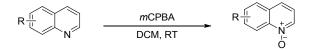
Electronic Supporting Information

The development of carbene-stabilized N–O radical coupling strategy in metal-free regioselective C–H azidation of quinoline N–oxides

Pan Li,[†] Jingjing Zhao,[†] Chungu Xia,[†] and Fuwei Li*

† State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China


Table of Contents

General Information	ESI2
Experimental Procedure and Data of the Quinoline N–Oxides	ESI2-SI7
General Procedure for the 2-Azidequinoline N–Oxide under Varied Conditions	ESI7
Control experiment	ESI7-ESI8
Experimental Procedure for the Scale up Experiment in 10 mmol	ESI8
Experimental Procedure for One-pot Synthesis of 2-Azidequinoline N–Oxide	ESI8
Experimental Procedures and Data of the 2-Azidequinoline N–Oxides	ESI8-ESI13
The Functionalization of 2-Azidoquinoline N–Oxide	ESI14
EPR Experiments	ESI15-ESI17
Copies of ¹ H and ¹³ C NMR Spectra of the Products	ESI18-ESI41

General Information:

All reagents purchased from commercial sources were used as received. Quinoline derivative were purchased from Adamas-beta. The silica gel for column chromatography was supplied as 300-400 meshes. The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer and are referenced to the residual solvent signals (7.26 ppm for ¹H and 77.0 ppm for ¹³C in CDCl₃; 2.50 ppm for ¹H and 39.6 ppm for ¹³C in DMSO–*d*₆). The HRMS spectra were recorded on a Bruker AicroTOF QII spectrometer. EPR spectra were recorded on a Bruker A-300 spectrometer.

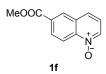
Experimental Procedure and Data of the Quinoline N–Oxides

Under vigorous magnetic stirring, 3-chloroperbenzoic acid (*m*CPBA) (381 mg, 2.2 mmol) in CH_2Cl_2 (5 mL) was dropped into solution of quinoline derivatives (2 mmol) in CH_2Cl_2 (5 mL) at 25 °C for 2 h. Then saturated NaHCO₃ aqueous solution was added to the mixture to neutralize residual *m*CPBA. The resulting mixture was extracted with CH_2Cl_2 . The organic phase were combined and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure to give crude products, which were purified by column chromatography (silica gel 300–400 mesh, EA/MeOH as eluent).

Following the above procedure, the following quinoline N-oxides were prepared:

Quinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.8 Hz, 1 H), 8.52 (dd, J = 6.0, 0.6 Hz, 1 H), 7.85 (d, J = 8.1 Hz, 1 H), 7.79–7.70 (m, 2 H), 7.67–7.60 (m, 1 H), 7.28 (dd, J = 8.5, 6.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 135.6, 130.5 (2 C), 128.7, 128.1, 126.1, 120.9, 119.7.

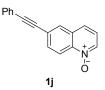
5-Bromoquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.9 Hz, 1 H), 8.53 (d, J = 6.0 Hz, 1 H), 8.06 (d, J = 8.8 Hz, 1 H), 7.89 (dd, J = 7.5, 0.9 Hz, 1 H), 7.57 (dd, J = 8.8, 7.6 Hz, 1 H), 7.37 (dd, J = 8.8, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 135.8, 132.7, 130.3, 129.9, 125.1, 122.3, 121.7, 119.7.


5-Methoxyquinoline N–oxide: ¹H NMR (400 MHz, DMSO– d_6) δ 8.58 (d, J = 6.0 Hz, 1 H), 8.07 (d, J = 8.8 Hz, 1 H), 8.01 (d, J = 8.6 Hz, 1 H), 7.72 (t, J = 8.3 Hz, 1 H), 7.42 (dd, J = 8.6, 6.1 Hz, 1 H), 7.19 (d, J = 7.8 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, DMSO– d_6) δ 155.3, 141.8, 135.7, 130.6, 122.6, 120.9, 119.0, 110.6, 107.3, 56.4.

6-Bromoquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 9.3 Hz, 1 H), 8.47 (d, J = 5.6 Hz, 1 H), 7.97 (d, J = 2.0 Hz, 1 H), 7.75 (dd, J = 9.3, 2.0 Hz, 1 H), 7.59 (d, J = 8.5 Hz, 1 H), 7.27 (dd, J = 8.5, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 135.7, 133.6, 131.4, 130.0, 124.5, 123.1, 122.1, 121.6.

6-Chloroquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 9.3 Hz, 1 H), 8.45 (d, *J* = 6.0 Hz, 1 H), 7.79 (d, *J* = 2.1 Hz, 1 H), 7.64–7.57 (m, 2 H), 7.28 (dd, *J* = 8.4, 6.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 135.5, 134.9, 131.1, 130.9, 126.6, 124.5, 122.1, 121.5.

