Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Supporting Information for

Palladium-Catalyzed Oxidative Annulation of in-situ Generated Enones

to Pyrroles: A Concise Route to Functionalized Indoles

Tenglong Guo, Quanbin Jiang, and Zhengkun Yu*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning

116023, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

zkyu@dicp.ac.cn

Experimental procedures and analytical data

Contents:	page
1. General considerations	2
2. Experimental procedures	3
3. X-Ray crystallographic studies	9
4. Analytical data	10
5. Copies of NMR spectra for new compounds	24

1. General considerations

¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker DRX-400 spectrometer and all chemical shift values refer to $\delta_{TMS} = 0.00$ ppm or CDCl₃ (δ (¹H), 7.26 ppm; $\delta(^{13}C)$, 77.16 ppm). The HRMS analysis was obtained on a Waters GC-TOF CA156 mass spectrometer. All the melting points were uncorrected. Analytical TLC plates, Sigma-Aldrich silica gel 60_{F200} were viewed by UV light (254 nm). Column chromatographic purifications were performed on SDZF silica gel 160. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Compounds 1-methyl-2-phenylpyrrole (1a),¹ 1-ethyl-2phenylpyrrole (1b),² 1-allyl-2-phenylpyrrole (1c),³ 1-benzyl-2-phenyl- pyrrole (1d),² 1-methyl-2-(p-tolyl)pyrrole (1e),¹ 1-methyl-2-(m-tolyl)pyrrole (1f),¹ 1-methyl-2-(otolyl)pyrrole (1g),⁴2-(4-methoxyphenyl)-1-methylpyrrole (1h),¹2-(4-fluorophenyl)-1methylpyrrole (1i),¹ methyl 4-(1-methyl-pyrrol-2yl)benzoate (1j),¹ 4-(1-methylpyrrol-2-yl)benzonitrile (1k)⁵ 2-(3-chlorophenyl)-1-methylpy- rrole (1l),¹ 1-methyl-2-(naphthalen-1-yl)pyrrole (1m),¹ 1-methyl-2-(thiophen-2-yl)- 1*H*-pyrrole (1n),⁶ 1,2dimethylpyrrole (10),⁷ 1,3-dimethyl-2-phenylpyrrole (1p),⁸ and 1-methyl-2-(4nitrophenyl)pyrrole (1r).⁴ 3-chloro-1-(*p*-tolyl)propan-1-one (2b), 3-chloro-1-(4methoxyphenyl)propan-1-one (2c), 1-(4-(tert-butyl)phenyl)-3-chloropr- opan-1-one 1-([1,1'-biphenyl]4-yl)-3-chloropropan-1-one (2e), 3-chloro-1-(3,4 -(2d),dimethylphenyl)propan-1-one (2h), 3-chloro-1-(2,5-dimethylphenyl)propan-1-one (2i), 3-chloro-1-(2,4-dimethylphenyl)propan-1-one (2j), 3-chloro-1-(naphthalen-1-yl)propan-1-one (2k), 3-chloro-1-(furan-2-yl)propan-1-one (2l), and 3-chloro-1-(thiophen-2-yl)propan-1-one (2m)⁹ were known compounds and their spectroscopic features were in good agreement with those reported in the literatures.

References

- Y.-X. Liu, D. Xue, J.-D. Wang, C.-J. Zhao, Q.-Z. Zou, C. Wang and J. L. Xiao, Synlett, 2013, 24, 507.
- (2) K. Ueda, K. Amaike, R. M. Maceiczyk, K. Itami and J. Yamaguchi, J. Am. Chem.

Soc., 2014, 136, 13226.

- (3) R. A. Nadzhafova, Maruzalar-Azarbaycan Milli Elmlar Akademiyasi, 2002, 58, 122.
- (4) F. Bilodeau, M.-C. Brochu, N. Guimond, K. H. Thesen and P. Forgione, J. Org. Chem., 2010, 75, 1550.
- (5) D. T. Gryko, O. Vakuliuk, D. Gryko and B. Koszarna, J. Org. Chem., 2009, 74, 9517.
- (6) J. Chantson, H. Görls and A. Lotz, J. Organomet. Chem., 2003, 687, 39.
- (7) J. E. Taylor, M. D. Jones, J. M. Williams and S. D. Bull, *Org. Lett.*, 2010, 12, 5740.
- (8) K. Taguchi, S. Sakaguchi and Y. Ishii, Tetrahedron Lett., 2005, 46, 4539.
- (9) T. L. Guo, Q. B. Jiang, F. Huang, J. P. Chen and Z. K.Yu, Org. Chem. Front., 2014, 1, 707.

2. Experimental procedures

2.1 A typical procedure for the synthesis of 3 and 4 from the reactions of 1 with 2

Synthesis of 3a: A mixture of *N*-methyl-2-phenylpyrrole (**1a**) (32 mg, 0.2 mmol), 3-chloropropiophenone (**2a**) (133 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂·H₂O (160 mg, 0.8 mmol), TBAB (32 mg, 0.1 mmol), PivOH (20 mg, 0.2 mmol), and NaOAc (66 mg, 0.8 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under an air atmosphere for 24 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 $^{\circ}$ C)/EtOAc/CH₂Cl₂ (30:1:3, v/v/v)) to afford **3a** as a yellow liquid (56 mg, 68%).

2.2 Screening of reaction conditions

Table S1: Screening of conditions for the reaction of *N*-methyl-2-phenylpyrrole (1a) with 3-chloropropiophenone $(2a)^a$

