & 49.8518 \\
\hline 2 & 21.788 & BB & 0.6242 & 972.58972 & 23.43362 & 50.1482 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰
\# & 保留时间 ［min］ & 类型 & 峰宽 ［min］ & \[
\begin{aligned}
& \text { 峰面积 } \\
& {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]}
\end{aligned}
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\text { \% }
\end{gathered}
\] \\
\hline & 12.040 & & 0.4352 & 1890.72644 & 65.81521 & 50.1169 \\
\hline & 15.603 & BB & 0.5752 & 1881.90857 & 49.76174 & 49.883 \\
\hline
\end{tabular}
DAD1 B，Sig＝254，4 Ref＝off（D：IHPLC DA．．UPLC－2ITO 201412081DATAIXUGQIZGQ 2014－12－01 16－27－431014－0401．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 ［min］ & 类型 & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & 峰面积
\% \\
\hline 1 & 12.059 & & 0.4415 & 678.32086 & 23.44770 & 8.5399 \\
\hline & 15.620 & & 0.5874 & 7264.66113 & 187.7715 & 91.4601 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
\＃
\end{tabular} & 保留时间 ［min］ & 类型 & 峰宽
[min] & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & 峰面积 \\
\hline 1 & 10.314 & BB & 0.3709 & 8321.04395 & 340.75812 & 50.0105 \\
\hline 2 & 18.580 & BB & 0.6877 & 8317.56152 & 183.20532 & 49.9895 \\
\hline
\end{tabular}

（
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & 峰宽
[min] & \[
\begin{aligned}
& \text { 峰面积 } \\
& {[\mathrm{mAU} \text { *s] }}
\end{aligned}
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & \begin{tabular}{l}
峰面积 \\
\％
\end{tabular} \\
\hline & 14.998 & BB & 0.5650 & 6303.42969 & 169.84343 & 49.9428 \\
\hline & 20.197 & BB & 0.7731 & 6317.86377 & 124.26816 & 50.0572 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
\＃
\end{tabular} & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \begin{tabular}{l}
峰面积 \\
［mAU＊s］
\end{tabular} & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\frac{\%}{\circ}
\end{gathered}
\] \\
\hline & 15.004 & & 0.5151 & 212.92143 & 5.78863 & 6.4893 \\
\hline & 20.203 & BB & 0.7797 & 3068.18213 & 60.09306 & 93.5107 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
峰
\end{tabular} & 保留时间 ［min］ & 类型 & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU} * \text { s }}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\%
\end{gathered}
\] \\
\hline & 9.766 & & 0.3416 & 491.37476 & 65.99689 & 49.8070 \\
\hline 2 & 12.441 & & 0.4476 & 502.93066 & 51.33106 & 50.1930 \\
\hline
\end{tabular}
DAD1 B，Sig＝254，4 Ref＝off（D：IHPLC DA．．UPLC－2ITO 201412081DATAIXUGQZZGQ2014－12－01 16－27－431029－1201．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & 峰面积
\[
\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~s}\right]
\] & 峰高 & \begin{tabular}{l}
峰面积 \\
응
\end{tabular} \\
\hline & 9.774 & & 0.3441 & 500.2246 & 22.0969 & 6.0326 \\
\hline 2 & 12.447 & BB & 0.4518 & 7791.80273 & 262.88818 & 93.9674 \\
\hline
\end{tabular}

（200
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & 峰宽
［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & 峰高
［mAU］ & 峰面积 응 \\
\hline & 10.954 & BB & 0.4158 & 1.16673 e 4 & 428.31833 & 89.0327 \\
\hline & 14.121 & BBA & 0.5417 & 1437.20801 & 40.53434 & 10.9673 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 ［min］ & 类型 & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & 峰面积 \\
\hline 1 & 12.024 & BB & 0.4395 & 5699.89453 & 197.06105 & 50.0165 \\
\hline 2 & 15.080 & BB & 0.5621 & 5696.13623 & 153.79773 & 49.9835 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\
2j
\end{tabular}} & \\
\hline & 8 & 10 & 12 & 14 & 10 \\
\hline & 保留时间 类型
\([m i n]\) & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU} \text { *s] }}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & 峰面积 \\
\hline 1 & 12.031 BB & 0.4402 & 684.83386 & 23.62080 & 9.4646 \\
\hline 2 & 15.085 BB & 0.5700 & 6550.93311 & 175.29308 & 90.5354 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \[
\begin{aligned}
& \text { 峰而积 } \\
& {[\mathrm{mAU} * \mathrm{~s}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\frac{1}{\circ}
\end{gathered}
\] \\
\hline & 19.319 & & 0.5792 & 1170.59424 & 31.09806 & 20.7796 \\
\hline & 20.776 & VB & 0.6485 & 4462.78955 & 104.44370 & 79.2204 \\
\hline
\end{tabular}
DAD1 B，Sig＝254，4 Ref＝off（D：IHPLC DA．．UPIC－2ITO 20141208IDATAIXUGQIZGQ 2014－12－01 15－19－181042－0201．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 ［min］ & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\%
\end{gathered}
\] \\
\hline & 8.952 & & 0.2737 & 3714.48535 & 206.66362 & 50.0158 \\
\hline & 19.147 & & 0.6879 & 3712.14258 & 82.35204 & 49.9842 \\
\hline
\end{tabular}
SAO
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 & 类型 & 峰宽 & 峰面积 & 峰高 & 峰面积 \\
\hline \＃ & ［min］ & & ［min］ & ［mAU＊S］ & ［mAU］ & － \\
\hline 1 & 8.877 & & 0.2726 & 7373.39209 & 412.39771 & 87.7479 \\
\hline 2 & 19.225 & BB & 0.6720 & 1029．53784 & 22.92013 & 12.2521 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
峰
\end{tabular} & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & 峰面积
\([\mathrm{mAU} * \mathrm{~s}]\)
\[
\left[\mathrm{mAU}^{*} \mathrm{~s}\right]
\] & \[
\begin{gathered}
\text { 峰高 } \\
{[\mathrm{mAU}]}
\end{gathered}
\] & 峰面积
\% \\
\hline & 13.712 & & 0.4158 & 5312.53125 & 196.24107 & 49.8917 \\
\hline & 15.703 & BB & 0.4801 & 5335.60400 & 170.02783 & 50.1083 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  & \begin{tabular}{l}
W 2014－12－16 13－34 \\
\(=0\)
O(4-MeOPh)
\end{tabular} & \begin{tabular}{l}
561027－0401．D） \\
号
\end{tabular} & & \multicolumn{2}{|l|}{} \\
\hline & 10 & \(12 \times 14\) & 16 & & 20 & \(22 \cdot 1\) \\
\hline & 保留时间 类型 ［min］ & 峰宽 ［min］ & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\%
\end{gathered}
\] \\
\hline 2 & \[
\begin{aligned}
& 15.470 \mathrm{BB} \\
& 19.037 \mathrm{BB}
\end{aligned}
\] & 0.5863
0.7271 & 1829.1778
1850.7031 & & \[
\begin{aligned}
& 48.25369 \\
& 38.75734
\end{aligned}
\] & \[
\begin{aligned}
& 49.7075 \\
& 50.2925
\end{aligned}
\] \\
\hline
\end{tabular}