6-(Methoxycarbonyl)quinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 9.1 Hz, 1 H), 8.64 (d, J = 5.9 Hz, 1 H), 8.59 (d, J = 1.4 Hz, 1 H), 8.30 (dd, J = 9.1, 1.6 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.37 (dd, J = 8.3, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 143.1, 137.5, 131.0, 130.5, 130.1, 130.0, 127.4, 121.9, 120.4, 52.8.


6-Methoxyquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 9.5 Hz, 1 H), 8.34 (dd, J = 6.0, 0.7 Hz, 1 H), 7.57 (d, J = 8.5 Hz, 1 H), 7.32 (dd, J = 9.5, 2.7 Hz, 1 H), 7.19 (dd, J = 8.5, 6.0 Hz, 1 H), 7.05 (d, J = 2.7 Hz, 1 H), 3.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 137.1, 133.7, 131.9, 124.8, 122.6, 121.4, 121.3, 105.6, 55.6.

6-Methylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 8.9 Hz, 1 H), 8.44 (d, J = 5.9 Hz, 1 H), 7.62 (d, J = 8.4 Hz, 1 H), 7.59 (s, 1 H), 7.55 (dd, J = 8.9, 1.6 Hz, 1 H), 7.22 (dd, J = 8.4, 6.0 Hz, 1 H); 2.51 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.0, 134.9, 132.5, 130.6, 126.9, 125.4, 120.9, 119.5, 21.4.

6-Phenylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 8.9 Hz, 1 H), 8.50 (d, J = 6.0 Hz, 1 H), 8.02–7.91 (m, 2 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.70–7.62 (m, 2 H), 7.52–7.45 (m, 2 H), 7.43–7.37 (m, 1 H), 7.30–7.26 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 140.6, 139.0, 135.3, 130.7, 129.9, 128.9, 128.2, 127.3, 125.9, 125.5, 121.2, 120.2.

6-(Phenylethynyl)quinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 9.0 Hz, 1 H), 8.50 (d, J = 5.9 Hz, 1 H), 8.00 (d, J = 1.1 Hz, 1 H), 7.82 (dd, J = 9.0, 1.5 Hz, 1 H), 7.67 (d, J = 8.4 Hz, 1 H), 7.57–7.55 (m, 2 H), 7.42–7.34 (m, 3 H), 7.32–7.21 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 135.9, 132.9, 131.6, 130.8, 130.2, 128.8, 128.4, 125.4, 124.1, 122.3, 121.6, 119.9, 92.1, 87.8.

7-Methylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.55–8.52 (m, 2 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.45 (dt, J = 8.9, 2.7 Hz, 1 H), 7.22 (dd, J = 8.4, 6.1 Hz, 1 H), 2.57 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 141.3, 135.9, 130.9, 128.6, 127.8, 126.4, 119.9, 118.6, 22.0.

8-Methylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 6.0, 0.6 Hz, 1 H), 7.56 (td, J = 7.8, 4.5 Hz, 2 H), 7.38–7.30 (m, 2 H), 7.10 (dd, J = 8.4, 6.1 Hz, 1 H), 3.12 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 137.1, 133.4, 133.2, 132.3, 127.9, 126.7, 126.2, 120.5, 24.7.

8-Methoxyquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 6.1, 1.0 Hz, 1 H), 7.62–7.56 (m, 1 H), 7.47–7.43 (m, 1 H), 7.35 (dd, J = 8.2, 1.0 Hz, 1 H), 7.17 (dd, J = 8.4, 6.1 Hz, 1 H), 7.08–7.00 (m, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 138.0, 134.2, 133.6, 128.6, 125.5, 121.2, 120.5, 110.9, 57.0.

8-(Benzoyloxy)quinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 6.1 Hz, 1 H), 8.28 (d, *J* = 7.3 Hz, 2 H), 7.76 (d, *J* = 8.2 Hz, 1 H), 7.70 (d, *J* = 8.4 Hz, 1 H), 7.61 (q, *J* = 7.9 Hz, 2 H), 7.52 (t, *J* = 7.6 Hz, 2 H), 7.45–7.39 (m, 1 H), 7.27–7.21 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 143.4, 137.9, 135.1, 133.3, 133.2, 130.5, 129.9, 128.5, 128.4, 126.7, 125.6, 124.2, 121.4.

4-Chloroquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.81–8.74 (m, 1 H), 8.44 (d, J = 6.6 Hz, 1 H), 8.22 (dd, J = 8.3, 0.9 Hz, 1 H), 7.84 (ddd, J = 8.6, 7.0, 1.4 Hz, 1 H), 7.76 (ddd, J = 8.2, 7.0, 1.2 Hz, 1 H), 7.38 (d, J = 6.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 135.1, 131.2, 129.9, 129.7, 128.1, 125.2, 121.0, 120.4.