				Ph		
		N N N N N Ph 4	Ph Cl Cl	Ph	—Ph	
		1a	2a	3a		
Entry	Catalyst	Base	Oxidant	Solvent	Additive	Yield ^b [%]
1	Pd(OAc) ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	toluene		0
2	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	dioxane		7
3	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMSO		41
4	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF		42
5	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	toluene/DMSO		36
				(v/v = 10:1)		
6	Pd(OAc) ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO/HOAc (v/v/v = 20:2:1)		51
7	Pd(OAc) ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	Dioxane/DMSO (v/v = 10:1)		48
8	Pd(OAc) ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO (v/v = 2:1)		43
9	Pd(OAc) ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO (v/v = 9:1)		64
10	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO $(v/v = 20:1)$		52
11	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂	DMF/DMSO (v/v = 9:1)		61
12	$Pd(OAc)_2$	NaOAc	CuCl ₂	DMF/DMSO $(v/v = 9:1)$		0
13	Pd(OAc) ₂	NaOAc	CuOAc	DMF/DMSO $(v/v = 9:1)$		44
14	$Pd(OAc)_2$	NaOAc	AgOAc	DMF/DMSO $(v/v = 9:1)$		25
15	$Pd(OAc)_2$	NaOAc	Ag ₂ CO ₃	DMF/DMSO (v/v = 9:1)		36
16	Pd(OAc) ₂	NaOAc	Ag ₂ O	DMF/DMSO $(v/v = 9:1)$		12
17	$Pd(OAc)_2$	NaOAc	BQ	DMF/DMSO $(v/v = 9:1)$		0

18	$Pd(OAc)_2$	NaOAc	tBuOOtBu	DMF/DMSO ($y/y = 9.1$)		17
19	$Pd(OAc)_2$	NaOAc	$K_2S_2O_8$	DMF/DMSO		trace
				(v/v = 9:1)		
20	$Pd(OAc)_2$	NaOAc	DDQ	DMF/DMSO		0
				(v/v = 9:1)		
21	$Pd(OAc)_2$	NaOAc	air	DMF/DMSO		13
				(v/v = 9:1)		
22	$Pd(OAc)_2$	NaOAc	O_2	DMF/DMSO		14
				(v/v = 9:1)		
23 ^c	Pd(OAc) ₂	NaOAc		DMF/DMSO		<1
				(v/v = 9:1)		
24	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	65
				(v/v = 9:1)	equiv)	
25	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	PivOH (1.0	66
				(v/v = 9:1)	equiv)	
26	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	70
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
27	$Pd(OAc)_2$	NaOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	TBAB (0.2	60
				(v/v = 9:1)	equiv) + PivOH	
					(0.5 equiv)	
28	$Pd(OAc)_2$	NaOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	CuOAc (1.0	59
				(v/v = 9:1)	equiv)	
29	$Pd(OAc)_2$	NaOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	4ÅMS	59
				(v/v = 9:1)		
30	$Pd(OAc)_2$	NaOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	FeCl ₃ (0.5	51
				(v/v = 9:1)	equiv)	
31 ^c	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	55
				(v/v = 9:1)	equiv)+ PivOH	
					(1.0 equiv)	
32	$Pd(OAc)_2$	CsOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	TBAB (0.5	48
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
33	$Pd(OAc)_2$	LiOAc	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	TBAB (0.5	59
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
34	$Pd(OAc)_2$	Na ₂ CO ₃	$Cu(OAc)_2 \cdot H_2O$	DMF/DMSO	TBAB (0.5	39
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
35	$Pd(OAc)_2$	K_3PO_4	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	42
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
36		NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	trace

				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
37	PdCl ₂	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	47
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
38	$Pd(PPh_3)_2Cl_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	57
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
39	$Pd(PPh_3)_4$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	30
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
40	$Pd_2(dba)_3$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	39
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
41^d	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	50
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
42^e	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	60
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
43 ^{e,f}	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	48
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
44 ^{e,g}	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	60
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
45 ^{e,h}	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	68
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	
46 ^{e,i}	$Pd(OAc)_2$	NaOAc	Cu(OAc) ₂ ·H ₂ O	DMF/DMSO	TBAB (0.5	52
				(v/v = 9:1)	equiv) + PivOH	
					(1.0 equiv)	

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), catalyst (0.02 mmol), base (0.8 mmol), oxidant (1.2 mmol), solvent (2.5 mL), air, 100 °C, 24 h. ^{*b*} Isolated yields based on **1a**. ^{*c*} Under 0.1 MPa N₂ atmosphere. ^{*d*} Cu(OAc)₂·H₂O (0.6 mmol). ^{*e*} Cu(OAc)₂·H₂O (0.8 mmol). ^{*f*} 80 °C. ^{*g*} 110 °C. ^{*h*} 130 °C. ^{*i*} 140 °C.

2.3 Reaction of pyrrole 1a with enone 6

A mixture of *N*-methyl-2-phenylpyrrole (**1a**) (32 mg, 0.2 mmol), enone **6** (106 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂·H₂O (160 mg, 0.8 mmol), TBAB (32 mg, 0.1 mmol), and PivOH (20 mg, 0.2 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under an air atmosphere for 24 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ (30:1:3, v/v/v)) to afford **3a** as a yellow liquid (49 mg, 59%).

2.4 Preparation of 5-alkenylated pyrrole intermediate 5b

A mixture of *N*-methyl-2-phenylpyrrole (**1a**) (32 mg, 0.2 mmol), 3chloropropiophenone (**2a**) (34 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂·H₂O (60 mg, 0.3 mmol), TBAB (32 mg, 0.1 mmol), PivOH (20 mg, 0.2 mmol), and NaOAc (17 mg, 0.2 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under an air atmosphere for 2 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ (15:1:1, v/v/v)) to afford **5b** as a yellow solid (15 mg, 26%).

2.5 Reaction of 5b with 2a

A typical procedure for the reaction of 5b with 2a under the standard conditions: A mixture of 5b (54 mg, 0.2 mmol), 2a (101 mg, 0.6 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂·H₂O (120 mg, 0.6 mmol), TBAB (32 mg, 0.1 mmol), PivOH (20 mg, 0.2 mmol), and NaOAc (49 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under an air atmosphere for 24 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ (30:1:3, v/v/v)) to afford **3a** as a yellow liquid (42 mg, 50%).

2.6 Preparation of intermediate 7

A mixture of **5b** (54 mg, 0.2 mmol), **2a** (101 mg, 0.6 mmol), and NaOAc (49 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under a nitrogen atmosphere for 24 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered,

concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ (30:1:1, v/v/v)) to afford 7 as a white solid (15 mg, 18%).

2.7 Dehydrogenative aromatization of 7

A mixture of 7 (42 mg, 0.1 mmol) and Cu(OAc)₂·H₂O (60 mg, 0.3 mmol) in 1.5 mL DMF/DMSO (v/v = 9:1) was stirred at 130 °C under an air atmosphere for 24 h. After cooled to ambient temperature, 10 mL CH₂Cl₂ was added and the resultant mixture was filtered through a short pad of celite, followed by rinsing with 10 mL CH₂Cl₂. The combined filtrate was washed with brine (10 mL) and separated. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ (10:1:1, v/v/v)) to afford **3a** as a yellow liquid (32 mg, 79%).

