Supporting Information *for*

Base-Promoted Cascade Reaction of Isocyanides, Selenium and

Amines: A Practical Approach to 2-aminobenzo[d][1,3]selenazines

Under Metal-free Conditions

Yi Fang, Shun-Yi Wang*, Xiao-Bin Shen and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

E-mail: shunyi@suda.edu.cn; shunjun@suda.edu.cn

Contents

I. General Information	S2
II. Synthesis of Substrates	S2
1. General Procedure for the Synthesis of Isonitriles	S2
III. General Procedure and Product Characterization	S3
1. General Procedure	S3
2. Product Characterization	S3
IV. Computational Studies	S10
V. References	S11
VI. Copies of ¹ H NMR and ¹³ C NMR Spectra	S12

I. General Information

All reagents were purchased without further purification unless otherwise noted. Reactions were monitored using thin-layer chromatography (TLC). Visualization of the developed plates was performed under UV light (254 nm). Flash column chromatography was performed on silica gel (300-400 mesh). ¹H and ¹³C NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for ¹H NMR. Chemical shifts of ¹³C NMR are reported relative to CDCl₃ (δ 77.16). The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants, J, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) were obtained on an ESI-MS Spectrometer.

II. Synthesis of Substrates

1. General Procedure for the Synthesis of Isonitriles

Isocyanides were prepared according to the literatures¹ with minor modifications. A representative procedure (synthesis of 1a) is shown below.

Mizoroki-Heck reaction of 2-iodoanilines. An Ar-purged 100 mL three-necked flask was charged with tri-*o*-tolyl phosphine (457 mg, 1.5 mmol), palladium (II) acetate (168 mg, 0.75 mmol), 2-iodoaniline (2.85 g, 13 mmol), methyl acrylate (1.62 mL, 18 mmol), NEt₃ (2.29 mL, 16.5 mmol) and CH₃CN (60 mL). The system was immersed in an oil bath at reflux. After 24 h, it was removed from the oil bath, diluted with EtOAc (180 mL) and extracted with water (2 x 60 mL) and brine (60 mL). The organic layer was dried over Na₂SO₄ and volatiles were removed in vacuo. The residue was subjected to column chromatography on silica-gel (eluent : PE/EtOAc = 5/1) to give 3-(2-aminophenyl) acrylic acid methyl ester as a white solid.

N-Formylation of 2-alkenylanilines. Acetyl formyl anhydride (prepared by stirring 1 equiv of acetic anhydride and 1.1 equiv of formic acid for 2 h at 55 °C; 5.45mL, 6.11 g, 40 mmol) was added dropwise at 0 °C to a stirred solution of 3-(2-aminophenyl)acrylic acid methyl ester (1.77g, 10 mmol), in THF (20 mL), and the mixture was stirred for 2 h at room temperature. volatiles were removed in vacuo to give 3-(2-formamidophenyl)acrylic acid methyl ester as a white solid.

Dehydration of formanilides. A THF solution (60 mL) of 3-(2-formamidophenyl)acrylic acid methyl ester (2.05 g, 10 mmol) and NEt₃ (4.80 mL, 30 mmol) was cooled at 0 $^{\circ}$ C, then POCl₃ (1.27 mL, 12 mmol) was added dropwise. After the reaction was completed, an aqueous saturated Na₂CO₃ solution was added at 0 $^{\circ}$ C to quench the reaction and the mixture was extracted with CHCl₃. The residue was subjected to column chromatography on silica-gel (eluent : PE/EtOAc = 10/1) to give 3-(2-isocyanophenyl)acrylic acid methyl ester **1a** as a white solid.

III.General Procedure and Product Characterization

1. General Procedure for the Formation of 2-aminobenzo[d][1,3]-

selenazines

A representative procedure (synthesis of 4a) is shown below.

In a 10 mL round-bottom flask, 3-(2-isocyanophenyl)acrylic acid methyl ester **1a** (0.3 mmol, 1 equiv), elemental selenium **2** (0.45 mmol, 1.5 equiv), piperidine **3a** (0.45 mmol, 1.5 equiv) were dissolved in 2 mL DCE followed by addition of Et₃N (0.45 mmol, 1.5 equiv). The system was stirred in an oil bath at 25 °C. After 12h, it was removed from the oil bath. The reaction mixture was charged with silica gel and concentrated. The residue was purified by silica gel column chromatography (eluent : PE/EtOAc = 30 : 1) to obtain the desired product **4a** as a light yellow oil.