4-Methylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, *J* = 8.6, 3.4 Hz, 1 H), 8.44 – 8.32 (m, 1 H), 7.91 (dd, *J* = 7.9, 4.1 Hz, 1 H), 7.77–7.57 (m, 2 H), 7.06 (d, *J* = 4.8 Hz, 1 H), 2.61 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 134.8, 134.4, 129.9, 129.7, 128.4, 124.6, 121.3, 120.2, 18.2.

3-Phenylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 1.4 Hz, 1 H), 8.74 (d, J = 8.7 Hz, 1 H), 7.91 (d, J = 8.9 Hz, 2 H), 7.74 (ddd, J = 8.5, 7.0, 1.2 Hz, 1 H), 7.70–7.61 (m, 3 H), 7.55–7.48 (m, 2 H), 7.48–7.43 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 135.9, 135.0, 134.9, 130.3, 130.1, 129.3, 129.1, 128.9, 128.3, 127.0, 123.4, 119.7.

3-Bromoquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, *J* = 8.0, 5.2 Hz, 2 H), 7.79 (s, 1 H), 7.73–7.61 (m, 2 H), 7.60–7.53 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 136.8, 130.3, 129.9, 129.6, 127.5, 127.1, 119.5, 114.1.

3-Methylquinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 8.7 Hz, 1 H), 8.41 (s, 1 H), 7.76 (d, *J* = 8.4 Hz, 1 H), 7.67 (ddd, *J* = 8.6, 6.9, 1.3 Hz, 1 H), 7.63–7.55 (m, 1 H), 7.52 (s, 1 H), 2.43 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 137.0, 131.2, 130.2, 129.4, 128.7, 127.4, 125.6, 119.5, 18.7.

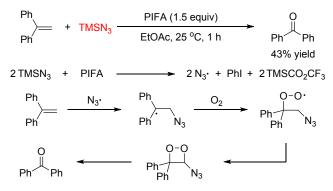
3-(Phenylethynyl)quinoline N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 8.7 Hz, 1 H), 8.63 (d, J = 1.3 Hz, 1 H), 7.89 (s, 1 H), 7.88–7.84 (m, 1 H), 7.77 (ddd, J = 8.6, 7.0, 1.4 Hz, 1 H), 7.67 (ddd, J = 8.1, 7.0, 1.2 Hz, 1 H), 7.60–7.56 (m, 2 H), 7.43–7.38 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 137.0, 131.9, 130.8, 129.9, 129.4, 129.3, 128.6, 128.3, 128.1, 121.9, 119.9, 117.9, 93.3, 84.3.

Phenanthridine N–oxide: ¹H NMR (400 MHz, CDCl₃) δ 8.95–8.91 (m, 1 H), 8.90 (s, 1 H), 8.61–8.55 (m, 1 H), 8.50 (d, J = 8.2 Hz, 1 H), 7.88–7.71 (m, 4 H), 7.68–7.63 (m, 1 H); ¹³C NMR (100

MHz, CDCl₃) δ 139.3, 134.6, 129.6, 129.5, 129.3, 128.8, 126.7, 126.63, 126.57, 126.1, 122.7, 122.1, 120.7.

General Procedure for the 2-Azidequinoline N-Oxides under Varied Conditions

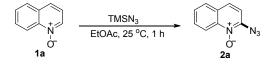
To a 15 mL tubes with a stir bar was added quinoline N–oxides **1a** (44 mg, 0.3 mmol), azide source. Solvent (3 mL) was added, followed by the oxidant. The mixture was stirred at 25 °C for 4 h, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford the desired product **2a**.


Table S1. C2-azidation of quinoline N-oxides under varied conditions^[a]

	N ₃ Source	
N N	Solvent, 25 °C, 4 h	N ² N ₃
1a ()		2a

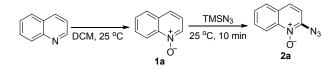
Entry	N ₃ Source [equiv]	Oxidant [equiv]	Solvent	Yield [%]
1	NaN ₃ (3)	PIFA (1.8)	MeCN	43
2	$TMSN_{3}(3)$	PIFA (1.8)	MeCN	71
3	$TMSN_{3}(3)$	PIDA (1.8)	MeCN	34
4	$TMSN_{3}(3)$	PIFA (1.8)	Toluene	73
5	$TMSN_{3}(3)$	PIFA (1.8)	DCE	79
6	$TMSN_3(3)$	PIFA (1.8)	DCM	86
7	$TMSN_3(3)$	PIFA (1.8)	EtOAc	86
8	TMSN ₃ (2.5)	PIFA (1.5)	EtOAc	90
9	$TMSN_{3}(1.5)$	PIFA (1.5)	EtOAc	75
10	TMSN ₃ (2.5)		EtOAc	N. R.
11 ^[b]	TMSN ₃ (2.5)	PIFA (1.5)	EtOAc	90

[a] All reactions were carried out on a 0.3 mmol scale in 3 mL of solvent in 15 mL pressure tubes at ambient temperature for 4 h. Isolated yield. N. R. = no reaction. [b] 10 min instead of 4 h.


