Carboxylate-Assisted Ruthenium(II)-Catalyzed C–H Activations of Monodentate Amides with Alkenes

Jie Li, and Lutz Ackermann*

Contents

General Remarks	S-2
Representative Procedures	S-3
Characterization Data of 3 and 5	S-3
Competition Experiments	S-14
H/D Exchange Experiments	S-15
KIE Experiments	S-16
Characterization Data of Products 6	S-18
References	S-21
NMR Spectra	S-22

General Remarks

Catalytic reactions were carried out in Schlenk tubes under an argon atmosphere using pre-dried glassware. 1,4-Dioxane was dried and distilled over Na under nitrogen. The following starting materials were synthesized according to previously described methods: Aryl amides **1a-1r**, $[D_5]$ -**1a**,^[1] acetanilides **4**,^[2] alkenes **2b**.^[3] Other chemicals were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H-NMR and GC-analysis. Chromatography: Merck silica gel 60 (40-63 µm). NMR: Spectra were recorded on Varian Unity 300, Mercury 300 or Inova 500 in the solvent indicated; chemical shifts (δ) are given in ppm. All IR spectra were recorded on a Bruker FT-IR Alpha device. MS: EI-MS-spectra were recorded with Finnigan MAT 95, 70 eV; High resolution mass spectrometry (HRMS) with APEX IV 7T FTICR, Bruker Daltonic. M. p.: Stuart melting point apparatus SMP3, Barlworld Scientific, values are uncorrected.

Representative Procedure

Representative Procedure A: A suspension of aryl amide 1 or acetanilide 4 (0.5 mmol, 1.0 equiv), α,β -unsaturated ketone 2 (1.0 mmol, 2.0 equiv), $[RuCl_2(p-cymene)]_2$ (15.3 mg, 5.0 mol %), KO₂CMes (30.3 mg, 30 mol %) and MesCO₂H (82 mg, 0.5 mmol, 1.0 equiv) in degassed H₂O (2.0 mL) was stirred at 120 °C for 20 h under an atmosphere of N₂. At ambient temperature, aq. NaCl (15 mL) was added. The reaction mixture was extracted with EtOAc (3×20 mL), and the combined organic layers were dried over Na₂SO₄. Evaporation of the solvents *in vacuo* and purification of the remaining residue by column chromatography on silica gel (*n*-hexane/EtOAc) yielded products **3**.

Representative Procedure B: A suspension of acetanilides **4** (0.5 mmol, 1.0 equiv), α,β unsaturated ketone **2** (1.0 mmol, 2.0 equiv), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 2.5 mol %), AgSbF₆ (17.2 mg, 20 mol %) and Cu(OAc)₂ (190 mg, 2.1 equiv) in 1,4-dioxane (2.0 mL) was stirred at 140 °C for 20 h under an atmosphere of N₂. At ambient temperature, H₂O (15 mL) was added. The reaction mixture was extracted with EtOAc (3×20 mL) and the combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. Evaporation of the solvents *in vacuo* and purification of the remaining residue by column chromatography on silica gel (*n*hexane/EtOAc) yielded products **6**.

N-Methyl-2-(3-oxobutyl)benzamide (3aa)

The general procedure **A** was followed using **1a** (68 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3aa** (82 mg, 80%) as a colorless solid. M. p. = 117–119 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.36 – 7.27 (m, 2H), 7.21 – 7.13 (m, 2H), 6.36 (br s, 1H), 2.96 (d, *J* = 4.9 Hz, 3H), 2.93 (t, *J* = 6.0 Hz, 2H), 2.87 (t, *J* = 6.0 Hz, 2H), 2.10 (s, 3H). ¹³C-NMR (CDCl₃, 75MHz): δ = 208.6 (C_q), 170.6 (C_q), 138.9 (C_q), 136.7 (C_q), 129.9 (CH), 129.7 (CH), 127.2 (CH), 126.2 (CH), 45.2 (CH₂), 30.0 (CH₃), 27.2 (CH₂), 26.6 (CH₃). IR (ATR): 3290, 1707,

1631, 1368, 1166, 661 cm⁻¹. MS (EI) m/z (relative intensity) 205 (10) [M⁺], 175 (10), 162 (100), 144 (10), 131 (45), 103 (5). HR-MS (ESI) m/z calcd for $C_{12}H_{16}NO_2$ [M+H⁺] 206.1181, found 206.1177.

N,4-Dimethyl-2-(3-oxobutyl)benzamide (3ba)

The general procedure **A** was followed using **1b** (75 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1 \rightarrow 1:1) yielded **3ba** (77 mg, 70%) as a colorless solid. M. p. = 108–109 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.24 (dd, *J* = 7.1, 1.4 Hz, 1H), 7.00 (s, 1H), 6.99 (d, *J* = 7.1 Hz, 1H), 6.26 (br s, 1H), 2.96 (d, *J* = 4.9 Hz, 3H), 2.90 (t, *J* = 6.0 Hz, 2H), 2.89 (t, *J* = 6.0 Hz, 2H), 2.30 (s, 3H), 2.11 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.5 (C_q), 170.5 (C_q), 139.9 (C_q), 139.0 (C_q), 130.5 (CH), 127.1 (CH), 126.8 (CH), 45.4 (CH₂), 30.0 (CH₃), 27.3 (CH₂), 26.7 (CH₃), 21.3 (CH₃). IR (ATR): 3287, 1710, 1632, 1542, 1164, 693 cm⁻¹. MS (EI) m/z (relative intensity) 219 (10) [M⁺], 189 (5), 176 (100), 161 (10), 145 (45), 115 (15). HR-MS (EI) m/z calcd for C₁₃H₁₇NO₂ [M⁺] 219.1259, found 219.1256.