2. Product Characterization

Methyl 2-(2-(piperidin-1-yl)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4a)

Yield: 90%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 2933, 2851, 1736, 1602, 1550, 1257, 1224, 1122, 758. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.24 – 7.16 (m, 1H), 7.11 (dd, J = 10.8, 8.5 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 4.51 (dd, J = 8.5, 7.0 Hz, 1H), 3.78 – 3.68 (m, 4H), 3.64 (s, 3H), 2.92 – 2.79 (m, 2H), 1.63 (ddt, J = 26.7, 10.6, 5.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.20, 150.82, 146.83, 128.18, 125.67, 125.49, 122.99, 122.00, 77.48, 77.16, 76.84, 51.63, 48.68, 41.91, 35.59, 25.96, 25.08. **HRMS** (ESI⁺, MeCN): found, 353.0765 [M + H]⁺, calcd for C₁₆H₂₁N₂O₂Se, 353.0768.

Methyl 2-(2-(diethylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4b)

Yield: 98%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 3061, 3028, 2978, 2904, 1730, 1603, 1546, 1411, 1372, 1189, 759, 697. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.07 (m, 3H), 6.98 (td, J = 7.3, 1.4 Hz, 1H), 4.51 (dd, J = 8.7, 6.9 Hz, 1H), 3.73 – 3.52 (m, 7H), 2.93 – 2.79 (m, 2H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.43, 149.56, 147.19, 128.32, 125.75, 125.52, 122.73, 122.04, 77.48, 77.16, 76.84, 51.76, 44.35, 41.85, 35.69, 14.33. **HRMS** (ESI⁺, MeCN): found, 341.0765 [M + H]⁺, calcd for C₁₅H₂₁N₂O₂Se, 341.0768.

Methyl 2-(2-(diisopropylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4c)

Yield: 95%. White solid. **Mp:** 53.4-54.2 °C. **IR :** v_{max} (cm⁻¹) = 3004, 2968, 2952, 2923, 2853, 1742, 1549, 1365, 1221, 760. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 (td, *J* = 7.6, 1.6 Hz, 1H), 7.13 (ddd, *J* = 12.1, 7.7, 1.5 Hz, 2H), 6.98 (td, *J* = 7.3, 1.5 Hz, 1H), 4.49 (dd, *J* = 8.7, 7.0 Hz, 1H), 4.08 (h, *J* = 6.6 Hz, 2H), 3.69 (s, 3H), 2.95 – 2.84 (m, 2H), 1.43 (d, *J* = 6.8 Hz, 12H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 171.55, 147.55, 146.94, 128.17, 125.64, 125.25, 122.62, 122.13, 77.48, 77.16, 76.84, 51.73, 41.75, 36.05, 21.65, 21.10. **HRMS** (ESI⁺, MeCN): found, 369.1084 [M + H]⁺, calcd for C_{17H25}N₂O₂Se, 369.1081.

Methyl 2-(2-(pyrrolidin-1-yl)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4d)

Yield: 85%. Orange solid. **Mp**: 83.7-84.7 °C. **IR** : v_{max} (cm⁻¹) = 2965, 2946, 2867, 1728, 1553, 1474, 1357, 1214, 1169, 764, 736. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.19 (td, *J* = 7.6, 1.6 Hz, 1H), 7.11 (dd, *J* = 7.6, 1.5 Hz, 2H), 6.96 (td, *J* = 7.3, 1.5 Hz, 1H), 4.46 (t, *J* = 7.7 Hz, 1H), 3.71 (dd, *J* = 10.3, 5.8 Hz, 2H), 3.66 (s, 3H), 3.54 (d, *J* = 9.3 Hz, 2H), 2.90 (d, *J* = 7.7 Hz, 2H), 1.95 (td, *J* = 7.9, 6.7, 4.6 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.45, 148.82, 147.07, 128.46, 126.01, 125.60, 122.80, 121.74,

77.48, 77.16, 76.84, 51.83, 48.54, 42.29, 35.70, 24.89. **HRMS** (ESI⁺, MeCN): found, 339.0626 [M + H]⁺, calcd for $C_{15}H_{21}N_2O_2Se$, 339.0612.