Control experiment

Scheme S1. The generation of benzophenone from 1, 1-diphenylethylene with azide radical.

To a 15 mL tube with a stir bar was added 1, 1-diphenylethylene (54 mg, 0.3 mmol), TMSN₃ (86 mg, 0.75 mmol). EtOAc (3 mL) was added, followed by PIFA (194 mg, 0.45 mmol). The mixture was stirred at 25 °C for 1 h, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford benzophenone (23 mg, 43% yield).


Experimental Procedure for the Scale up Experiment in 10 mmol

Scheme S2. Gram-scale synthesis of 2a.

To a 250 mL flask with a stir bar was added quinoline N–oxides 1a (1.45 g, 10 mmol), TMSN₃ (2.87 g, 25 mmol) and EtOAc (100 mL). Then PIFA (6.45 g, 15 mmol) was added slowly in batches of 3 mmol in 10 min intervals. The mixture was still stirred at 25 °C for additional 10 min, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford the desired product 2a (1.49 g, 80% yield).

Experimental Procedure for One-pot Synthesis of 2-Azidequinoline N-Oxide

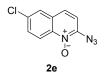
Scheme S3. One-pot synthesis of 2a from quinoline.

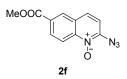
To a 15 mL tube with a stir bar was added quinoline (39 mg, 0.3 mmol) and CH_2Cl_2 (3 mL), followed by 3-chlorobenzoperoxoic acid (57 mg, 0.33 mmol). The mixture was stirred at 25 °C for 1 h. Then TMSN₃ (86 mg, 0.75 mmol) and PIFA (194 mg, 0.45 mmol) was added. The mixture was stirred at 25 °C for 10 min, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford the desired product **2a** (39 mg, 70% yield).

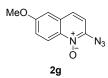
Experimental Procedures and Data of the Quinoline N-Oxides

To a 15 mL tube with a stir bar was added quinoline N-oxide 1 (0.3 mmol), azidotrimethylsilane (86 mg, 0.75 mmol). EtOAc (3 mL) was added, followed by iodobenzene bis(trifluoroacetate) (194 mg, 0.45 mmol). The mixture was stirred at 25 °C for 10 min, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford the desired product 2.

2-Azidoquinoline N–oxide: 50 mg of **2a** was obtained from **1a** (44 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.6 Hz, 1 H), 7.79–7.73 (m, 2 H), 7.63 (d, J = 8.9 Hz, 1 H), 7.58–7.54 (m, 1 H), 6.92 (d, J = 8.9 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 140.7, 131.0, 128.1, 127.5, 127.2, 126.9, 118.1, 114.7; HRMS (ESI) Calcd for C₉H₇N₄O [M+H⁺] 187.0614, Found 187.0610.

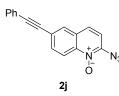

2-Azido-5-bromoquinoline N–oxide: 49 mg of **2b** was obtained from **1b** (67 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 8.8 Hz, 1 H), 7.98 (d, *J* = 9.3 Hz, 1 H), 7.82 (d, *J* = 7.6 Hz, 1 H), 7.61–7.55 (m, 1 H), 7.02 (d, *J* = 9.3 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 141.3, 131.4, 131.1, 126.6, 126.2, 122.5, 118.0, 115.5; HRMS (ESI) Calcd for C₉H₅BrN₄NaO [M+Na⁺] 286.9539, Found 286.9532.

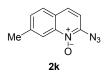

2-Azido-5-methoxyquinoline N–oxide: 40 mg of **2c** was obtained from **1c** (53 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.8 Hz, 1 H), 8.04 (d, J = 9.2 Hz, 1 H), 7.66 (t, J = 8.4 Hz, 1 H), 6.92–6.87 (m, 2 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 141.7, 141.5, 131.6, 122.7, 119.2, 113.2, 109.9, 105.9, 56.0; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 239.0539, Found 235.0533.


2-Azido-6-bromoquinoline N–oxide: 64 mg of **2d** was obtained from **1d** (67 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 9.2 Hz, 1 H), 7.96 (d, J = 2.0 Hz, 1 H), 7.83 (dd, J = 9.2, 2.0 Hz, 1 H), 7.55 (d, J = 9.0 Hz, 1 H), 6.97 (d, J = 9.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.7, 134.3, 130.1, 128.0, 126.1, 121.7, 120.0, 116.0; HRMS (ESI) Calcd for C₉H₅N₄NaO [M+Na⁺] 286.9539, Found 286.9533.