4-Methoxy-N-methyl-2-(3-oxobutyl)benzamide (3ca)

The general procedure **A** was followed using **1c** (83 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3ca** (94 mg, 80%) as a colorless solid. M. p. = 107–109 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.29 (dd, *J* = 8.1, 0.8 Hz, 1H), 6.70 (s, 1H), 6.66 (d, *J* = 8.1 Hz, 1H), 6.34 (br s, 1H), 3.76 (s, 3H), 2.93 (d, *J* = 5.1 Hz, 3H), 2.93 (t, *J* = 6.4 Hz, 2H), 2.86 (t, *J* = 6.4 Hz, 2H), 2.10 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 208.6 (C_q), 170.3 (C_q), 160.6 (C_q), 141.4 (C_q), 128.9 (C_q), 128.9 (CH), 115.4 (CH), 111.2 (CH), 55.2 (CH₃), 45.2 (CH₂), 29.9 (CH₃), 27.5 (CH₂), 26.6 (CH₃). IR (ATR): 3288, 1705, 1543, 1247, 1157, 696 cm⁻¹. MS (EI) m/z (relative intensity) 235 (15) [M⁺], 205 (10), 192 (100), 177 (5), 161 (60), 135 (10). HR-MS (EI) m/z calcd for C₁₃H₁₇NO₃ [M⁺] 235.1208, found 235.1206.

N-Methyl-3-(3-oxobutyl)-[1,1'-biphenyl]-4-carboxamide (3da)

The general procedure **A** was followed using **1d** (106 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3da** (111 mg, 79%) as a colorless solid. M. p. = 153–155 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.60 – 7.48 (m, 2H), 7.48 – 7.38 (m, 5H), 7.38 – 7.28 (m, 1H), 6.42 (br s, 1H), 3.10 – 3.00 (m, 2H), 2.98 (d, *J* = 4.9 Hz, 3H), 2.96 – 2.83 (m, 2H), 2.12 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 208.5 (C_q), 170.4 (C_q), 142.8 (C_q), 140.1 (C_q), 139.6 (C_q), 135.3 (C_q), 128.8 (CH), 128.6 (CH), 127.7 (CH), 127.7 (CH), 127.1 (CH), 124.9 (CH), 45.3 (CH₂), 29.9 (CH₃), 27.4 (CH₂), 26.6 (CH₃). IR (ATR): 3287, 1709, 1630, 1543, 1160, 697 cm⁻¹. MS (EI) m/z (relative intensity) 281 (15) [M⁺], 250 (5), 238 (100), 207 (40), 178 (20), 165 (15). HR-MS (EI) m/z calcd for C₁₈H₁₉NO₂ [M⁺] 281.1416, found 281.1417.

N-Methyl-2-(3-oxobutyl)-4-(trifluoromethyl)benzamide (3ea)

The general procedure **A** was followed using **1e** (102 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3ea** (99 mg, 73%) as a colorless solid. M. p. = 117–119 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.46 – 7.43 (m, 3H), 6.58 (br s, 1H), 2.99 (d, *J* = 4.9 Hz, 3H), 2.96 (t, *J* = 5.0 Hz, 2H), 2.94 (t, *J* = 5.0 Hz, 2H), 2.13 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 207.9 (C_q), 169.2 (C_q), 140.1 (C_q), 139.6 (C_q), 131.8 (C_q, *J*_{C-F} = 32.4 Hz), 127.8 (CH), 126.2 (CH, *J*_{C-F} = 3.7 Hz), 124.0 (C_q, *J*_{C-F} = 271.5 Hz), 123.1 (CH, *J*_{C-F} = 3.7 Hz), 44.7 (CH₂), 30.02 (CH₃), 26.8 (CH₂), 26.8 (CH₃). ¹⁹F-NMR (CDCl₃, 282 MHz): δ = -62.9 (s). IR (ATR): 3294, 1713, 1550, 1333, 1114, 696 cm⁻¹. MS (EI) m/z (relative intensity) 273 (5) [M⁺], 254 (5), 230 (60), 199 (20), 151 (10), 43 (100). HR-MS (EI) m/z calcd for C₁₃H₁₄F₃NO₂ [M⁺] 273.0977, found 273.0973.

4-Bromo-N-methyl-2-(3-oxobutyl)benzamide (3fa)

The general procedure **A** was followed using **1f** (107 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1 \rightarrow 1:1) yielded **3fa** (113 mg, 81%) as a colorless solid. M. p. = 132–134 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.40 – 7.29 (m, 2H), 7.27 – 7.21 (m, 1H), 6.52 (br s, 1H), 2.99 – 2.92 (m, 4H), 2.92 (d, *J* = 1.6 Hz, 3H), 2.15 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.0 (C_q), 169.5 (C_q), 141.1 (C_q), 135.6 (C_q), 132.4 (CH), 129.3 (CH), 128.8 (CH), 124.0 (C_q), 44.8 (CH₂), 30.0 (CH₃), 26.8 (CH₂), 26.7 (CH₃) IR (ATR): 3287, 1705, 1639, 1543, 1167, 686 cm⁻¹. MS (EI) m/z (relative intensity) 283 (5) [M⁺], 240 (100), 225 (10), 211 (35), 183 (10), 102 (20). HR-MS (ESI) m/z calcd for C₁₂H₁₄NO₂⁷⁹Br [M⁺] 283.0208, found 283.0210.

N-Benzyl-4-methoxy-2-(3-oxobutyl)benzamide (3ga)

The general procedure **A** was followed using **1g** (121 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **3ga** (106 mg, 68%) as a colorless solid. M. p. = 131-133 °C. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.37 - 7.31$ (m, 5H), 7.32 - 7.25 (m, 1H), 6.74 (d, J = 2.6 Hz, 1H), 6.70 (dd, J = 8.4, 2.6 Hz, 1H), 6.44 (br s, 1H), 4.59 (d, J = 5.8 Hz, 2H), 3.78 (s, 3H), 2.99 (t, J = 7.1 Hz, 2H), 2.86 (t, J = 7.1 Hz, 2H), 2.09 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 208.3$ (C_q), 169.4 (C_q), 160.8 (C_q), 141.9 (C_q), 138.3 (C_q), 128.8 (CH), 128.8 (CH), 128.6 (C_q), 127.8 (CH), 127.5 (CH), 115.7 (CH), 111.3 (CH), 55.3 (CH₃), 45.3 (CH₂), 44.0 (CH₂), 29.9 (CH₃), 27.7 (CH₂). IR (ATR): 3280, 1706, 1628, 1268, 1025, 694 cm⁻¹. MS (EI) m/z (relative intensity) 311 (15) [M⁺], 268 (45), 205 (20), 161 (30), 106 (25), 91 (100). HR-MS (ESI) m/z calcd for C₁₉H₂₂NO₃ [M+H⁺] 312.1600, found 312.1600.