3. X-Ray crystallographic studies

X-Ray diffraction studies for compound 4d was carried out on a SMART APEX diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 1002185 for 4d. Copies of this information may be obtained free of charge from The Director,

CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Figure 1. Molecular structure of 4d.

4. Analytical data

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (3a): Yield 68%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.17 and 7.95 (s each, 1:1 H, aromatic CH), 7.86 (m, 4 H, aromatic CH), 7.56 (m, 4 H, aromatic CH), 7.48 (m, 7 H, aromatic CH), 7.08 (s, 1 H, 3-H of indolyl), 3.88 (s, 3 H, NCH₃). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 196.8 and 196.4 (Cq, C=O), 147.7, 138.9, 138.7, 138.5, 131.7, 130.8 and 129.9 (Cq), 132.5, 132.2, 130.2, 130.1, 129.6, 129.0, 128.9, 128.4, 126.8, 116.2, and 103.6 (CH), 31.8 (CH₃). HRMS Calcd for C₂₉H₂₁NO₂ [M+H]⁺: 416.1651; Found: 416.1659.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis(p-tolylmethanone) (3b): Yield 73%. Yellow solid. M.p.: 224-227 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 and 7.92 (s each, 1:1 H, aromatic CH), 7.78 (m, 4 H, aromatic CH), 7.55 (m, 2 H, aromatic CH), 7.50 (m, 2 H, aromatic CH), 7.45 (m, 1 H, aromatic CH), 7.29 (m, 3 H, aromatic CH),

7.26 (m, 1 H, aromatic CH), 7.02 (m, 1 H, 3-H of indolyl), 3.87 (s, 3 H, NCH₃), 2.44 and 2.43 (s each, 3:3 H, CH₃). ${}^{13}C{}^{1}H{}NMR$ (100 MHz, CDCl₃) δ 196.6 and 196.3 (Cq, C=O), 147.3, 143.3, 142.93, 138.8, 135.9, 135.8, 131.8, 130.6 and 128.9 (Cq), 130.4, 130.4, 129.6, 129.1, 129.1, 128.9, 128.8, 126.2, 115.9 and 103.4 (CH), 31.7 (NCH₃), 21.79 and 21.76 (CH₃). HRMS Calcd for C₃₁H₂₅NO₂ [M+H]⁺: 444.1964; Found: 444.1970.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((4-methoxyphenyl)methanone)

(3c): Yield 69%. Yellow solid. M.p.: 140-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1 H, aromatic CH), 7.87 (m, 5 H, aromatic CH), 7.54 (m, 2 H, aromatic CH), 7.52-7.41 (m, 3 H, aromatic CH), 6.96 (m, 5 H, aromatic CH and 3-H of indolyl), 3.87 (m, 9 H, NCH₃ and 2×OCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.6 and 195.4 (Cq, C=O), 163.3, 163.1, 146.9, 138.8, 131.8, 131.2, 131.0, 130.7, 130.4 and 129.1 (Cq), 132.6, 132.6, 129.5, 128.9, 128.8, 125.5, 115.4, 113.7, 113.7 and 103.2 (CH), 55.6 (2×OCH₃), 31.7 (NCH₃). HRMS Calcd for C₃₁H₂₅NO₄ [M+H]⁺: 476.1862; Found: 476.1862.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((4-(tert-butyl)phenyl)methanone) (3d): Yield 67%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 and 7.96 (s each, 1:1 H, aromatic CH), 7.83 (m, 4 H, aromatic CH), 7.57 (d, *J* = 7.1 Hz, 2 H, aromatic CH), 7.54-7.45 (m, 7 H, aromatic CH), 7.11 (s, 1 H, 3-H of indolyl), 3.89 (s, 3 H, NCH₃), 1.37 and 1.36 (s each, 9:9 H, 2×*t*Bu). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.5 and 196.1 (Cq, C=O), 156.1, 155.9, 147.5, 138.9, 135.9, 135.7, 131.8, 130.7 and 128.6 (Cq), 130.3, 130.2, 129.6, 128.9, 128.8, 126.7, 125.3, 115.9 and 103.5 (CH), 35.2 (NCH₃), 31.8 (*C*(CH₃)₃), 31.30 and 31.29 (C(*C*H₃)₃). HRMS Calcd for C₃₇H₃₇NO₂ [M+H]⁺: 528.2903; Found: 528.2912.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis([1,1'-biphenyl]-4-ylmethanone)