2-Azido-6-chloroquinoline N–oxide: 48 mg of **2e** was obtained from **1e** (54 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 9.2 Hz, 1 H), 7.79 (d, J = 2.1 Hz, 1 H), 7.70 (dd, J = 9.2, 2.2 Hz, 1 H), 7.55 (d, J = 9.0 Hz, 1 H), 6.98 (d, J = 9.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 139.4, 133.7, 131.6, 127.6, 126.8, 126.1, 112.0, 116.0; HRMS (ESI) Calcd for C₉H₅ClN₄NaO [M+Na⁺] 243.0068, Found 243.0044.

2-Azido-6-(methoxycarbonyl)quinoline N–oxide: 61 mg of **2f** was obtained from **1f** (61 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 9.1 Hz, 1 H), 8.54 (d, *J* = 1.7 Hz, 1 H), 8.35 (dd, *J* = 9.1, 1.8 Hz, 1 H), 7.74 (d, *J* = 9.0 Hz, 1 H), 7.02 (d, *J* = 9.0 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 142.7, 142.4, 130.8, 130.8, 129.2, 128.5, 126.2, 118.5, 115.6, 52.6; HRMS (ESI) Calcd for C₁₁H₈N₄NaO₃ [M+Na⁺] 267.0489, Found 267.0478.


2-Azido-6-methoxyquinoline N–oxide: 40 mg of **2g** was obtained from **1g** (53 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 9.5 Hz, 1 H), 7.54 (d, J = 9.0 Hz, 1 H), 7.38 (dd, J = 9.5, 2.7 Hz, 1 H), 7.07 (d, J = 2.6 Hz, 1 H), 6.91 (d, J = 9.0 Hz, 1 H), 3.92 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 139.1, 136.6, 128.2, 126.4, 122.7, 119.9, 115.3, 106.6, 55.7; HRMS (ESI) Calcd for C₁₀H₈N₄NaO₂ [M+Na⁺] 239.0539, Found 239.0538.


2-Azido-6-methylquinoline N–oxide: 42 mg of **2h** was obtained from **1h** (48 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.8 Hz, 1 H), 7.59–7.54 (m, 3 H), 6.90 (d, J = 9.0 Hz, 1 H), 2.52 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.5, 137.7, 133.1, 127.2, 127.0, 126.8, 118.0, 114.7, 21.2; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 223.0590, Found 223.0581.

2-Azido-6-phenylquinoline N–oxide: 70 mg of **2i** was obtained from **1i** (66 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 9.0 Hz, 1 H), 8.01 (dd, J = 9.0, 1.9 Hz, 1 H), 7.96 (d, J = 1.8 Hz, 1 H), 7.72–7.65 (m, 3 H), 7.53–7.47 (m, 2 H), 7.46–7.39 (m, 1 H), 6.97 (d, J = 9.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 140.5, 140.2, 139.2, 130.6, 129.1, 128.2, 127.34, 127.32, 127.2, 125.7, 118.8, 115.1; HRMS (ESI) Calcd for C₁₅H₁₁N₄O [M+Na⁺] 263.0927, Found 263.0920.

2-Azido-6-(phenylethynyl)quinoline N–oxide: 57 mg of **2j** was obtained from **1j** (74 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 9.0 Hz, 1 H), 7.96 (d, J = 1.3 Hz, 1 H), 7.86 (dd, J = 9.0, 1.6 Hz, 1 H), 7.61 (d, J = 9.0 Hz, 1 H), 7.58–7.55 (m, 2 H), 7.39–7.37 (m, 3 H), 6.96 (d, J = 9.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.1, 133.8, 131.7, 131.0, 128.9, 128.5, 126.8, 126.7, 122.9, 122.5, 118.4, 115.5, 91.9, 87.8; HRMS (ESI) Calcd for C₁₇H₁₁N₄O [M+H⁺] 287.0927, Found 287.0917.

2-Azido-7-methylquinoline N–oxide: 42 mg of **2k** was obtained from **1k** (48 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1 H), 7.67 (d, *J* = 8.3 Hz, 1 H), 7.59 (d, *J* = 8.9 Hz, 1 H), 7.38 (d, *J* = 8.3 Hz, 1 H), 6.86 (d, *J* = 8.9 Hz, 1 H), 2.56 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 140.9, 140.8, 129.5, 127.8, 127.4, 124.9, 117.3, 113.6, 22.1; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 223.0590, Found 223.0585.