Methyl 2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4e)

Yield: 88%. Orange solid. **Mp**: 37.1-37.6 °C. **IR** : v_{max} (cm⁻¹) = 3061, 3024, 2948, 2841, 1733, 1655, 1549, 1168, 746. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 – 7.12 (m, 7H), 7.03 (td, *J* = 7.3, 1.5 Hz, 1H), 5.10 (d, *J* = 16.7 Hz, 1H), 4.87 (d, *J* = 16.7 Hz, 1H), 4.55 (p, *J* = 8.1 Hz, 1H), 3.99 (t, *J* = 5.9 Hz, 2H), 3.65 (s, 3H), 2.98 – 2.83 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.36, 151.13, 146.67, 134.93, 133.61, 128.69, 128.46, 126.63, 126.40, 126.40, 125.89, 125.76, 123.44, 122.14, 77.51, 77.19, 76.87, 51.82, 49.09, 45.44, 42.03, 35.93, 29.36. **HRMS** (ESI⁺, MeCN): found, 401.0771 [M + H]⁺, calcd for C₂₀H₂₁N₂O₂Se, 401.0768.

Methyl 2-(2-(methyl(phenyl)amino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4f)

Yield: 92%. White solid. **Mp**: 127.5-128.4 °C. **IR** : v_{max} (cm⁻¹) = 2980, 1736, 1605, 1555, 1492, 1230, 758, 701. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.43 – 7.26 (m, 4H), 7.25 – 7.14 (m, 5H), 7.04 (ddd, *J* = 7.5, 6.1, 2.6 Hz, 1H), 4.41 (dd, *J* = 8.7, 7.0 Hz, 1H), 3.62 (s, 3H), 3.60 (s, 3H), 2.89 – 2.77 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.36, 150.51, 146.67, 144.92, 129.31, 128.40, 127.84, 127.65, 126.16, 125.90, 123.68, 122.73, 77.48, 77.16, 76.84, 51.78, 42.20, 39.70, 36.27. **HRMS** (ESI⁺, MeCN): found, 375.0609 [M + H]⁺, calcd for C₁₈H₁₉N₂O₂Se, 375.0612.

Methyl 2-(2-(3,4-dihydroquinolin-1(2H)-yl)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4g)

Yield: 90%. Light brown solid. **Mp:** 111.0-111.9 °C. **IR :** ν_{max} (cm⁻¹) = 2943, 2887, 1736, 1536, 1205, 1164, 760, 743. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41 – 7.17 (m, 7H), 7.12 (d, *J* = 7.6 Hz, 1H), 4.66

- 4.56 (m, 1H), 4.51 (ddd, J = 12.6, 8.1, 5.9 Hz, 1H), 4.10 (dt, J = 12.2, 5.8 Hz, 1H), 3.66 (s, 3H), 2.96 - 2.76 (m, 4H), 2.25 (dq, J = 12.4, 6.0 Hz, 1H), 2.04 (dtd, J = 16.1, 8.2, 4.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.15, 148.74, 145.78, 139.48, 132.27, 128.41, 128.24, 126.03, 125.94, 125.83, 124.67, 124.08, 123.67, 123.34, 77.48, 77.16, 76.84, 51.70, 47.77, 41.96, 35.99, 27.41, 24.28. **HRMS** (ESI⁺, MeCN): found, 401.0771 [M + H]⁺, calcd for C₂₀H₂₁N₂O₂Se, 401.0768.

Ethyl 2-(2-(benzyl(methyl)amino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4h)

Yield: 98%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 3061, 3028, 2978, 2904, 1730, 1603, 1546, 1478, 1372, 1189, 759, 732, 697. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.26 (m, 5H), 7.26 – 7.16 (m, 3H), 7.03 (td, *J* = 7.3, 1.4 Hz, 1H), 4.86 (s, 2H), 4.63 – 4.51 (m, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.19 (s, 3H), 2.96 – 2.85 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.86, 151.69, 146.99, 137.62, 128.68, 128.39, 127.38, 125.89, 125.74, 123.21, 122.00, 77.48, 77.16, 76.84, 60.74, 55.00, 42.26, 37.02, 36.15, 14.27. **HRMS** (ESI⁺, MeCN): found, 403.0929 [M + H]⁺, calcd for C₂₀H₂₃N₂O₂Se, 403.0925.