(3e): Yield 71%. Yellow solid. M.p.: 102-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1 H, aromatic CH), 8.03 (d, J = 0.8 Hz, 1 H, aromatic CH), 7.96 (m, 4 H, aromatic CH), 7.72 (m, 4 H, aromatic CH), 7.63 (m, 4 H, aromatic CH), 7.58 (d, J = 6.9 Hz, 2 H, aromatic CH), 7.52 (m, 2 H, aromatic CH), 7.46 (m, 5 H, aromatic CH), 7.40 (m, 2 H, aromatic CH), 7.13 (s, 1 H, 3-H of indolyl), 3.90 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.4 and 196.1(Cq, C=O), 147.7, 145.3, 145.0, 140.2, 140.1, 139.0, 137.4, 137.2, 131.7, 130.1 and 128.6 (Cq), 130.8, 130.7, 129.6, 129.09, 129.06, 129.02, 128.9, 128.3, 128.2, 127.44, 127.42, 127.12, 127.10, 126.8, 116.1, 103.6 (CH), 31.8 (NCH₃). HRMS Calcd for C₄₁H₂₉NO₂ [M+H]⁺: 568.2277; Found: 568.2269.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((4-fluorophenyl)methanone) (3f): Yield 67%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1 H, aromatic CH), 7.88 (m, 5 H, aromatic CH), 7.57-7.44 (m, 5 H, aromatic CH), 7.18 (m, 2 H, aromatic CH), 7.13 (m, 2 H, aromatic CH), 6.99 (s, 1 H, 3-H of indolyl), 3.88 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.2 and 194.9 (Cq, C=O), 165.5 and 165.3 (Cq, d each, *J* = 252.0 Hz and 253.0 Hz, *i*-C of C₆H₄F), 147.8, 138.8, 134.8 and 134.6 (Cq, d each, *J* = 3.2 Hz and 3.0 Hz, *p*-C of C₆H₄F), 131.5, 130.7, 129.8 and 128.4 (Cq), 132.7 and 132.6 (CH, d each, *J* = 9.1 Hz and 9.0 Hz, *m*-C of C₆H₄F), 129.5, 129.1, 128.9, 126.0, 116.1, 115.58 and 115.57 (CH, d each, *J* = 21.8 Hz and 21.7 Hz, *o*-C of C₆H₄F), 103.4 (CH), 31.77 (CH₃). HRMS Calcd for C₂₉H₁₉F₂NO₂ [M+H]⁺: 452.1462; Found: 452.1458.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((4-chlorophenyl)methanone) (3g): Yield 70%. Yellow solid. M.p.: 208-211 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1 H, aromatic CH), 7.87 (d, *J* = 1.3 Hz, 1 H, aromatic CH), 7.79 (m, 4 H, aromatic CH), 7.56-7.46 (m, 6 H, aromatic CH), 7.44 (m, 3 H, aromatic CH), 7.00 (s, 1 H, 3-H of indolyl), 3.87 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.4 and 195.0 (Cq, C=O), 148.0, 139.0, 138.8, 138.7, 136.8, 136.7, 131.5, 130.8, 129.6 and 128.2 (Cq), 131.5, 131.4, 129.5, 129.1, 128.9, 128.8, 128.8, 126.1, 116.3 and 103.5 (CH), 31.8 (NCH₃). HRMS Calcd for C₂₉H₁₉Cl₂NO₂ [M+H]⁺: 484.0871; Found: 484.0867.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((3,4-dimethylphenyl)methanone) (3h): Yield 65%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.14 and 7.91 (s each, 1:1 H, aromatic CH), 7.70 and 7.66 (s each, 1:1 H, aromatic CH), 7.58 (m, 4 H, aromatic CH), 7.47 (m, 3 H, aromatic CH), 7.22 (t, 2 H, aromatic CH), 7.04 (s, 1 H, 3-H of indolyl), 3.87 (s, 3 H, NCH₃), 2.34, 2.33 and 2.32 (s each, 3:6:3 H, 4×CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.8 and 196.5 (Cq, C=O), 147.2, 142.0, 141.6, 138.9, 136.8, 136.4, 136.2, 131.8, 130.6 and 130.5 (Cq), 131.3, 131.2, 129.5, 129.5, 128.9, 128.8, 128.2, 128.0, 126.1, 115.7 and 103.4 (CH), 31.7 (NCH₃), 20.11, 20.09, 19.91 and 19.89 (CH₃). HRMS Calcd for C₃₃H₂₉NO₂ [M+H]⁺: 472.2277; Found: 472.2283.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((2,5-dimethylphenyl)methanone)
(3i): Yield 55%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1 H, aromatic

CH), 7.81 (d, J = 1.3 Hz, 1 H, aromatic CH), 7.56 (m, 2 H, aromatic CH), 7.54-7.45 (m, 3 H, aromatic CH), 7.25 (s, 1 H, 3-H of indolyl), 7.14 (m, 6 H, aromatic CH), 3.85 (s, 3 H, NCH₃), 2.31 2.30, 2.27 and 2.25 (s each, 3:3:3:3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.5 and 198.4 (Cq, C=O), 148.6, 139.7, 139.2, 139.2, 134.85, 134.80, 133.3, 133.1, 131.7 and 130.5 (Cq), 130.9, 130.8, 130.8, 129.6, 129.1, 128.93, 128.88, 128.6, 128.3, 116.5, 104.2 (CH), 31.8 (NCH₃), 21.0 and 19.6 (CH₃). HRMS Calcd for C₃₃H₂₉NO₂ [M+H]⁺: 472.2277; Found: 472.2278.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis((2,4-dimethylphenyl)methanone) (3j): Yield 50%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 1.0 Hz, 1 H, aromatic CH), 7.86 (d, *J* = 1.3 Hz, 1 H, aromatic CH), 7.56 (m, 2 H, aromatic CH), 7.50 (m, 2 H, aromatic CH), 7.48 (m, 1 H, aromatic CH), 7.26 (t, 2 H, aromatic CH), 7.18 (d, *J* = 0.6 Hz, 1 H, 3-H of indolyl), 7.08 (d, *J* = 3.7 Hz, 2 H, aromatic CH), 7.02 (t, *J* = 7.4 Hz, 2 H, aromatic CH), 3.83 (s, 3 H, NCH₃), 2.38, 2.37, 2.36 and 2.33 (s each, 3:3:3:3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.1 and 198.1 (Cq, C=O), 148.2, 140.5, 140.3, 139.0, 137.2, 137.0, 136.7, 136.2, 131.7, 130.80, 130.78 and 129.3 (Cq), 131.95, 131.90, 129.5, 129.4, 129.0, 128.9, 128.85, 127.84, 126.0, 125.9, 116.6 and 104.1 (CH), 31.7 (NCH₃), 21.5, 20.2 and 20.1 (CH₃). HRMS Calcd for C₃₃H₂₉NO₂ [M+H]⁺: 472.2277; Found: 472.2283.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis(naphthalen-1-ylmethanone) (3k): Yield 52%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.29 and 7.91 (s each, 1:1 H, aromatic CH), 8.15 (d, J = 8.3 Hz, 1 H, aromatic CH), 8.02 (d, J = 8.3 Hz, 1 H, aromatic CH), 7.87 (m, 4 H, aromatic CH), 7.59 (m, 2 H, aromatic CH), 7.52 (m, 5 H, aromatic CH), 7.48 (m, 2 H, aromatic CH), 7.44 (m, 2 H, aromatic CH), 7.40 (s, 1 H, 3-H of indolyl), 7.36 (t, 1 H, aromatic CH), 7.33 (d, J = 7.1 Hz, 1 H, aromatic CH), 3.86 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.3 and 197.2 (Cq, C=O), 148.9, 139.2, 137.05, 136.8, 133.83, 133.75, 131.6, 131.2, 131.0, 130.8 and 129.1 (Cq), 131.1, 131.0, 129.6, 129.3, 129.1, 128.9, 128.5, 128.0, 127.4, 127.15, 127.09, 126.43, 126.37, 125.89, 125.86, 124.40, 124.37, 116.9 and 104.4 (CH), 31.8 (NCH₃). HRMS Calcd for C₃₇H₂₅NO₂ [M+H]⁺: 516.1964; Found: 516.1959.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis(furan-2-ylmethanone) (3l): Yield 71%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 1.2 Hz, 1 H, aromatic CH), 8.34 (s, 1 H, aromatic CH), 7.73 (t, 2 H, aromatic CH), 7.56 (dd, J = 8.1, 1.4 Hz, 2 H, aromatic CH), 7.51 (m, 2 H, aromatic CH), 7.46 (m, 1 H, aromatic CH), 7.34 (d, J = 3.4 Hz, 1 H, furyl H), 7.30 (d, J = 3.4 Hz, 1 H, furyl H), 7.16 (s, 1 H, 3-H of indolyl), 6.62 (m, 2 H, furyl H), 3.89 (s, 3 H, NCH₃). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 182.6 and 181.8 (Cq, C=O), 153.0, 152.9, 147.8, 138.9, 131.7, 130.7 and 128.1 (Cq), 147.1, 146.8, 129.6, 129.0, 128.9, 124.7, 120.5, 120.2, 115.8, 112.4, 112.3 and 103.4 (CH), 31.7 (NCH₃). HRMS Calcd for C₂₅H₁₇NO₄ [M+H]⁺: 396.1236; Found: 396.1240.