2-Azido-8-methylquinoline N–oxide: 40 mg of **21** was obtained from **11** (48 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.54 (m, 2 H), 7.43–7.41 (m, 1 H), 7.38–7.34 (m, 1 H), 6.88 (d, *J* = 8.9 Hz, 1 H), 3.13 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 140.5, 134.3, 131.9, 128.7, 128.1, 127.1, 126.9, 114.4, 24.5; HRMS (ESI) Calcd for C₁₀H₉N₄O [M+H⁺] 201.0771, Found 201.0770.

2-Azido-8-methoxyquinoline N–oxide: 52 mg of **2m** was obtained from **1m** (53 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 9.0 Hz, 1 H), 7.42 (t, *J* = 8.0 Hz, 1 H), 7.31 (d, *J* = 8.0 Hz, 1 H), 7.10 (d, *J* = 8.0 Hz, 1 H), 6.89 (d, *J* = 9.0 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 142.5, 132.8, 129.8, 127.6, 127.5, 120.6, 114.9, 111.8, 56.8; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 223.0590, Found 223.0594.

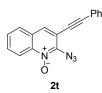
$$O_{Ph} O O O_{Ph} O_{$$

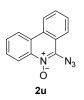
2-Azido-8-(benzoyloxy)quinoline N–oxide: 37 mg of **2n** was obtained from **1n** (80 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.28–8.26 (m, 2 H), 7.72–7.70 (m, 1 H), 7.66–7.61 (m, 2 H), 7.57– 7.51 (m, 3 H), 7.44–7.41 (m, 1 H), 6.95 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 142.7, 142.0, 134.5, 133.4, 130.5, 129.8, 129.5, 128.5, 127.3, 126.8, 126.7, 125.1, 115.1; HRMS (ESI) Calcd for C₁₆H₁₀N₄NaO₃ [M+Na⁺] 329.0645, Found 329.0641.

2-Azido-4-chloroquinoline N–oxide: 35 mg of **20** was obtained from **10** (54 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.7 Hz, 1 H), 8.14 (dd, J = 8.4, 0.8 Hz, 1 H), 7.85–7.81 (m, 1 H), 7.69–7.65 (m, 1 H), 7.06 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.7, 131.9, 131.7, 128.2, 125.2, 124.7, 118.6, 114.5; HRMS (ESI) Calcd for C₉H₅N₄NaOCl [M+Na⁺] 243.0044, Found 243.0038.

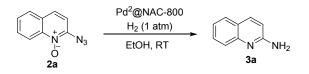
2-Azido-4-methylquinoline N–oxide: 41 mg of **2p** was obtained from **1p** (48 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.7 Hz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.80–7.76 (m, 1 H), 7.63–7.59 (m, 1 H), 6.80 (s, 1 H), 2.62 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.1, 138.5, 131.3, 127.4, 126.5, 124.7, 118.4, 114.8, 18.4; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 223.0590, Found 223.0595.

2-Azido-3-phenylquinoline N–oxide: 77 mg of **2q** was obtained from **1q** (66 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 8.7 Hz, 1 H), 7.86–7.75 (m, 2 H), 7.67 (s, 1 H), 7.64–7.58 (m, 1 H), 7.56–7.44 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 139.8, 135.5, 130.9, 129.3,

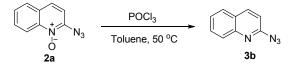

129.1, 128.8, 128.5, 128.1, 127.8, 127.8, 126.0, 118.2; HRMS (ESI) Calcd for $C_{15}H_{10}N_4NaO$ [M+Na⁺] 285.0747, Found 285.0749.


2-Azido-3-bromoquinoline N–oxide: 65 mg of **2r** was obtained from **1r** (67 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.7 Hz, 1 H), 7.94 (s, 1 H), 7.81–7.70 (m, 2 H), 7.63–7.56 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.0, 131.2, 130.0, 128.3, 127.2, 126.0, 118.4, 107.7; HRMS (ESI) Calcd for C₉H₅BrN₄ONa [M+Na⁺] 286.9539, Found 286.9536.

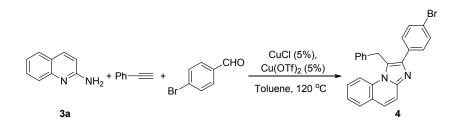
2-Azido-3-methylquinoline N–oxide: 49 mg of **2s** was obtained from **1s** (48 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.6 Hz, 1 H), 7.72–7.67 (m, 2 H), 7.56–7.51 (m, 1 H), 7.48 (s, 1 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 139.2, 129.8, 127.4, 127.2, 126.9, 126.0, 124.8, 117.9, 17.9; HRMS (ESI) Calcd for C₁₀H₈N₄NaO [M+Na⁺] 223.0590, Found 223.0594.