N-Benzyl-4-fluoro-2-(3-oxobutyl)benzamide (3ha)

The general procedure **A** was followed using **1h** (115 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1 \rightarrow 2:1) yielded **3ha** (109 mg, 73%) as a colorless solid. M. p. = 112–114 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.40 – 7.25 (m, 6H), 6.93 – 6.81 (m, 2H), 6.74 (t, *J* = 5.8 Hz, 1H), 4.57 (d, *J* = 5.8 Hz, 2H), 2.94 (t, *J* = 6.6 Hz, 2H), 2.83 (t, *J* = 6.6 Hz, 2H), 2.07 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 208.0 (C_q), 168.9 (C_q), 163.4 (C_q, *J*_{C-F} = 249.7 Hz), 142.3 (C_q, *J*_{C-F} = 7.8 Hz), 138.1 (C_q), 132.5 (C_q, *J*_{C-F} = 3.1 Hz), 129.3 (CH, *J*_{C-F} = 8.8 Hz), 128.8 (CH), 127.8 (CH), 127.6 (CH), 116.6 (CH, *J*_{C-F} = 1.6 Hz). ¹⁹F-NMR (CDCl₃, 282 MHz): δ = -110.4 (ddd, *J* = 9.8, 8.1, 5.8 Hz). IR (ATR): 3281, 1709, 1635, 1234, 1168, 694 cm⁻¹. MS (EI) m/z (relative intensity) 299 (10) [M⁺], 256 (30), 193 (10), 149 (25), 106 (65), 91 (100). HR-MS (EI) m/z calcd for C₁₈H₁₈FNO₂ [M⁺] 299.1322, found 299.1323.

N-benzyl-4-chloro-2-(3-oxobutyl)benzamide (3ia)

The general procedure **A** was followed using **1i** (123 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **3ia** (97 mg, 62%) as a colorless solid. M. p. = 125-126 °C. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.37 - 7.25$ (m, 6H), 7.20 – 7.18 (m, 1H), 7.16 (dd, J = 8.1, 2.1 Hz, 1H), 6.67 (d, J = 6.4 Hz, 1H), 4.59 (d, J = 5.8 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 2.85 (t, J = 6.6 Hz, 2H), 2.09 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 207.7$ (C_q), 168.6 (C_q), 141.2 (C_q), 137.9 (C_q), 135.8 (C_q), 134.7 (C_q), 129.8 (CH), 128.7 (CH), 128.6 (CH), 127.8 (CH), 127.6 (CH), 126.4 (CH), 44.8 (CH₂), 44.1 (CH₂), 30.0 (CH₃), 27.0 (CH₂). IR (ATR): 3279, 1708, 1637, 1541, 1163, 692 cm⁻¹. MS (EI) m/z (relative intensity) 315 (10) [M⁺], 272 (30), 209 (5), 165 (15), 106 (75), 91 (100). HR-MS (EI) m/z calcd for C₁₈H₁₈NClO₂ [M⁺] 315.1026, found 315.1030.

N-Cyclohexyl-4-methyl-2-(3-oxobutyl)benzamide (3ja)

The general procedure **A** was followed using **1j** (109 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **3ja** (100 mg, 70%) as a colorless solid. M. p. = 143–145 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.30 – 7.20 (m, 1H), 7.02 (s, 1H), 7.01 (d, *J* = 6.8 Hz, 1H), 6.04 (d, *J* = 8.2 Hz, 1H), 4.13 – 3.82 (m, 1H), 2.96 (t, *J* = 6.2 Hz, 2H), 2.87 (t, *J* = 6.2 Hz, 2H), 2.32 (s, 3H), 2.12 (s, 3H), 2.05 – 1.95 (m, 2H), 1.78 – 1.59 (m, 3H), 1.54 – 1.32 (m, 2H), 1.31 – 1.09 (m, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.2 (C_q), 169.0 (C_q), 139.8 (C_q), 138.9 (C_q), 134.1 (C_q), 130.5 (CH), 127.0 (CH), 126.8 (CH), 48.6 (CH), 45.4 (CH₂), 33.2 (CH₂), 30.0 (CH₃), 27.4 (CH₂), 25.6 (CH₂), 25.0 (CH₂), 21.3 (CH₃). IR (ATR): 3278, 2923, 1712, 1631, 1537, 699 cm⁻¹. MS (EI) m/z (relative intensity) 287 (35) [M⁺], 244 (100), 189 (70), 162 (70), 145 (60). HR-MS (EI) m/z caked for C₁₈H₂₅NO₂ [M⁺] 287.1885, found 287.1879.

N-(2-Methoxyethyl)-4-methyl-2-(3-oxobutyl)benzamide (3ka)

The general procedure **A** was followed using **1k** (97 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3ka** (76 mg, 58%) as an oil. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.25 (d, *J* = 7.7 Hz, 1H), 7.01 (s, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.40 (br s, 1H), 3.60 (dt, *J* = 6.2, 1.4 Hz 2H), 3.53 (dt, *J* = 6.2, 1.4 Hz, 2H), 3.35 (s, 3H), 2.95 (dt, *J* = 6.8, 2.1 Hz, 2H), 2.83 (dt, *J* = 6.8, 2.1 Hz, 2H), 2.31 (s, 3H), 2.11 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.1 (C_q), 169.8 (C_q), 140.1 (C_q), 139.3 (C_q), 133.4 (C_q), 130.8 (CH), 127.1 (CH), 126.8 (CH), 71.2 (CH₂), 58.8 (CH₃), 45.6 (CH₂), 39.6 (CH₂), 30.0 (CH₃), 27.6 (CH₂), 21.3 (CH₃). IR (ATR): 3313, 2928, 1640, 1530, 1302, 1121 cm⁻¹. MS (EI) m/z (relative intensity) 263 (5) [M⁺], 248 (10), 231 (10), 220 (30), 189 (75), 145 (100). HR-MS (EI) m/z calcd for C₁₅H₂₁NO₃ [M⁺] 263.1521, found 263.1524.