(1-Methyl-2-phenyl-1*H*-indole-4,6-diyl)bis(thiophen-2-ylmethanone) (3m): Yield 63%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 1.3 Hz, 1 H, aromatic CH), 8.20 (s, 1 H, aromatic CH), 7.75 (dd, J = 3.8 and 1.0 Hz, 1 H, thienyl H), 7.72 (m, 3 H, thienyl H), 7.56 (m, 2 H, aromatic CH), 7.54-7.43 (m, 3 H, aromatic CH), 7.19 (dd, J = 4.9 and 3.8 Hz, 1 H, thienyl H), 7.16 (dd, J = 4.7 and 4.0 Hz, 1 H, thienyl H), 7.08 (d, J = 0.5 Hz, 1 H, 3-H of indolyl), 3.89 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 188.1 and 187.7 (Cq, C=O), 147.4, 144.5, 144.0, 138.8, 131.7, 130.6, 130.4 and 129.2 (Cq), 134.9, 134.5, 134.2, 133.8, 129.6, 129.0, 128.9, 128.2, 128.1, 124.1, 115.3 and 103.2 (CH), 31.8 (NCH₃). HRMS Calcd for $C_{25}H_{17}NO_2S_2$ [M+H]⁺: 428.0779; Found: 428.0781.

1,1'-(1-Methyl-2-phenyl-1*H***-indole-4,6-diyl)bis(propan-1-one) (3n):** Yield 35%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.43 and 8.23 (s each, 1:1 H, aromatic CH), 7.56 (d, *J* = 7.0 Hz, 2 H, aromatic CH), 7.49 (m, 3 H, aromatic CH), 7.40 (s, 1 H, 3-H of indolyl), 3.86 (s, 3 H, NCH₃), 3.18 (m, 4 H, 2×CH₃C*H*₂), 1.30 (m, 6 H, 2×C*H*₃CH₂). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 202.0 and 200.2 (Cq, C=O), 148.2, 139.3, 131.8, 129.9, 129.8 and 128.2 (Cq), 129.5, 129.0, 128.8, 122.6, 114.5 and 104.4 (CH), 32.9 and 32.0 (CH₃C*H*₂), 31.66 (NCH₃), 8.8 and 8.7 (*CH*₃CH₂). HRMS Calcd for C₂₁H₂₁NO₂ [M+H]⁺: 320.1651; Found: 320.1651.

(1-Ethyl-2-phenyl-1H-indole-4,6-diyl)bis(phenylmethanone) (4a): Yield 62%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.20 and 7.94 (s each, 1:1 H, aromatic CH), 7.86 (m, 4 H, aromatic CH), 7.59-7.44 (m, 11 H, aromatic CH), 7.06 (s, 1 H, 3-H of indolyl), 4.33 (q, 2 H, CH_2CH_3), 1.37 (t, 3 H, CH_2CH_3). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.4 (Cq, C=O), 147.3, 138.6, 138.5, 137.6, 132.0, 131.1, 129.8 and 128.5 (Cq), 132.5, 132.2, 130.2, 130.1, 129.4, 129.0, 128.9, 128.4, 126.8, 116.4 and 104.0 (CH), 39.3 (CH_2CH_3), 15.9 (CH_2CH_3). HRMS Calcd for C₃₀H₂₃NO₂ [M+H]⁺: 430.1807; Found: 430.1806.

(1-Allyl-2-phenyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4b): Yield 61%.

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.10 and 7.96 (s each, 1:1 H, aromatic CH), 7.88 (d, *J* = 7.5 Hz, 2 H, aromatic CH), 7.82 (d, *J* = 7.5 Hz, 2 H, aromatic CH), 7.61–7.43 (m, 11 H, aromatic CH), 7.12 (s, 1 H, 3-H of indolyl), 6.02 (m, 1 H, CH₂CH=CH₂), 5.28 and 5.00 (m each, 1:1 H, CH₂CH=CH₂), 4.85 (s, 2 H, CH₂CH=CH₂). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.3 (Cq, C=O), 147.6, 138.7, 138.4, 138.2, 131.7, 131.1, 130.0 and 128.6 (Cq), 133.4, 132.5, 132.2, 130.2, 130.1, 129.3, 129.1, 128.9, 128.4, 128.3, 126.9, 117.4, 117.1 and 103.9 (CH), 46.9 (CH₂CH=CH₂). HRMS Calcd for C₃₁H₂₃NO₂ [M+H]⁺: 442.1807; Found: 442.1819.