Ethyl 2-(2-(diethylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4i)

Yield: 92%. Light yellow oil. **IR :** v_{max} (cm⁻¹) = 2972, 2931, 1731, 1550, 1479, 1230, 1116, 757. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.24 – 7.08 (m, 3H), 6.97 (td, *J* = 7.4, 1.4 Hz, 1H), 4.51 (dd, *J* = 8.7, 6.9 Hz, 1H), 4.14 (qd, *J* = 7.1, 3.2 Hz, 2H), 3.62 (tp, *J* = 14.2, 7.1 Hz, 4H), 2.90 – 2.78 (m, 2H), 1.23 (td, *J* = 7.1, 3.4 Hz, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.00, 149.60, 147.24, 128.29, 125.81, 125.52, 122.70, 122.14, 77.48, 77.16, 76.84, 60.70, 44.35, 42.07, 35.78, 14.35, 14.28. **HRMS** (ESI⁺, MeCN): found, 355.0926 [M + H]⁺, calcd for C₁₆H₂₃N₂O₂Se, 355.0925.

Ethyl 2-(2-(dipropylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4j)

Yield: 94%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 2961, 2931, 2873, 1732, 1603, 1551, 1368, 1214, 1122, 757. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.08 (m, 3H), 6.97 (t, *J* = 7.4 Hz, 1H), 4.51 (dd, *J* = 8.8, 6.8 Hz, 1H), 4.14 (qq, *J* = 7.3, 3.7 Hz, 2H), 3.53 (dddd, *J* = 43.2, 14.3, 8.9, 5.8 Hz, 4H), 2.83 (dd, *J* = 7.8, 4.9 Hz, 2H), 1.76 – 1.58 (m, 4H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.00, 150.13, 147.19, 128.25, 125.77, 125.48, 122.66, 122.18, 77.48, 77.16, 76.84, 60.67, 51.87, 42.03, 35.88, 22.21, 14.26, 11.38. HRMS (ESI⁺, MeCN): found, 383.1240 [M + H]⁺, calcd for C₁₈H₂₇N₂O₂Se, 383.1238.

Ethyl 2-(2-(dibutylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4k)

Yield: 90%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 2957, 2930, 2871, 1733, 1603, 1552, 1479, 1369, 1203, 1189, 1124, 1108, 757. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.01 (m, 3H), 7.01 – 6.92 (m, 1H), 4.51 (dd, *J* = 8.7, 6.8 Hz, 1H), 4.14 (q, *J* = 7.3 Hz, 2H), 3.76 – 3.35 (m, 4H), 2.91 – 2.73 (m, 2H), 1.73 – 1.53 (m, 4H), 1.36 (h, *J* = 7.4 Hz, 4H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.02, 150.05, 147.24, 128.26, 125.79, 125.50, 122.64, 122.15, 77.48, 77.16, 76.84, 60.68, 49.86, 42.08, 35.86, 31.12, 20.20, 14.28, 14.02. HRMS (ESI⁺, MeCN): found, 411.1553 [M + H]⁺, calcd for C₂₀H₃₁N₂O₂Se, 411.1551.

Methyl 2-(7-chloro-2-(diethylamino)-4H-benzo[d][1,3]selenazin-4-yl)acetate (4l)

Yield: 88%. Colorless oil. **IR** : v_{max} (cm⁻¹) = 2971, 2931, 1736, 1542, 1461, 1357, 1227, 1118, 844, 686. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.14 – 7.01 (m, 2H), 6.92 (dd, *J* = 8.1, 2.3 Hz, 1H), 4.47 (t, *J* = 7.8 Hz, 1H), 3.69 – 3.51 (m, 7H), 2.86 – 2.76 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.24, 150.52, 148.56, 133.56, 126.83, 125.28, 122.35, 120.51, 77.48, 77.16, 76.84, 51.87, 44.59, 41.82, 35.04, 14.32. **HRMS** (ESI⁺, MeCN): found, 401.0390 [M + H]⁺, calcd for C₁₅H₂₀N₂O₂SeCl, 375.0379.

Methyl 2-(7-chloro-2-morpholino-4H-benzo[d][1,3]selenazin-4-yl)acetate (4m)

Yield: 68%. White solid. **Mp:** 85.3-86.1 °C. **IR :** v_{max} (cm⁻¹) = 2956, 2898, 2858, 1729, 1547, 1208, 1145, 1023, 874, 805. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.13 – 7.03 (m, 2H), 6.97 (dd, *J* = 8.1, 2.2 Hz, 1H), 4.50 (p, *J* = 7.7 Hz, 1H), 3.82 – 3.70 (m, 8H), 3.65 (s, 3H), 2.82 (dd, *J* = 7.7, 1.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.02, 152.65, 147.63, 133.72, 126.96, 125.55, 123.46, 120.55, 77.48, 77.16, 76.84, 66.77, 51.95, 48.11, 42.00, 35.24. **HRMS** (ESI⁺, MeCN): found, 389.0179 [M + H]⁺, calcd for C₁₅H₁₈N₂O₃SeCl, 389.0171.