N-Methyl-2-(3-oxobutyl)-1-naphthamide (3la)

The general procedure **A** was followed using **11** (93 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **3la** (57 mg, 45%) as a colorless solid. M. p. = 153-155 °C. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.91 - 7.62$ (m, 3H), 7.54 - 7.35 (m, 2H), 7.25 (d, J = 8.3 Hz, 1H), 6.46 (br s, 1H), 3.08 (d, J = 5.4 Hz, 3H), 3.01 - 2.78 (m, 4H), 2.09 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 208.0$ (C_q), 170.1 (C_q), 134.6 (C_q), 134.1 (C_q), 131.8 (C_q), 130.2 (C_q), 129.1 (CH), 127.8 (CH), 126.8 (CH), 126.3 (CH), 125.6 (CH), 124.8 (CH), 44.7 (CH₂), 30.1 (CH₃), 27.4 (CH₂), 26.6 (CH₃). IR (ATR): 3261, 1704, 1627, 1260, 745, 448 cm⁻¹. MS (EI) m/z (relative intensity) 255 (20) [M⁺], 224 (10), 212 (100), 197 (20), 181 (50), 155 (25). HR-MS (EI) m/z calcd for C₁₆H₁₇NO₂ [M⁺] 255.1259, found 255.1261.

N,1-Dimethyl-2-(3-oxobutyl)-1*H*-indole-3-carboxamide (3ma)

The general procedure **A** was followed using **1m** (94 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1 \rightarrow 1:1) yielded **3ma** (65 mg, 50%) as a colorless solid. M. p. = 151–153 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.67 (dd, *J* = 7.0, 2.0 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.26 – 7.15 (m, 2H), 6.08 (br s, 1H), 3.74 (s, 3H), 3.35 (t, *J* = 7.5 Hz, 2H), 3.04 (d, *J* = 4.9 Hz, 3H), 2.93 (t, *J* = 7.5 Hz, 2H), 2.15 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): = δ 207.8 (C_q), 166.6 (C_q), 144.9 (C_q), 136.6 (C_q), 124.8 (C_q), 121.8 (CH), 121.2 (CH), 118.4 (CH), 110.0 (CH), 107.6 (C_q), 43.3 (CH₂), 29.9 (CH₃), 29.6 (CH₃), 26.3 (CH₃), 19.8 (CH₂). IR (ATR): 3293, 1711, 1619, 1539, 1167, 734 cm⁻¹. MS (EI) m/z (relative intensity) 258 (55) [M⁺], 227 (15), 215 (80), 200 (10), 184 (100), 172 (15), 158 (85). HR-MS (EI) m/z calcd for C₁₅H₁₈N₂O₂ [M⁺] 258.1368, found 258.1363.

3-(3-Cyclohexyl-3-oxopropyl)-*N*-methyl-[1,1'-biphenyl]-4-carboxamide (3db)

The general procedure **A** was followed using **1d** (106 mg, 0.5 mmol) and **2b** (138 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3db** (79 mg, 45%) as a colorless solid. M. p. = 155–157 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.55 (d, *J* = 7.4 Hz, 2H), 7.50 – 7.30 (m, 6H), 6.56 (br s, 1H), 3.00 (d, *J* = 4.9 Hz, 3H), 2.99 (t, *J* = 5.7 Hz, 2H), 2.94 (t, *J* = 5.7 Hz, 2H), 2.34 – 2.25 (m, 1H), 1.82 – 1.70 (m, 4H), 1.34 – 1.11 (m, 6H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 213.7 (C_q), 170.3 (C_q), 142.6 (C_q), 140.2 (C_q), 139.6 (C_q), 135.4 (C_q), 128.7 (CH), 128.3 (CH), 127.8 (CH), 127.6 (CH), 127.0 (CH), 124.8 (CH), 50.9 (CH), 42.2 (CH₂), 28.5 (CH₂), 27.3 (CH₂), 26.8 (CH₃), 25.9 (CH₂), 25.7 (CH₂). IR (ATR): 3289, 2927, 1699, 1630, 1538, 1312, 697 cm⁻¹. MS (EI) m/z (relative intensity) 349 (20) [M⁺], 318 (5), 238 (100), 209 (40), 178 (15), 165 (15). HR-MS (EI) m/z calcd for C_{23H27}NO₂ [M⁺] 349.2042, found 249.2039.

N-Methyl-3-(3-oxooct-1-yl)-[1,1'-biphenyl]-4-carboxamide (3dc)

The general procedure **A** was followed using **1d** (106 mg, 0.5 mmol) and **2c** (126 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1) yielded **3dc** (84 mg, 50%) as a colorless solid. M. p. = 128–130 °C. ¹H-NMR (CDCl₃, 500 MHz): δ = 7.57 – 7.50 (m, 2H), 7.46 – 7.38 (m, 5H), 7.37 – 7.32 (m, 1H), 6.46 (br s, *J* = 4.9 Hz, 1H), 3.03 (t, *J* = 7.2 Hz, 2H), 3.00 (d, *J* = 4.9 Hz, 3H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.36 (t, *J* = 7.5 Hz, 2H), 1.52 (p, *J* = 7.5 Hz, 2H), 1.31 – 1.13 (m, 4H), 0.83 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 211.1 (C_q), 170.4 (C_q), 142.8 (C_q), 140.2 (C_q), 139.6 (C_q), 135.5 (C_q), 128.8 (CH), 128.5 (CH), 127.9 (CH), 127.7 (CH), 127.1 (CH), 124.9 (CH), 44.2 (CH₂), 43.0 (CH₂), 31.4 (CH₂), 27.3 (CH₂), 26.7 (CH₃), 23.5 (CH₂), 22.4 (CH₂), 13.9 (CH₃). IR (ATR): 3287, 1710, 1632, 1542, 1164, 693 cm⁻¹. MS (EI) m/z (relative intensity) 337 (5) [M⁺], 281 (25), 238 (100), 223 (5), 207 (35), 178 (15). HR-MS (EI) m/z calcd for C₂₂H₂₇NO₂ [M⁺] 337.2042, found 337.2048.