(1-Benzyl-2-phenyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4c): Yield 50%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 1.1 Hz, 1 H, aromatic CH), 7.90 (m, 3 H, aromatic CH), 7.66 (m, 2 H, aromatic CH), 7.58 (m, 1 H, aromatic CH), 7.50 (m, 5 H, aromatic CH), 7.44 (m, 3 H, aromatic CH), 7.37 (t, 2 H, aromatic CH), 7.30 (m, 3 H, aromatic CH), 7.20 (s, 1 H, 3-H of indolyl), 7.00 (m, 2 H, aromatic CH), 5.49 (s, 2 H, CH₂Ph). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 195.9 (Cq, C=O), 147.8, 138.6, 138.1, 138.0, 137.3, 131.6, 131.1, 129.9 and 128.8 (Cq), 132.5, 132.1, 130.2, 130.1, 129.4, 129.1, 129.1, 128.9, 128.4, 128.3, 127.7, 126.9 and 126.1 (CH), 48.1 (CH₂Ph). HRMS Calcd for C₃₅H₂₅NO₂ [M+H]⁺: 492.1964; Found: 492.1953.

(1-Methyl-2-(*p*-tolyl)-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4d): Yield 68%. Yellow solid. M.p.: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.94 (s each, 1:1 H, aromatic CH), 7.85 (m, 4 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.51-7.42 (m, 6 H, aromatic CH), 7.32 (d, *J* = 7.9 Hz, 2 H, aromatic CH), 7.05 (s, 1 H, 3-H of indolyl), 3.87 (s, 3 H, NCH₃), 2.44 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.4 (Cq, C=O), 147.9, 139.1, 138.8, 138.7, 138.5, 130.9, 129.7, 128.7 and 128.2 (Cq), 132.4, 132.1, 130.1, 130.0, 129.6, 129.4, 128.3, 126.9, 116.1

and 103.3 (CH), 31.7 (NCH₃), 21.5 (CH₃). HRMS Calcd for C₃₀H₂₃NO₂ [M+H]⁺: 430.1807; Found: 430.1792.

(1-Methyl-2-(*m*-tolyl)-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4e): Yield 67%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.94 (s each, 1:1 H, aromatic CH), 7.89-7.80 (m, 4 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.40 (m, 2 H, aromatic CH), 7.35 (d, J = 7.5 Hz, 1 H, aromatic CH), 7.29-7.25 (m, 1 H, aromatic CH), 7.06 (d, J = 0.5 Hz, 1 H, 3-H of indolyl), 3.88 (s, 3 H, NCH₃), 2.45 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.4 (Cq, C=O), 148.0, 138.9, 138.7, 138.7, 138.6, 131.6, 130.9 and 129.84 (Cq), 132.5, 132.2, 130.3, 130.17, 130.1, 129.8, 128.7, 128.4, 126.9, 126.6, 116.2 and 103.5 (CH), 31.8 (NCH₃), 21.6 (CH₃). HRMS Calcd for C₃₀H₂₃NO₂ [M+H]⁺: 430.1807; Found: 430.1805.

(1-Methyl-2-(*o*-tolyl)-1H-indole-4,6-diyl)bis(phenylmethanone) (4f): Yield 66%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.97 (s each, 1:1 H, aromatic CH), 7.85 (m, 4 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.40 (m, 1 H, aromatic CH), 7.37-7.28 (m, 3 H, aromatic CH), 6.93 (d, J = 0.4 Hz, 1 H, 3-H of indolyl), 3.65 (s, 3 H, NCH₃), 2.23 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.5 (Cq, C=O), 147.0, 138.8, 138.5, 137.9, 137.87, 131.4 and 129.8 (Cq), 132.4, 132.2, 130.8, 130.5, 130.2, 130.1, 129.5, 128.4, 128.4, 126.8, 125.9, 116.0 and 103.7 (CH), 30.9 (NCH₃), 20.1 (CH₃). HRMS Calcd for C₃₀H₂₃NO₂ [M+H]⁺: 430.1807; Found: 430.1803.

(2-(4-Methoxyphenyl)-1-methyl-1*H*-indole-4,6-diyl)bis(phenylmethanone)

(4g): Yield 51%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.15 and 7.94 (s each, 1:1 H, aromatic CH), 7.85 (m, 4 H, aromatic CH), 7.56 (m, 2 H, aromatic CH), 7.48 (m, 6 H, aromatic CH), 7.03 (m, 3 H, aromatic CH and 3-H of indolyl), 3.88 (s, 3 H, NCH₃), 3.86 (s, 3 H, OCH₃). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.4 (Cq, C=O), 160.3, 147.8, 138.8, 138.7, 138.6, 131.0, 129.6, 128.1 and 124.0 (Cq), 132.4, 132.1, 130.9, 130.1, 128.4, 127.0, 116.1, 115.1, 114.4 and 103.1 (CH), 55.5 (OCH₃), 31.7 (NCH₃). HRMS Calcd for C₃₀H₂₃NO₃ [M+H]⁺: 446.1756; Found: 446.1764.

(2-(4-Fluorophenyl)-1-methyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4h): Yield 59%. Yellow solid. M.p.: 147-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.94 (s each, 1:1 H, aromatic CH), 7.85 (m, 4 H, aromatic CH), 7.60-7.51 (m, 4 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.20 (m, 2 H, aromatic C), 7.06 (s, 1 H, 3-H of indolyl), 3.85 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.8 and 196.4 (Cq, C=O), 163.2 (Cq, d, *J* = 248.1 Hz, *i*-C of C₆H₄F), 146.6, 138.8, 138.6, 138.4, 130.7 and 127.81 (Cq, d, *J* = 3.4 Hz, *p*-C of C₆H₄F) (Cq), 132.5, 132., 131.4 (CH, d, *J* = 8.3 Hz, *m*-C of C₆H₄F), 130.1, 130.1, 128.4, 126.9, 116.2, 116.0 (CH, d, *J* = 21.7 Hz, *o*-C of C₆H₄F), and 103.6 (CH), 31.7 (CH₃). HRMS Calcd for C₂₉H₂₀FNO₂ [M+H]⁺: 434.1556; Found: 434.1551.

