Supporting Information for

Speciation and Kinetic Study of Iron Promoted Sugar Conversion to 5-Hydroxymethylfurfural (HMF) and Levulinic Acid (LA)

Yuan Jiang,^{ab} Linan Yang,^{ab} Christine M. Bohn,^{ab} Guannan Li,^a Dong Han,^f Nathan S. Mosier,^{bde} Jeffrey T. Miller,^c Hilkka I. Kenttämaa,^{ab} Mahdi M. Abu-Omar^{*abc}

^a Brown Laboratory, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, United States.

^b The Center for direct Catalytic Conversion of Biomass to Biofuels (C₃Bio), Purdue University, Discovery Park, 1203 West State Street, West Lafayette, IN 47907, United States

^c Department of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907, United States

^d School of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States

^e Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, United States

^f Maurice J. Zucrow Laboratories, School of Mechanical Engineering, Purdue University, 500 Allison Road, West Lafayette, IN 47907, United States

E-mail: mabuomar@purdue.edu

Table of Contents

Characterization of Iron Species as Determined by MS, UV-Vis and XANES
Mass Spectra of Iron and Fructose Reactions at Elevated Temperature
UV-Vis Spectra of Iron Fructose Solutions and Comparison of HMF Peak3
Differentiate Glucose and Fructose by CAD Experiments4
Quantification of Fe ^{III} Reduction by XANES
Identification of Unknown Solids by XRD Experiments5
Control Experiments for Speciation Study
Water and Microwave Effect6
Change of Iron Salts7
Iron and HMF Reactions at Elevated Temperature8
Testing of Mixture Solutions8
Sugar Conversion Comparison10
Kinetic Profiles
Kinetic Modelling Using Different Iron Concentrations11
Kinetic Modeling in a Biphasic System12
Characterization of Solvent Decomposition by GC-MS12
References

Characterization of Iron Species as Determined by MS, UV-Vis and

XANES

Mass Spectra of Iron and Fructose Reactions at Elevated Temperature

Figure S1. Mass spectra of (a) 0.25 M fructose and 0.10 M FeCl₃ in water, (b) after microwave heating at 140 °C for 1 s, and (c) 0.25 M glucose and 0.10 M FeCl₂ in water.

UV-Vis Spectra of Iron Fructose Solutions and Comparison of HMF Peak

As shown in the UV-Vis results, Fe^{III} in fructose solution shows characteristic absorption band at 300 nm, while the UV-Vis spectrum of Fe^{II} in fructose solution is featureless. The rising peak at 280 nm in the spectra for reaction mixtures at 1 s, 1 min, and 5 min reaction times indicated the formation of HMF at elevated temperature (Figure S2 a).¹ When mixed with HMF, the absorbance of Fe^{III} overlaps with that of HMF at 280 nm. However, shoulder at about 300-360 nm is characteristic of Fe^{III} in the mixture and can be utilized to confirm presence of Fe^{III} (Figure S2 b).

Figure S2. (a) UV-Vis spectra of 0.25 M fructose and 0.10 M FeCl₃ in water (red), after 1 s at 140°C (blue), after 1 min at 140°C (green), and after 5 min at 140°C (black). Pink spectrum is a solution of 0.25 M fructose and 0.10 M FeCl₂ in water for comparison. (b) Comparison of spectra of FeCl₃ (red), HMF (blue), and the combination of FeCl₃ and HMF (green).

Differentiate Glucose and Fructose by CAD Experiments

Figure S3. CAD spectra of (a) m/z 414 for Fe^{III}-glucose, (b) m/z 414 for Fe^{III}-fructose, (c) m/z 451 for Fe^{II}-glucose, and (d) m/z 451 for Fe^{II}-fructose. Condition: 0.10 M iron salts (FeCl₃ or FeCl₂) and 0.25 M sugar (glucose or fructose) in water.