2-Azido-3-(phenylethynyl)quinoline N–oxide: 69 mg of **2t** was obtained from **1t** (74 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 9.1 Hz, 1 H), 7.82 (s, 1 H), 7.75–7.71 (m, 2 H), 7.63–7.54 (m, 3 H), 7.41–7.36 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.1, 131.8, 131.4, 130.1, 129.2, 128.5, 128.4, 127.9, 125.7, 121.9, 118.1, 111.2, 96.4, 82.6; HRMS (ESI) Calcd for C₁₇H₁₁N₄O [M+H⁺] 287.0927, Found 287.0916.



6-Azidophenanthridine N–oxide: 60 mg of **2u** was obtained from **1u** (59 mg, 0.3 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.4 Hz, 1 H), 8.43 (d, J = 7.9 Hz, 1 H), 8.40 (d, J = 8.2 Hz, 1 H), 8.08 (d, J = 8.0 Hz, 1 H), 7.79–7.74 (m, 1 H), 7.73–7.66 (m, 2 H), 7.65–7.59 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 137.8, 129.9, 129.9, 128.7, 128.0, 127.1, 124.3, 123.4, 122.5, 122.0, 120.9, 118.9; HRMS (ESI) Calcd for C₁₃H₉N₄O [M+H⁺] 237.0771, Found 237.0773.


The Functionalization of 2-Azidoquinoline N-Oxide

To a 15 mL tube with a stir bar was added 2-azidoquinoline N–oxide **2a** (56 mg, 0.3 mmol), Pd²@NAC-800 (80 mg, 0.015 mmol). EtOH (3 mL) was added, and purged with hydrogen (1 atm). The mixture was stirred at 25 °C for 24 h, and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA) to afford the desired product **3a** (37 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.83 (m, 1 H), 7.66 (d, *J* = 8.4 Hz, 1 H), 7.62 (dd, *J* = 8.0, 1.7 Hz, 1 H), 7.56 (ddd, *J* = 8.4, 7.0, 1.6 Hz, 1 H), 7.29–7.23 (m, 1 H), 6.71 (dd, *J* = 8.8, 5.7 Hz, 1 H), 4.88 (s broad, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 147.7, 138.1, 129.7, 127.5, 126.0, 123.6, 122.7, 111.7.

To a 15 mL tube with a stir bar was added 2-azidoquinoline N–oxide **2a** (56 mg, 0.3 mmol) and toluene (3 mL), followed by POCl₃ (69 mg, 0.45 mmol). The mixture was stirred at 50 °C for 4 h, and cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated.. The residue was purified by column chromatography (PE/EA) to afford the desired product **3b** (37 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 8.4 Hz, 1 H), 7.96 (t, *J* = 9.0 Hz, 2 H), 7.86 (t, *J* = 8.8 Hz, 2 H), 7.71 (t, *J* = 7.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 133.3, 131.2, 130.8, 128.9, 128.0, 123.8, 116.8, 112.6; HRMS (ESI) Calcd for C₉H₇N₂ [M+H⁺-N₂] 143.0609, Found 143.0604.

To a 15 mL tube with a stir bar was added quinolin-2-amine **3a** (43 mg, 0.3 mmol), ethynylbenzene (34 mg, 0.33 mmol), 4-bromobenzaldehyde (61 mg, 0.33 mmol) and toluene (3 mL), followed by CuCl (2 mg, 5 mol% mmol) and Cu(OTf)₂ (5 mg, 5 mol% mmol). The mixture was stirred at 120 °C for 12 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (PE/EA) to afford the desired product **4** (80 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 1 H), 7.73 (dd, *J* = 7.4, 1.9 Hz, 1 H), 7.60 (d, *J* = 9.3 Hz, 1 H), 7.56–7.45 (m, 5 H), 7.35–7.21 (m, 7 H), 4.75 (s, 2 H); ¹³C NMR (100 MHz,

CDCl3) δ 144.5, 143.7, 138.0, 134.1, 133.4, 131.6, 129.9, 129.3, 129.2, 128.2, 127.9, 127.0, 126.7, 124.6, 124.4, 121.8, 121.7, 117.4, 116.4, 33.0; HRMS (ESI) calcd for C₂₄H₁₈BrN₂ [M+H⁺] 413.0648, found 413.0653.

EPR Experiments

Procedure for EPR Investigation of 1a, TMSN₃ and PIFA in EtOAc.

Quinoline N–oxide 1a (44 mg, 0.3 mmol) and TMSN₃ (86 mg, 0.75 mmol) were dissolved in 3 mL EtOAc, followed by PIFA (194 mg, 0.45 mmol). Then 20 uL of this solution was taken out into a small tube and analyzed by EPR at room temperature (Figure S1).

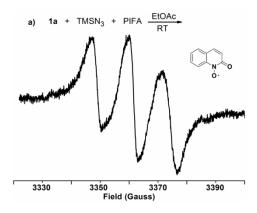


Figure S1. EPR spectra from the reaction between 1a, TMSN₃ and PIFA in EtOAc at room temperature.