N-(4-Methyl-2-(3-oxobutyl)phenyl)acetamide (5aa)

The general procedure **A** was followed using **4a** (75 mg, 0.5 mmol), methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) and KO₂CMes (51 mg, 50 mol %) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1 \rightarrow 1:1) yielded **5aa** (51 mg, 47%) as a colorless solid. M. p. = 124–126 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 8.84 (br s, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 6.99 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.89 (d, *J* = 2.1 Hz, 1H), 2.87 (dt, *J* = 6.2, 2.0 Hz, 2H), 2.75 (dt, *J* = 6.2, 2.0 Hz, 2H), 2.26 (s, 3H), 2.24 (s, 3H), 2.12 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 210.3 (C_q), 168.8 (C_q), 134.7 (C_q), 133.0 (C_q), 132.6 (C_q), 130.3 (CH), 127.7 (CH), 124.4 (CH), 45.3 (CH₂), 29.9 (CH₃), 24.2 (CH₃), 23.8 (CH₂), 20.8 (CH₃). IR (ATR): 3282, 1709, 1641, 1522, 1287, 811 cm⁻¹. MS (EI) m/z (relative intensity) 219 (60) [M⁺], 176 (75), 162 (40), 134 (100), 120 (85), 107 (10). HR-MS (EI) m/z calcd for C₁₃H₁₇NO₂ [M⁺] 219.1259, found 219.1259.

N,5-Dimethyl-2-(3-oxobutyl)benzamide (3na)

The general procedure **A** was followed using **1n** (75 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1 \rightarrow 1:1) yielded **3na** (68 mg, 62%) as a colorless solid. M. p. = 112–114 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.15 (d, *J* = 1.8 Hz, 1H), 7.10 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.07 (d, *J* = 7.9 Hz, 1H), 6.39 (br s, 1H), 2.96 (d, *J* = 4.9 Hz, 3H), 2.89 (t, *J* = 5.0 Hz, 2H), 2.87 (t, *J* = 5.0 Hz, 2H), 2.28 (s, 3H), 2.10 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.6 (C_q), 170.6 (C_q), 136.4 (C_q), 135.8 (C_q), 135.6 (C_q), 130.6 (CH), 129.5 (CH), 127.8 (CH), 45.3 (CH₂), 30.1 (CH₃), 26.7 (CH₂), 26.7 (CH₃), 20.9 (CH₃). IR (ATR): 3285, 1709, 1541, 1319, 1160, 697 cm⁻¹. MS (EI) m/z (relative intensity) 219 (15) [M⁺], 189 (5), 176 (100), 161 (10), 145 (60), 117 (15). HR-MS (EI) m/z calcd for C₁₃H₁₇NO₂ [M⁺] 219.1259, found 219.1252.

N-Methyl-2-(3-oxobutyl)-5-(trifluoromethyl)benzamide (3oa)

The general procedure **A** was followed using **10** (102 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **30a** (85 mg, 62%) as a colorless solid. M. p. = 96–98 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.60 (dt, *J* = 1.6, 0.7 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.32 (dt, *J* = 8.3, 0.8 Hz, 1H), 6.61 (br s, 1H), 2.97 (t, *J* = 5.8 Hz, 2H), 2.98 (d, *J* = 5.2 Hz, 3H), 2.89 (t, *J* = 5.8 Hz, 2H), 2.11 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 207.9 (C_q), 169.0 (C_q), 142.9 (C_q, *J*_{C-F} = 1.7 Hz), 137.2 (C_q), 130.1 (CH), 128.6 (C_q, *J*_{C-F} = 32.8 Hz), 126.4 (CH, *J*_{C-F} = 3.7 Hz), 124.3 (CH, *J*_{C-F} = 3.8 Hz), 123.2 (C_q, *J*_{C-F} = 271.5 Hz), 44.7 (CH₂), 30.0 (CH₃), 26.9 (CH₂), 26.8 (CH₃). ¹⁹F-NMR (CDCl₃, 282 MHz): δ = -62.6 (s). IR (ATR): 3286, 1705, 1552, 1311, 1115, 641 cm⁻¹. MS (EI) m/z (relative intensity) 273 (5) [M⁺], 243 (5), 230 (100), 215 (10), 199 (35), 189 (10). HR-MS (EI) m/z calcd for C₁₃H₁₄NO₂F₃ [M⁺] 273.0977, found 273.0979.

N-Benzyl-5-methyl-2-(3-oxobutyl)benzamide (3pa)

The general procedure **A** was followed using **1p** (113 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **3pa** (94 mg, 64%) as a colorless solid. M. p. = $130-132 \, ^{\circ}C. ^{1}H$ -NMR (CDCl₃, 300 MHz): $\delta = 7.43 - 7.25 \, (m, 5H)$, 7.17 (d, $J = 0.9 \, \text{Hz}$, 1H), 7.14 – 7.06 (m, 2H), 6.52 (br s, 1H), 4.60 (d, $J = 5.8 \, \text{Hz}$, 2H), 3.01 (t, $J = 6.8 \, \text{Hz}$, 2H), 2.82 (t, $J = 6.8 \, \text{Hz}$, 2H), 2.29 (s, 3H), 2.07 (s, 3H). ^{13}C -NMR (CDCl₃, 75 MHz): $\delta = 208.5 \, (C_q)$, 169.9 (C_q), 138.2 (C_q), 136.2 (C_q), 136.0 (C_q), 130.8 (CH), 129.9 (CH), 128.8 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 45.4 (CH₂), 44.0 (CH₂), 29.9 (CH₃), 26.9 (CH₂), 20.8 (CH₃). IR (ATR): 3242, 1707, 1634, 1311, 821, 702 cm⁻¹. MS (EI) m/z (relative intensity) 295 (20) [M⁺], 252 (40), 189 (5), 145 (20), 106 (30), 91 (100). HR-MS (EI) m/z calcd for C₁₉H₂₁NO₂ [M⁺] 295.1572, found 295.1580.