Quantification of Fe^{III} Reduction by XANES

Figure S4. (a) Fe K-edge XANES from 7.09 to 7.16 keV for 0.10 M FeCl₃ and 0.25 M fructose (red), after thermal heating at 140 °C for 16 min (blue), and 0.10 M FeCl₂ and fructose (green) for comparison. (b) Fraction of Fe^{III} and Fe^{II} in the reaction samples at elevated temperature. Condition: 0.10 M FeCl₃ and 0.25 M fructose under microwave (M) or thermal (T) heating at 140 °C from 0 to 16 min.²

Identification of Unknown Solids by XRD Experiments

Figure S5. XRD spectrum of the solids obtained from 0.25 M glucose and 0.10 M FeCl₃ after 1 s reaction at 140 °C (red), and Akaganéite spectrum from database (blue).

Control Experiments for Speciation Study

Water and Microwave Effect

In order to eliminate the possibility that water and microwave heating alone results in the reduction of Fe^{III} to Fe^{II}, reactions without sugars have been performed. The Mass spectra of iron salts alone in water show that there is no reduction of Fe^{III} to Fe^{II} after microwave heating (Figure S5 a, b, and c). Additionally, when adding glucose to the solution of FeCl₃ in water that has been heated for 1 min at 140 °C, only peak m/z 414 is shown in the MS and peak m/z 451 is not in the spectrum, which indicates that iron in the solution is still Fe^{III} (Figure S5 d). Furthermore, after putting reaction samples of FeCl₃ and sugars (glucose or fructose) at room temperature without microwave heating for very long time (16 days), there is small amount of Fe^{III} reduced to Fe^{II} (Figure S5 e and f). These control experiments prove that water and microwave heating alone do not result in Fe^{III} reduced to Fe^{II}, but microwave heating facilitates the reduction of Fe^{III}.

Figure S6. Mass spectra of (a) $FeCl_3$ (0.10 M) in water, (b) after microwave heating at 140 °C for 1 min, (c) $FeCl_2$ (0.10 M) in water, (d) the addition of glucose (0.25 M) to the solution of $FeCl_3$ (0.10 M) in water heated for 1 min at 140 °C, (e) glucose (0.25 M) and $FeCl_3$ (0.10 M) solution at RT for 16 days, and (f) fructose (0.25 M) and $FeCl_3$ (0.10 M) solution at RT for 16 days.

Change of Iron Salts

Other than iron chloride, iron sulfate also shows similar reduction behavior. Mass spectrum of solution of $Fe_2(SO_4)_3$ and glucose has a dominant Fe^{III} peak at m/z 414, which corresponds to $[Fe^{3+} + 2glucose - 2H^+]^+$, as discussed above. In comparison, mass spectrum of solutions of $FeSO_4$ and glucose has a dominant ion of m/z 464, which corresponds to $[Fe^{2+} + 2glucose + 2SO_4^{2-}]^+$. Upon microwave heating of Fe^{III} -glucose solution for 2 min, mass spectrum shows that the abundance of ion of m/z 414 decreases and that m/z 464 (corresponding to Fe^{II}) increases.

Figure S7. Mass spectra of (a) glucose (0.25 M) and $\text{Fe}_2(\text{SO}_4)_3$ (0.05 M) in water, (b) after microwave heating at 140 °C for 2 min, and (c) glucose (0.25 M) and FeSO_4 (0.10 M) in water for comparison.

Iron and HMF Reactions at Elevated Temperature

Figure S8. Mass spectra of (a) HMF (0.25 M) and FeCl₃ (0.05 M) in water, (b) after microwave heating at 140 °C for 1 s, and (c) HMF (0.25 M) and FeCl₂ (0.10 M) in water for comparison.