Methyl 4-(4,6-dibenzoyl-1-methyl-1*H***-indol-2-yl)benzoate (4i):** Yield 62%. Yellow solid. M.p.: 206-209 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 3 H, aromatic CH), 7.94 (d, *J* = 1.3 Hz, 1 H, aromatic CH), 7.90-7.81 (m, 4 H, aromatic CH), 7.64 (d, *J* = 8.4 Hz, 2 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.47 (m, 4 H, aromatic CH), 7.15 (d, *J* = 0.4 Hz, 1 H, 3-H of indolyl), 3.96 (s, 3 H, NCH₃), 3.89 (s, 3 H, CO₂Me). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.7 and 196.3 (Cq, C=O), 166.6 (Cq, CO₂Me), 146.2, 139.2, 138.5, 138.3, 136.0, 130.6, 130.5, 130.4, and 128.7 (Cq), 132.6, 132.3, 130.1, 130.1, 130.1, 129.4, 128.4, 126.8, 116.3 and 104.5 (CH), 52.4 (CO₂CH₃), 31.9 (CH₃). HRMS Calcd for C₃₁H₂₃NO₄ [M+H]⁺: 474.1705; Found: 474.1697.

4-(4,6-Dibenzoyl-1-methyl-1*H***-indol-2-yl)benzonitrile (4j):** Yield 52%. Yellow solid. M.p.: 214-217 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 and 7.94 (s each, 1:1 H, aromatic CH), 7.88-7.77 (m, 6 H, aromatic CH), 7.68 (d, *J* = 8.4 Hz, 2 H, aromatic CH), 7.58 (m, 2 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.16 (s, 1 H, 3-H of indolyl), 3.88 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.6 and 196.2 (Cq, C=O), 145.0, 139.3, 138.4, 138.2, 136.2, 130.9, 130.4, 128.9, 118.5 and 112.5 (Cq), 132.7, 132.6, 132.4, 130.1, 130.1, 129.9, 128.4, 126.9, 116.4 and 105.0 (CH), 32.0 (CH₃). HRMS Calcd for C₃₀H₂₀N₂O₂ [M+H]⁺: 441.1603; Found: 441.1607.

(2-(3-Chlorophenyl)-1-methyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4k): Yield 60%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.95 (s each, 1:1 H, aromatic CH), 7.84 (m, 4 H, aromatic CH), 7.57 (m, 3 H, aromatic CH), 7.52-7.42 (m, 7 H, aromatic CH), 7.09 (s, 1 H, 3-H of indolyl), 3.87 (s, 3 H, CH₃). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 196.7 and 196.3 (Cq, C=O), 145.9, 138.9, 138.5, 138.4, 134.8, 133.5, 130.6, 130.4 and 128.7 (Cq), 132.6, 132.3, 130.1, 130.1, 129.5, 129.1, 128.4, 127.6, 126.8, 116.3 and 104.1 (CH), 31.8 (CH₃). HRMS Calcd for C₂₉H₂₀ClNO₂ [M+H]⁺: 450.1261; Found: 450.1253.

(1-Methyl-2-(naphthalen-1-yl)-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4l): Yield 61%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1 H, aromatic CH), 8.00 (m, 2 H, aromatic CH), 7.95 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.89 (m, 4 H, aromatic CH), 7.66 (d, J = 8.3 Hz, 1 H, aromatic CH), 7.59 (m, 4 H, aromatic CH), 7.53 (m, 2 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.14 (s, 1 H, 3-H of indolyl), 3.62 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.5 (Cq, C=O), 145.9, 138.7, 138.5, 138.4, 133.7, 132.5, 130.9, 130.0, 129.4 and 128.6 (Cq), 132.5, 132.2, 130.2, 130.1, 129.9, 129.1, 128.6, 128.4, 127.2, 126.8, 126.5, 125.8, 125.3, 116.1, 115.1 and 105.0 (CH), 31.4 (CH₃). HRMS Calcd for C₃₃H₂₃NO₂ [M+H]⁺: 466.1807; Found: 466.1804.

(1-Methyl-2-(thiophen-2-yl)-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4m): Yield 42%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.13 and 7.93 (s each, 1:1 H, aromatic CH), 7.84 (m, 4 H, aromatic CH), 7.56 (m, 2 H, aromatic CH), 7.47 (m, 5 H, aromatic CH and thienyl H), 7.33 (dd, *J* = 3.6 and 1.0 Hz, 1 H, thienyl H), 7.20 (d, *J* = 0.5 Hz, 1 H, 3-H of indolyl), 7.17 (dd, *J* = 5.0 and 3.7 Hz, 1 H, thienyl H), 3.97 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.7 and 196.2 (Cq, C=O), 140.3, 138.9, 138.6, 138.4, 132.8, 130.54 and 128.3 (Cq), 132.5, 132.2, 130.1, 130.0, 128.4, 128.4, 128.03, 128.02, 127.7, 127.0, 116.0 and 104.2 (CH), 31.73 (CH₃). HRMS Calcd for C₂₇H₁₉NO₂S [M+H]⁺: 422.1215; Found: 422.1192.

(1,3-Dimethyl-2-phenyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4n): Yield 63%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 and 7.65 (s each, 1:1 H, aromatic CH), 7.94 (d, *J* = 7.5 Hz, 2 H, aromatic CH), 7.83 (d, *J* = 7.3 Hz, 2 H, aromatic CH), 7.60-7.51 (m, 3 H, aromatic CH), 7.48 (m, 6 H, aromatic CH), 7.40 (d, *J* = 6.8 Hz, 2 H, aromatic CH), 3.71 (s, 3 H, NCH₃), 1.99 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 197.3 and 196.6 (Cq, C=O), 144.1, 138.6, 138.0, 137.1, 131.5, 131.1, 129.6 and 109.7 (Cq), 133.4, 132.1, 130.8, 130.7, 130.1, 128.8, 128.7, 128.6, 123.4 and 114.5 (CH), 31.5 (NCH₃), 11.9 (CH₃). HRMS Calcd for C₃₀H₂₃NO₂

[M+H]⁺: 430.1807; Found: 430.1797.

(1,2-Dimethyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (40): Yield 36%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.06 and 7.87 (s each, 1:1 H, aromatic CH), 7.81 (m, 4 H, aromatic CH), 7.55 (t, 2 H, aromatic CH), 7.46 (m, 4 H, aromatic CH), 6.76 (s, 1 H, 3-H of indolyl), 3.78 (s, 3 H, NCH₃), 2.50 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 197.0 and 196.5 (Cq, C=O), 144.2, 138.8, 138.6, 138.0, 131.1, 128.8 and 127.4 (Cq), 132.3, 132.0, 130.1, 130.0, 128.3, 128.3, 126.6, 115.2 and 102.2 (CH), 30.0 (NCH₃) , 13.3 (CH₃). HRMS Calcd for C₂₄H₁₉NO₂ [M+H]⁺: 354.1494; Found: 354.1489.