3-Fluoro-N-methyl-2-(3-oxobutyl)benzamide (3qa)

The general procedure **A** was followed using **1q** (77 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1) yielded **3qa** (86 mg, 77%) as a colorless solid. M. p. = 123-125 °C. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.21 - 7.12$ (m, 2H), 7.09 – 6.93 (m, 1H), 6.55 (br s, 1H), 2.96 (d, J = 4.9 Hz, 3H), 2.94 (t, J = 5.4 Hz, 2H), 2.89 (t, J = 5.4 Hz, 2H), 2.12 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 208.7$ (C_q), 169.3 (C_q, J = 3.2 Hz), 161.4 (C_q, J = 246.1 Hz), 139.1 (C_q, J = 4.3 Hz), 127.8 (CH, J = 8.9 Hz), 126.1 (C_q, J = 16.7 Hz), 122.9 (CH, J = 3.4 Hz), 116.7 (CH, J = 23.0 Hz), 43.5 (CH₂, J = 2.4 Hz), 29.8 (CH₃), 26.7 (CH₃), 21.1 (CH₂, J = 2.9 Hz). ¹⁹F-NMR (CDCl₃, 282 MHz): $\delta = -116.1$ (dd, J = 10.2, 4.4 Hz). IR (ATR): 3291, 1703, 1547, 1319, 1163, 710 cm⁻¹. MS (EI) m/z (relative intensity) 223 (10) [M⁺], 180 (100), 165 (15), 149 (60), 121 (15), 101 (15). HR-MS (EI) m/z calcd for C₁₂H₁₄NO₂F [M⁺] 223.1009, found 223.1006.

N-Methyl-4-(3-oxobutyl)benzo[*d*][1,3]dioxole-5-carboxamide (3ra)

The general procedure **A** was followed using **1r** (90 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) yielded **3ra** (100 mg, 80%) as a colorless solid. M. p. = 139–141 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 6.93 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.47 (br s, 1H), 5.95 (s, 2H), 2.94 (d, *J* = 4.9 Hz, 3H), 2.95 – 2.88 (m, 4H), 2.13 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz): δ = 208.7 (C_q), 169.5 (C_q), 148.1 (C_q), 146.2 (C_q), 131.0 (C_q), 121.5 (CH), 121.1 (C_q), 106.2 (CH), 101.1 (CH₂), 43.0 (CH₂), 29.9 (CH₃), 26.7 (CH₃), 21.7 (CH₂). IR (ATR): 3301, 1706, 1543, 1251, 1040, 705 cm⁻¹. MS (EI) m/z (relative intensity) 249 (25) [M⁺], 218 (15), 206 (100), 188 (5), 175 (65), 149 (15). HR-MS (EI) m/z calcd for C₁₃H₁₅NO₄ [M⁺] 249.1001, found 249.1006.

Competition Experiment:

Intermolecular Competition Experiments Between Arenes with Different Directing Groups:

A suspension of MVK (**2a**) (35 mg, 0.5 mmol), *N*,4-dimethylbenzamide (**1b**) (75 mg, 0.5 mmol), 1-(*p*-tolyl)ethanone (**8**) (67 mg, 0.5 mmol), $[\text{RuCl}_2(p\text{-cymene})]_2$ (15.3 mg, 5.0 mol %), MesCO₂K (30.3 mg, 30.0 mol %) and MesCO₂H (82 mg, 1.0 equiv) in H₂O (2.0 mL) was stirred at 120 °C for 20 h under an atmosphere of argon. At ambient temperature, aq. NaCl(15 mL) was added. The reaction mixture was extracted with EtOAc (3×20 mL). The combined organic layers were dried over Na₂SO₄. Evaporation of the solvents *in vacuo* and purification of the remaining residue by column chromatography on silica gel (*n*-hexane/EtOAc 1:1) yielded product **3ba** (43 mg, 39%) as the sole product.

H/D Exchange Experiment:

Ruthenium(II)-Catalyzed H/D Exchange on Substrate 1b with D₂O as the solvent:

A suspension of MVK (**2a**) (70 mg, 1.0 mmol), *N*,4-dimethylbenzamide (**1b**) (75 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (15.3 mg, 5.0 mol %), MesCO₂K (30.3 mg, 30.0 mol %) and MesCO₂H (82 mg, 1.0 equiv) in a solvent of D₂O (2.0 mL) was stirred at 120 °C for 20 h under an atmosphere of argon. At ambient temperature, aq. NaCl (15 mL) was added. The reaction mixture was extracted with EtOAc (3×20 mL). The combined organic layers were dried over Na₂SO₄. Evaporation of the solvents *in vacuo* and purification of the remaining residue by column chromatography on silica gel (*n*-hexane/EtOAc 1:1→1:2) yielded product [D_n]-**3ba** (85 mg, 78%) as a white solid, and reisolated starting material [D_n]-**1b** (13 mg, 17%) as a white solid. The deuterium-incorporation in [D_n]-**3ba** and [D_n]-**1b** was estimated by ¹H-NMR spectroscopy.

Kinetic Isotope Effect

Two independent reactions with **1a** or deuterated substrate $[D_5]$ -**1a** under the standard conditions were performed: Suspensions of MVK (**2a**) (70 mg, 1.0 mmol), substrates **1a** (68 mg, 0.5 mmol) or $[D_5]$ -**1a** (70 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (15.3 mg, 5.0 mol %), MesCO₂K (30.3 mg, 30.0 mol %) and MesCO₂H (82 mg, 0.5 mmol) in H₂O (2.0 mL) were stirred at 110 °C for 0.5 h, 1.5 h, 2.0 h, 2.5 h, 3.5 h, 4.5 h, 5.0 h under an atmosphere of argon, respectively. The consumption of substrate **1a** or $[D_5]$ -**1a** and the appearance of the products **3aa** or $[D_n]$ -**3aa** were monitored by GC analysis. These experiments indicated that the C–H bond activation is not the turnover-limiting step of the ruthenium(II)-catalyzed C–H alkylation reaction.