Methyl 2-(2-(diethylamino)-6-fluoro-4H-benzo[d][1,3]selenazin-4-yl)acetate (4n)

Yield: 94%. Orange-yellow oil. **IR** : v_{max} (cm⁻¹) = 2971, 2932, 2871, 1736, 1611, 1559, 1484, 1230, 1117, 862, 821, 766. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 (dd, *J* = 8.6, 5.5 Hz, 1H), 6.89 (ddd, *J* = 17.2, 8.6, 2.9 Hz, 2H), 4.43 (dd, *J* = 8.5, 7.0 Hz, 1H), 3.67 (s, 3H), 3.59 (dq, *J* = 24.4, 7.1 Hz, 4H), 2.89 – 2.77 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.19, 159.64, 157.23, 149.24, 143.57, 143.55, 126.73, 126.66, 123.30, 123.23, 115.09, 114.88, 112.37, 112.14, 77.48, 77.16, 76.84, 51.86, 44.38, 41.51, 35.25, 14.33. **HRMS** (ESI⁺, MeCN): found, 401.0675 [M + H]⁺, calcd for C₁₅H₂₀N₂O₂SeF, 359.0674.

Methyl 2-(2-(diethylamino)-6-(trifluoromethyl)-4H-benzo[d][1,3]selenazin-4-yl)acetate (40)

Yield: 80%. Light yellow solid. **Mp:** 49.5-50.3 °C. **IR :** v_{max} (cm⁻¹) = 2971, 2933, 1741, 1533, 1327, 1301, 1231, 1163, 1101, 1067, 836. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.43 (dd, *J* = 10.3, 2.2 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 1H), 4.58 – 4.47 (m, 1H), 3.67 (s, 3H), 3.58 (dq, *J* = 13.8, 6.8 Hz, 4H), 2.90 – 2.79 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.06, 151.20, 150.31, 125.72, 125.30, 125.26, 125.22, 125.19, 124.20, 123.88, 123.22, 123.18, 123.15, 123.11, 122.13, 77.48, 77.16,

76.84, 51.92, 44.71, 41.69, 35.29, 14.32. **HRMS** (ESI⁺, MeCN): found, 409.0646 $[M + H]^+$, calcd for C₁₆H₂₀N₂O₂SeF₃, 409.0642.

Methyl 2-(2-(diethylamino)-6-methyl-4H-benzo[d][1,3]selenazin-4-yl)acetate (4p)

Yield: 95%. Light yellow oil. **IR** : v_{max} (cm⁻¹) = 2968, 2931, 1736, 1557, 1491, 1232, 1114, 821, 767. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.05 – 6.93 (m, 3H), 4.46 (dd, *J* = 8.8, 6.7 Hz, 1H), 3.70 – 3.52 (m, 7H), 2.85 (dd, *J* = 7.8, 3.1 Hz, 2H), 2.30 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.43, 148.91, 144.78, 132.11, 128.98, 126.19, 125.37, 121.77, 77.48, 77.16, 76.84, 51.69, 44.23, 41.87, 35.74, 20.84, 14.29. **HRMS** (ESI⁺, MeCN): found, 355.0934 [M + H]⁺, calcd for C₁₆H₂₃N₂O₂Se, 355.0925.