(1-Methyl-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4p): Yield 17%. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1 H, aromatic CH), 7.91 (d, *J* = 1.0 Hz, 1 H, aromatic CH), 7.83 (m, 4 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.47 (m, 4 H, aromatic CH), 7.38 (d, *J* = 3.0 Hz, 1 H, 2-H of indolyl), 6.93 (d, *J* = 2.6 Hz, 1 H, 3-H of indolyl), 3.92 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.9 and 196.5 (Cq, C=O), 138.6, 138.4, 137.2, 131.2, 130.1 and 129.0 (Cq), 134.8, 132.5, 132.3, 130.2, 130.1, 128.4, 126.1, 115.9 and 102.9 (CH), 33.4 (NCH₃). HRMS Calcd for C₂₃H₁₇NO₂ [M+H]⁺: 340.1338; Found: 340.1339.

(1-Methyl-2-(4-nitrophenyl)-1*H*-indole-4,6-diyl)bis(phenylmethanone) (4q): Yield 38%. Yellow solid. M.p.: 206-209 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (m, 2 H, aromatic CH), 8.17 and 7.95 (s each, 1:1 H, aromatic CH), 7.84 (m, 4 H, aromatic CH), 7.74 (m, 2 H, aromatic CH), 7.58 (m, 2 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.21 (s, 1 H, 3-H of indolyl), 3.91 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.5 and 196.1 (Cq, C=O), 147.8, 144.5, 139.4, 138.3, 138.1, 138.0, 131.1, 130.3 and 129.0 (Cq), 132.7, 132.4, 130.1, 130.1, 130.05, 128.4, 126.9, 124.1, 116.4 and 105.3 (CH), 32.0 (CH₃). HRMS Calcd for C₂₉H₂₀N₂O₄ [M+H]⁺: 461.1501; Found: 461.1499.

(*E*)-3-(1-Methyl-5-(4-nitrophenyl)-1*H*-pyrrol-2-yl)-1-phenylprop-2-en-1-one (5a): Yield 35%. Yellow solid. M.p.: 221-224 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (m, 2 H, aromatic CH), 8.03 (m, 2 H, aromatic CH), 7.89 (d, *J* = 15.2 Hz, 1 H, C*H*=CHCOPh), 7.58 (m, 3 H, aromatic CH), 7.51 (m, 2 H, aromatic CH), 7.43 (d, *J* = 15.2 Hz, 1 H, CH=C*H*COPh), 6.95 and 6.48 (d each, *J* = 4.1 Hz and 4.1 Hz, 1:1 H, pyrrolyl CH), 3.80 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 189.7 (Cq, C=O), 146.9, 138.7, 138.6, 136.9 and 134.0 (Cq), 132.8, 132.0, 129.2, 128.8, 128.4, 124.2, 118.6, 113.0 and 112.7 (CH), 32.8 (CH₃). HRMS Calcd for C₂₀H₁₆N₂O₃ [M+H]⁺: 333.1239; Found: 333.1233.

(*E*)-3-(1-Methyl-5-phenyl-1*H*-pyrrol-2-yl)-1-phenylprop-2-en-1-one (5b): Yield 26%. Yellow solid. M.p.: 96-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.01 (m, 2 H, aromatic CH), 7.92 (d, *J* = 15.1 Hz, 1 H, C*H*=CHCOPh), 7.57 (t, 1 H, aromatic CH), 7.50 (m, 2 H, aromatic CH), 7.46 (m, 2 H, aromatic CH), 7.41 (m, 3 H, aromatic CH and CH=C*H*COPh), 7.37 (d, *J* = 6.8 Hz, 1 H, aromatic CH), 6.96 (d, *J* = 4.0 Hz, 1 H, pyrrolyl H), 6.35 (d, *J* = 3.9 Hz, 1 H, pyrrolyl H), 3.74 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 189.8 (Cq, C=O), 140.8, 139.0, 132.32 and 131.97 (Cq), 132.8, 132.4, 129.1, 128.7, 128.6, 128.3, 128.0, 116.6, 112.7 and 111.2 (CH), 32.4 (NCH₃). HRMS Calcd for C₂₀H₁₇NO [M+H]⁺: 288.1388; Found: 288.1387.

(1-Methyl-2-phenyl-4,5,6,7-tetrahydro-1*H*-indole-4,6-

diyl)bis(phenylmethanone) (7): Yield 18%. Yellow solid. M.p.: 155-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 7.2 Hz, 2 H, aromatic CH), 8.09 (d, *J* = 7.3 Hz, 2 H, aromatic CH), 7.59 (m, 2 H, aromatic CH), 7.53 (m, 4 H, aromatic CH), 7.34 (m, 2 H, aromatic CH), 7.27 (m, 3 H, aromatic CH), 5.83 (s, 1 H, 3-H of tetrahydroindole), 4.80 and 4.51 (m each, 1:1 H, 4-H and 6-H of tetrahydroindole), 3.50 (s, 3 H, NCH₃), 3.08 and 2.82 (dd each, *J* = 15.8, 10.8 Hz, 1:1 H, 7-CH₂ of tetrahydroindole), 2.60 and 2.01 (m each, 1:1 H, 5-CH₂ of tetrahydroindole). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 203.1 and 202.1 (Cq, C=O), 137.4, 136.0, 134.2, 133.4, 130.1 and 112.90 (Cq), 133.3, 133.2, 129.03, 128.99, 128.9, 128.8, 128.8, 128.4, 126.8 and 107.1 (CH), 39.9 and 39.7 (4-CH and 6-CH of tetrahydroindole), 31.6 (NCH₃), 30.0 and 24.1 (5-CH₂ and 7-CH₂ of tetrahydroindole). HRMS Calcd for C₂₉H₂₅NO₂ [M+H]⁺: 420.1964; Found: 420.1966.

5. Copies of NMR spectra for new compounds

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

gtl-47108 in CDCl3

