Electronic supplementary information

A thermally stable pH-responsive "supramolecular buckle" based on the encapsulation of

4-(4-aminophenyl)-N-methylpyridinium by cucurbit[8]uril

1

Tian-You Zhou, Qiao-Yan Qi, Ying Zhang, Xiao-Na Xu, and Xin Zhao*

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai

Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Email: xzhao@sioc.ac.cn

Contents

Figure S1 UV-vis spectra of 1 upon the addition of CB[8] and Job's plot at $pH = 7$ ······S2
Figure S2 ITC data for the titration of CB[8] with 1S2
Figure S3 UV-vis spectra of 1 upon the addition of CB[8] and Job's plot at pH=1S3
Figure S4 Variable-temperature ¹ H NMR spectra of CB[8] -1 H ⁺ ······S3
Figure S5 Partial ¹ H NMR spectra of 1 H^+ , 2,6-dihydroxynaphthalene, and their mixture with CB[8] \cdots S4
Figure S6 2D ¹ H NMR COSY spectrum of 1S4
Figure S7 2D ¹ H NMR COSY spectrum of $1-CB[8]$ (2:1) ·······S5
Figure S8 2D ¹ H NMR COSY spectrum of $1-CB[8]$ (1:0.3) S6
Figures S9-10 ¹ H NMR and ¹³ C NMR spectra of 1S7

Figure S1. UV-vis spectra of **1** (13.3 μ M) without and with CB[8] (6.7 μ M) in water (pH = 7) at 25 °C (left), and Job's plot indicating a 1:2 stoichiometery for CB[8] and **1** (right). The total concentration used for generating the Job's plot was 20 μ M.

Figure S2. ITC data for the titration of CB[8] (0.1 mM) with **1** (2.0 mM) in a Tris-buffer solution (10 mM, pH 7.0) at 25 °C.

Figure S3. UV-vis spectra of **1** (13.3 μ M) without and with CB[8] (6.7 μ M) in an aqueous hydrochloric acid solution (pH = 1.0) at 25 °C (left), and Job's plot indicating a 1:1 stoichiometery for **1** H⁺ and CB[8] (right). The total concentration used for generating the Job's plot was 20 μ M.

Figure S4. Partial ¹H NMR spectra (500 MHz) of CB[8]–1 H⁺ at (a) 25 °C, (b) 40 °C, (c) 60 °C and (d) 75 °C, and (e) 1 H⁺ at 75 °C in D₂O. The spectra were calibrated by the temperature dependence of HDO chemical shifts reported by H. E. Gottlieb et al. (*J. Org. Chem.* **1997**, *61*, 7512-7515.).

Figure S5. ¹H NMR spectra (500 MHz) of (a) **1** H⁺, (b) 2,6-dihydroxynaphthalene, and (c) mixture of **1** H⁺, 2,6-dihydroxynaphthalene and CB[8] (1:1:1) in D₂O at pD=1.

Figure S6. 2D ¹H NMR COSY spectrum (400 MHz, 293 K) of 1 in D₂O.

Figure S7. 2D ¹H NMR COSY spectrum (400 MHz, 293 K) of the solution of 1 and CB[8] (2:1) in D_2O .

Figure S8. 2D ¹H NMR COSY spectrum (400 MHz, 293 K) of the solution of **1** and CB[8] (1:0.3) in D_2O .

$\angle 8,68$ - 8,19 - 8,19 7,8667,866 72 6,72 - 6,72 - 6,72 - 6,72 - 6,72 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,73 - 6,736 - 6,737 - 6,338 - 6,737 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 6,338 - 7,338

Figure S10. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of compound **1**.