	1a	0.77	0.61	0.43	0.55	<mark>0.34</mark>	0.27	0.24
--	----	------	------	------	------	-------------------	------	------

D ₅ -	[I HN ^{_Me} M	2a (2.0 equiv) RuCl ₂ (<i>p</i> -cymene)] ₂ (5.0 mol %) esCO ₂ K (30 mol %) MesCO ₂ H H ₂ O, 110 °C			- D,				
	[D ₅] -1a					[[0 _n]-3aa	0	
	t/(h)	0.5	1.5	2.0	2.5	3.5	4.5		
	[D _n]-3aa	0.04	0.17	0.22	0.24	0.31	0.42		
	[D ₅]-1a	0.96	0.83	0.78	0.76	0.69	0.58		

2,6-Dimethylquinoline (6aa)

The general procedure **B** was followed using **4a** (75 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 6:1) yielded **6aa** (52 mg, 66%) as a yellow oil. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.91 (d, *J* = 8.7 Hz, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.49 (s, 1H), 7.48 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 2.69 (s, 3H), 2.48 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 157.9 (C_q), 146.4 (C_q), 135.5 (CH), 135.3 (C_q), 131.6 (CH), 128.2 (CH), 126.4 (C_q), 126.3 (CH), 121.9 (CH), 25.2 (CH₃), 21.4 (CH₃). IR (ATR): 2917, 1601, 1495, 1119, 825, 592 cm⁻¹. MS (EI) m/z (relative intensity) 157 (100) [M⁺], 142 (20), 128 (10), 115 (20), 89 (10), 77 (10). HR-MS (EI) m/z calcd for C₁₁H₁₁N [M⁺] 157.0891, found 157.0884. The spectral data were in accordance with those reported in the literature.^[4,5]

MeO N Me

6-Methoxy-2-methylquinoline (6ba)

The general procedure **B** was followed using **4b** (83 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **6ba** (60 mg, 69%) as a yellow oil. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.94 - 7.90$ (m, 1H), 7.89 – 7.85 (m, 1H), 7.30 (dd, J = 9.2, 2.8 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 2.8 Hz, 1H), 3.88 (s, 3H), 2.67 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 157.1$ (C_q), 156.3 (C_q), 143.9 (C_q), 135.0 (CH), 130.0 (CH), 127.3 (C_q), 122.2 (CH), 121.8 (CH), 105.2 (CH), 55.4 (CH₃), 25.0 (CH₃). IR (ATR): 2937, 1602, 1498, 1229, 1029, 830 cm⁻¹. MS (EI) m/z (relative intensity) 173 (100) [M⁺], 158 (50), 143 (5), 130 (80), 115 (5), 103 (20). HR-MS (ESI) m/z calcd for C₁₁H₁₂NO [M+H⁺] 174.0919, found 174.0921. The spectral data were in accordance with those reported in the literature.^[4,5]

Ph

2-Methyl-6-phenylquinoline (6ca)

The general procedure **B** was followed using 4c (106 mg, 0.5 mmol) and methyl vinyl ketone (2a) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc

5:1) yielded **6ca** (57 mg, 52%) as an off white solid. M. p. = 92–93 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 8.09 (dd, *J* = 8.9, 2.1 Hz, 2H), 7.99 – 7.91 (m, 2H), 7.76 – 7.65 (m, 2H), 7.5 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 6.6 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 2.77 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 159.0 (Cq), 147.3 (Cq), 140.5 (Cq), 138.4 (Cq), 136.3 (CH), 129.1 (CH), 129.0 (CH), 128.9 (CH), 127.5 (CH), 127.4 (CH), 126.6 (Cq), 125.2 (CH), 122.4 (CH), 25.4 (CH₃). IR (ATR): 2998, 1595, 1488, 1314, 892, 764 cm⁻¹. MS (EI) m/z (relative intensity) 219 (100) [M⁺], 204 (5), 191 (5), 176 (5), 152 (5). HR-MS (EI) m/z calcd for C₁₆H₁₃N [M⁺] 219.1048, found 219.1049. The spectral data were in accordance with those reported in the literature.^[6]

6-Fluoro-2-methylquinoline (6da)

The general procedure **B** was followed using **4d** (77 mg, 0.5 mmol), methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) and [RuCl₂(*p*-cymene)]₂ (15.3 mg, 5.0 mol %) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **6da** (47 mg, 58%) as an off white solid. M. p. = 51–53 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 8.05 – 7.91 (m, 2H), 7.42 (ddd, *J* = 9.1, 8.4, 2.8 Hz, 1H), 7.36 (dd, *J* = 8.9, 2.8 Hz, 1H), 7.27 (dd, *J* = 8.4, 0.8 Hz, 1H), 2.71 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 159.9 (C_q, *J*_{C-F} = 250.1 Hz), 158.3 (C_q), 144.9 (C_q), 135.5 (CH, *J*_{C-F} = 5.1 Hz), 131.0 (CH, *J*_{C-F} = 9.0 Hz), 126.9 (C_q, *J*_{C-F} = 10.1 Hz), 122.7 (CH), 119.4 (CH, *J*_{C-F} = 25.6 Hz), 110.5 (CH, *J*_{C-F} = 21.8 Hz), 25.2 (CH₃). ¹⁹F-NMR (CDCl₃, 282 MHz): δ = -115.0 (td, *J* = 8.6, 5.3 Hz). IR (ATR): 3058, 1652, 1439, 1329, 749, 509 cm⁻¹. MS (EI) m/z (relative intensity) 161 (100) [M⁺], 146 (5), 133 (10). HR-MS (EI) m/z calcd for C₁₀H₈NF [M⁺] 161.0641, found 161.0638. The spectral data were in accordance with those reported in the literature.^[4,7]

6-Chloro-2-methylquinoline (6ea)