DAD1 B，Sig＝254，4 Ref＝off（XUGQZZQ 2015－01－01 23－42－161009－0301．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
\＃
\end{tabular} & \[
\begin{gathered}
\text { 保留时间 } \\
{[\mathrm{min}]}
\end{gathered}
\] & 类型 & 峰宽 ［min］ & \begin{tabular}{l}
峰面积 \\
［mAU＊s］
\end{tabular} & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \begin{tabular}{l}
峰面积 \\
응
\end{tabular} \\
\hline & 7.885 & & 0.3274 & 1443.62732 & 67.52410 & 50.6353 \\
\hline & 16.681 & BB & 0.9033 & 1407．40051 & 22.63987 & 49.3647 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & \[
\begin{gathered}
\text { 保留时间 } \\
\text { [min] }
\end{gathered}
\] & 类型 & 峰宽 ［min］ & 峰面积
\[
\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \begin{tabular}{l}
峰面积 \\
응
\end{tabular} \\
\hline & 8.107 & BB & 0.3144 & 1.64460 e 4 & 804.81317 & 93.1566 \\
\hline & 16.869 & BB & 0.8599 & 1208.14343 & 20.97712 & 6.8434 \\
\hline
\end{tabular}

DAD1 \(\mathrm{B}, \mathrm{Sig}=254,4\) Ref \(=\) off（ XUGQIHLW 2014－12－10 23－44－57044－0201．D）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
峰 \\
\＃
\end{tabular} & \begin{tabular}{l}
保留时间 \\
［min］
\end{tabular} & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \[
\begin{gathered}
\text { 峰面积 } \\
{[\mathrm{mAU} \text { *s] }}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰面积 } \\
\%
\end{gathered}
\] \\
\hline & 9.764 & & 0.3266 & 240.10005 & 11.36035 & 6.4200 \\
\hline 2 & 12.579 & BB & 0.4360 & 3499.78052 & 123.73879 & 93.5800 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 峰 & 保留时间 ［min］ & 类型 & \begin{tabular}{l}
峰宽 \\
［min］
\end{tabular} & \[
\begin{gathered}
\text { 峰面积 } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { 峰高 } \\
\text { [mAU] }
\end{gathered}
\] & \begin{tabular}{l}
峰面积 \\
\％
\end{tabular} \\
\hline 1 & 7.802 & & 0.2931 & 3.15191 e4 & 1663.10193 & 49.6574 \\
\hline 2 & 9.487 & BV & 0.3540 & 3.19540 e 4 & 1390.94507 & 50.3426 \\
\hline
\end{tabular}


\begin{tabular}{|l|ccccccc|}
\hline No. & Ret.Time & Peak Name & \begin{tabular}{c} 
Height \\
min
\end{tabular} & & \begin{tabular}{c} 
Area \\
mAU min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount
\end{tabular} Type

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & Peak Name & Height mAU & Area mAU*min & Rel.Area \% & Amount & Type \\
\hline 1 & 7.65 & n.a. & 54.344 & 34.386 & 90.06 & n.a. & M * \\
\hline 2 & 9.32 & n.a. & 5.658 & 3.794 & 9.94 & n.a. & MB* \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & & Peak Name & Height mAU & Area mAU*min & Rel.Area \% & Amount & Type \\
\hline 1 & 27.51 & n.a. & & 55.155 & 31.316 & 49.17 & n.a. & BM * \\
\hline 2 & 28.75 & n.a. & & 53.170 & 32.373 & 50.83 & n.a. & MB* \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & Peak Name & Height mAU & Area mAU*min & Rel.Area \% & Amount & Type \\
\hline 1 & 27.55 & n.a. & 776.639 & 459.768 & 91.21 & n.a. & BM * \\
\hline 2 & 28.71 & n.a. & 69.346 & 44.296 & 8.79 & n.a. & MB* \\
\hline
\end{tabular}```