Testing of Mixture Solutions

In the solution of fructose (0.25 M), $FeCl_3$ (0.05 M) and $FeCl_2$ (0.05 M), the dominant ion is m/z 451 (Fe^{II} -fructose), while ion abundance for m/z 414 (Fe^{III} -fructose) is very low (less than 5% relative abundance), suggesting that fructose favor coordination with Fe^{II} over Fe^{III} in MS (Figure S9 a). In the solution of glucose (0.25 M), FeCl₃ (0.05 M) and FeCl₂ (0.05 M), the dominant ion is m/z 451 (Fe^{II}-glucose), while ion abundance for m/z 414 (Fe^{III}-glucose) is low (about 35% relative abundance), suggesting that glucose also favor coordination with Fe^{II} over Fe^{III} in MS, but to a less extend than fructose (Figure S9 b). Not like MS, in the solution of glucose (0.25 M), FeCl₃ (0.05 M) and FeCl₂ (0.05 M), UV-Vis shows the absorption of Fe^{III} at about half of that of solution of glucose (0.25 M) and FeCl₃ (0.10 M), indicating that the amount of Fe^{III} in the solution detected by UV-Vis is not influenced by sugars or the instrument. In summary, MS favors Fe^{II}-sugar (glucose or fructose) complexes to some extent in a mixture solution containing both Fe^{III} to Fe^{II} qualitatively. In addition, UV-Vis absorption which reflects the amount of Fe^{III} present in the mixture solution confirms the reduction of Fe^{III} to Fe^{II} upon microwave heating in the catalytic reaction solutions.

Figure S9. Mass spectra of (a) fructose (0.25 M), FeCl₃ (0.05 M), and FeCl₂ (0.05 M) mixture in water, (b) glucose (0.25 M), FeCl₃ (0.05 M), and FeCl₂ (0.05 M) mixture in water.

Figure S10. Overlay of UV-Vis Spectrum of 0.25 M glucose, 0.05 M FeCl₃ and 0.05 M FeCl₂ in water (red), 0.25 M glucose and 0.1 M FeCl₂ in water (blue), and 0.25 M glucose and 0.1 M FeCl₃ in water (green).

Sugar Conversion Comparison

Table 1. Comparison of 0.25 M sugar (glucose or fructose) conversion catalyzed by 0.10 M FeCl_3 , versus 0.10 M FeCl_2 and HCl, and versus HCl at the same pH (pH = 1), same temperature (140 °C), and same reaction time (60 min for glucose and 15 min for fructose).

Catalyst	Glucose Conversion	Fructose Conversion
FeCl ₃	22 %	94 %
FeCl ₂ , HCl	21 %	94 %
HCl	13 %	89 %

Kinetic Profiles

Kinetic Modelling Using Different Iron Concentrations

Figure S11. (a) Kinetic profiles for HMF conversion to LA and FA. (b) Kinetic profiles for reaction of fructose. (c) Kinetics profiles for reaction of glucose. Conditions: The reaction of 0.25 M substance and 0.025 M FeCl₃ at 140 °C. Points are data and solid lines represent kinetic modeling fits. Simulation starts from the point that after temperature reaches 140 °C. ^{3,4}

Kinetic Modeling in a Biphasic System

Figure S12. (a) Kinetic profiles for HMF conversion to LA and FA. (b) Kinetic profiles for reaction of fructose. Conditions: The reaction of 0.25 M substance and 0.025 M FeCl₃ at 140 °C in a water:MeTHF (1:3) biphasic system. Points are data and solid lines represent kinetic modeling fits. Simulation starts from the point that after temperature reaches 140 °C.

Characterization of Solvent Decomposition by GC-MS

Figure S13. (a) GC-MS spectrum of the first unknown peak. (b) GC-MS spectrum of (Z)-3penten-1-ol from GC-MS library database. (c) GC-MS spectrum of the second unknown peak. (d) GC-MS spectrum of 1,4-Pentanediol from GC-MS library database. Reaction condition: 0.10 M FeCl₃ in 1 ml H₂O and 3 ml MeTHF at 200 °C microwave heating for 5 min.

References

- (1) Mazzotta, M. G.; Gupta, D.; Saha, B.; Patra, A. K.; Bhaumik, A.; Abu-Omar, M. M. *ChemSusChem* **2014**, *7*, 2342.
- (2) Nelson, R. C.; Miller, J. T. Catal. Sci. Technol. 2012, 2, 461.
- (3) Wang, T.; Nolte, M. W.; Shanks, B. H. Green Chem. 2014, 16, 548.
- Choudhary, V.; Mushrif, S. H.; Ho, C.; Anderko, A.; Nikolakis, V.; Marinkovic, N. S.; Frenkel, A. I.; Sandler, S. I.; Vlachos, D. G. J. Am. Chem. Soc. 2013, 135, 3997.