The general procedure **B** was followed using **4e** (85 mg, 0.5 mmol), methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) and $[RuCl_2(p-cymene)]_2$ (15.3 mg, 5.0 mol %) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **6ea** (53 mg, 60%) as an off white solid. M. p. = 95–97 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.9 (d, *J* = 8.6 Hz, 2H), 7.7 (d, *J* = 2.4 Hz, 1H), 7.57 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 2.70 (s, 3H). ¹³C-NMR

(CDCl₃, 75 MHz): $\delta = 159.3$ (C_q), 146.2 (C_q), 135.2 (CH), 131.2 (C_q), 130.2 (CH), 130.2 (CH), 127.0 (C_q), 126.1 (CH), 122.8 (CH), 25.3 (CH₃). IR (ATR): 3050, 1597, 1468, 1067, 830, 641 cm⁻¹. MS (EI) m/z (relative intensity) 177 (100) [M⁺], 162 (10), 142 (15), 133 (15), 115 (15), 105 (5). HR-MS (EI) m/z calcd for C₁₀H₈NCl [M⁺] 177.0345, found 177.0341. The spectral data were in accordance with those reported in the literature.^[4,7]

6-Bromo-2-methylquinoline (6fa)

The general procedure **B** was followed using **4f** (107 mg, 0.5 mmol), methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) and [RuCl₂(*p*-cymene)]₂ (15.3 mg, 5.0 mol %) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **6fa** (56 mg, 51%) as an off white solid. M. p. = 98–100 °C. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.95 – 7.90 (m, 1H), 7.89 (d, *J* = 2.3 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.71 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 1H), 2.70 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 159.5 (C_q), 146.4 (C_q), 135.1 (CH), 132.8 (CH), 130.4 (CH), 129.5 (CH), 127.6 (C_q), 122.8 (CH), 119.3 (C_q), 25.4 (CH₃). IR (ATR): 3048, 1594, 1488, 1300, 1071, 828 cm⁻¹. MS (EI) m/z (relative intensity) 221 (100) [M⁺], 205 (5), 142 (20), 115 (30). HR-MS (EI) m/z calcd for C₁₀H₈N⁷⁹Br [M⁺] 220.9840, found 220.9838. The spectral data were in accordance with those reported in the literature.^[4,7,8]

2-Methylquinolin-6-yl acetate (6ga)

The general procedure **B** was followed using **4g** (97 mg, 0.5 mmol), methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) and $[RuCl_2(p-cymene)]_2$ (15.3 mg, 5.0 mol %) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **6ga** (51 mg, 51%) as an oil. ¹H-NMR (CDCl₃, 300 MHz): $\delta = 7.99$ (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 2.5 Hz, 1H), 7.38 (dd, J = 9.0, 2.6 Hz, 1H), 7.28 – 7.22 (m, 1H), 2.71 (s, 3H), 2.32 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): $\delta = 169.4$ (C_q), 158.8 (C_q), 147.8 (C_q), 145.8 (C_q), 135.8 (CH), 130.1 (CH), 126.6 (C_q), 124.4 (CH), 122.5 (CH), 118.1 (CH), 25.2 (CH₃), 21.1 (CH₃). IR (ATR): 1713, 1598, 1504, 1429, 1234, 832 cm⁻¹. MS (EI) m/z (relative intensity) 201 (5) [M⁺], 159 (100), 130 (10), 103 (5). HR-MS (EI) m/z calcd for C₁₂H₁₁NO₂ [M⁺] 201.0790, found 201.0789. The spectral data were in accordance with those reported in the literature.^[9]

2,7-Dimethylquinoline (6ha)

The general procedure **B** was followed using **4h** (75 mg, 0.5 mmol) and methyl vinyl ketone (**2a**) (70 mg, 1.0 mmol) for 20 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **6ha** (49 mg, 62%) as an oil. ¹H-NMR (CDCl₃, 300 MHz): δ = 7.96 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 0.8 Hz, 1H), 7.63 (d, *J* = 8.3 Hz, 1H), 7.29 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 2.70 (s, 3H), 2.52 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz): δ = 158.9 (C_q), 148.1 (C_q), 139.6 (C_q), 135.8 (CH), 127.8 (CH), 127.7 (CH), 127.1 (CH), 124.5 (C_q), 121.1 (CH), 25.3 (CH₃), 21.9 (CH₃). IR (ATR): 2916, 1601, 1505, 1305, 835, 776 cm⁻¹. MS (EI) m/z (relative intensity) 157 (100) [M⁺], 142 (20), 128 (5), 115 (15), 89 (5). HR-MS (EI) m/z calcd for C₁₁H₁₁N [M⁺] 157.0891, found 157.0889. The spectral data were in accordance with those reported in the literature.^[4,10]

References:

- [1] Q. Tang, D. Xia, X. Jin, Q. Zhang, X.-Q. Sun and C. Wang, J. Am. Chem. Soc. 2013, 135, 4628–4631.
- [2] L. Ackermann, L. Wang, R. Wolfram and A. V. Lygin, Org. Lett., 2012, 14, 728–731.
- [3] G. Rouquet and N. Chatani, *Chem. Sci.*, 2013, **4**, 10737–10742.
- [4] Y. Matsubara, S. Hirakawa, Y. Yamaguchi and Z.-I. Yoshida, *Angew. Chem. Int. Ed.*, 2011, 50, 7670–7673.
- [5] V. Sridharan, C. Avenda ño and J. C. Men éndez, *Tetrahedron*, 2007, **63**, 673–681.
- [6] F. Mongin, L. Mojovic, B. Guillamet, F. Trécourt and G. Quéguiner, J. Org. Chem., 2002, 67, 8991–8994.
- [7] C. Ramesh, V. Kavala, C.-W. Kuo and C.-F. Yao, *Tetrahedron Lett.*, 2010, 51, 5234-5237.
- [8] K. A. Reynolds, D. J. Young and W. A. Loughlin, *Synthesis*, 2010, 3645–3648.
- [9] K. Jyothish, R. R. Avirah and D. Ramaiah, Org. Lett., 2006, 8, 111–114.
- [10] J. Jaroszewska, I. Wawer and J. Oszczapowicz, Org. Magn. Res., 1984, 22, 323–327.

S-33