2-(2-(diethylamino)-4H-benzo[d][1,3]selenazin-4-yl)-1-phenylethan-1-one (4q)

Yield: 94%. Yellow oil. **IR** : v_{max} (cm⁻¹) = 2969, 2929, 1682, 1599, 1547, 1357, 1231, 1116, 756, 689. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 – 7.84 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.14 (m, 3H), 6.99 (td, *J* = 7.4, 1.5 Hz, 1H), 4.78 (dd, *J* = 9.4, 5.1 Hz, 1H), 3.68 (tt, *J* = 14.2, 8.3 Hz, 3H), 3.52 (dq, *J* = 14.1, 7.0 Hz, 2H), 3.37 (dd, *J* = 17.3, 5.1 Hz, 1H), 1.19 (t, *J* = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.67, 150.50, 147.43, 136.93, 133.29, 128.61, 128.20, 128.14, 125.85, 125.50, 122.87, 122.67, 77.48, 77.16, 76.84, 45.12, 44.16, 34.95, 14.36. **HRMS** (ESI⁺, MeCN): found, 387.0983 [M + H]⁺, calcd for C₂₀H₂₃N₂OSe, 387.0976.

methyl 2-((S)-2-((S)-2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)-4H-benzo[d][1,3]selenazin-4-yl) acetate (4t)

Yield: 66%. White solid. Mp: 48.7-50.1 °C. IR : v_{max} (cm⁻¹) = 3058, 3023, 2950, 2920, 2849, 1734, 1542, 1480, 1363, 1224, 755, 700. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.77 (s, 1H), 7.43 (t, *J* = 9.5 Hz, 4H), 7.31 (dd, *J* = 16.2, 8.4 Hz, 6H), 7.18 – 7.06 (m, 3H), 6.97 (t, *J* = 7.3 Hz, 1H), 5.30 (dd, *J* = 8.9, 5.0 Hz, 1H), 4.38 (t, *J* = 7.7 Hz, 1H), 3.70 (s, 3H), 3.38 (q, *J* = 8.0 Hz, 1H), 3.24 (td, *J* = 8.8, 5.9 Hz, 1H), 2.81 – 2.69 (m, 2H), 2.19 – 2.03 (m, 2H), 1.48 (hept, *J* = 8.0 Hz, 1H), 0.93 (dq, *J* = 13.6, 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.37, 146.85, 143.96, 128.59, 128.23, 127.97, 127.81, 127.36, 127.13, 126.01, 124.94, 123.66, 122.42, 81.65, 69.29, 51.82, 50.75, 41.97, 35.79, 31.17, 22.09. HRMS (ESI⁺, MeCN): found, 521.1336 [M + H]⁺, calcd for C₂₈H₂₉N₂O₃Se, 521.1343.

methyl 2-((R)-2-((S)-2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)-4H-benzo[d][1,3]selenazin-4-yl) acetate (4t')

Yield: 25%. White solid. **Mp:** 162.1-163.3 °C. **IR :** v_{max} (cm⁻¹) = 3061, 3032, 2960, 2851, 1724, 1539, 1481, 1371, 1222, 767, 704. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.92 (s, 1H), 7.48 – 7.40 (m, 4H), 7.38 – 7.29 (m, 3H), 7.26 – 7.19 (m, 5H), 7.14 (d, *J* = 7.1 Hz, 1H), 7.03 (dt, *J* = 7.6, 4.2 Hz, 1H), 5.63 (dd, *J* = 8.9, 4.5 Hz, 1H), 4.52 (dd, *J* = 9.1, 6.3 Hz, 1H), 3.67 (s, 3H), 2.92 – 2.79 (m, 2H), 2.75 (ddd, *J* = 9.9, 8.0, 5.9 Hz, 1H), 2.23 (dq, *J* = 13.3, 8.5 Hz, 1H), 2.08 (ddt, *J* = 13.3, 8.1, 5.1 Hz, 1H), 1.73 – 1.40 (m, 2H), 1.00 – 0.91 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.58, 146.19, 128.18, 127.90, 127.53, 127.42, 126.79, 126.66, 126.60, 125.46, 124.76, 123.31, 120.60, 81.94, 68.44, 51.44, 50.72, 42.03, 35.50, 29.24, 22.36. **HRMS** (ESI⁺, MeCN): found, 521.1344 [M + H]⁺, calcd for C₂₈H₂₉N₂O₃Se, 521.1343.

Computational studies at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d,p) level of theory indicate that the *S* configuration (**4t**) is 3.3 kcal/mol lower in energy than the *R* configuration (**4t**'). Thus, the *S* configuration (**4t**) is more likely to be the major product. Structural inspection shows that the methylene group is present in an axial position for the *S* configuration and in an equatorial position for the *R* configuration, respectively. Therefore, the *S* configuration is preferred due to the less steric effect between the methylene group and the *ortho*-C-H bond.

V. References

[1] M. Tobisu, H. Fujihara, K. Koh and N. Chatani. J. Org. Chem., 2010, 75, 4841-4847.

S27