Procedure for EPR Investigation of 1a and PIFA in EtOAc.

Quinoline N–oxide **1a** (43.5 mg, 0.3 mmol) was dissolved in 3 mL EtOAc, followed by PIFA (194 mg, 0.45 mmol). Then 20 uL of this solution was taken out into a small tube and analyzed by EPR at room temperature (Figure S2).

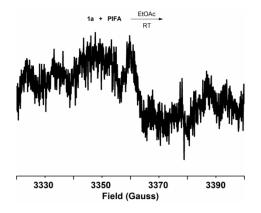


Figure S2. EPR spectra of 1a and PIFA in EtOAc at room temperature.

Procedure for EPR Investigation of TMSN₃ and PIFA in EtOAc.

TMSN₃ (86 mg, 0.75 mmol) was dissolved in 3 mL EtOAc, followed by PIFA (194 mg, 0.45 mmol). Then 20 uL of this solution was taken out into a small tube and analyzed by EPR at room temperature (Figure S3).

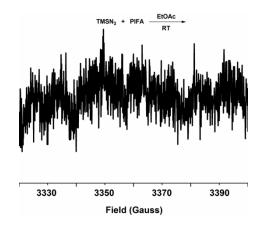


Figure S3. EPR spectra of TMSN₃ and PIFA in EtOAc at room temperature.

Procedure for EPR Investigation of 1a, TMSN₃, PIFA and MNP in EtOAc.

Quinoline N-oxide 1a (43.5 mg, 0.3 mmol), TMSN₃ (86 mg, 0.75 mmol) and MNP (10 mg, 0.06 mmol) were dissolved in 3 mL EtOAc, followed by PIFA (194 mg, 0.45 mmol). Then 20 uL of this solution was taken out into a small tube and analyzed by EPR at room temperature (Figure S4–6).

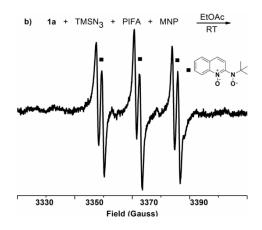


Figure S4. EPR spectra of 1a, TMSN₃, PIFA and MNP in EtOAc at room temperature.

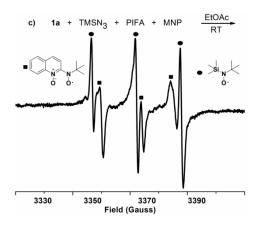


Figure S5. Ten minutes later, EPR spectra of 1a, TMSN₃, PIFA and MNP in EtOAc at room temperature.

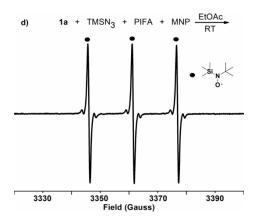
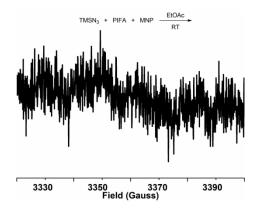
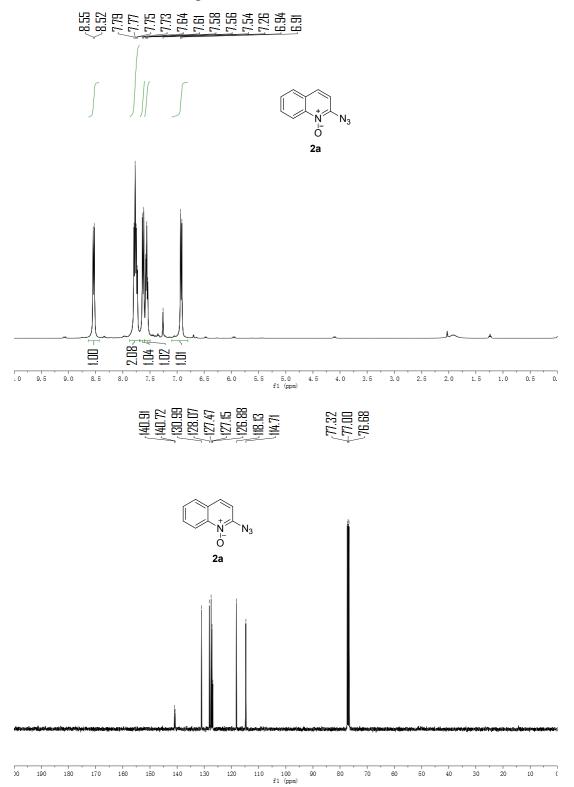
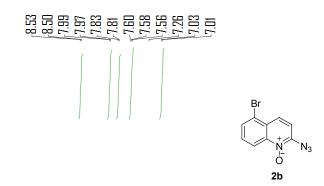
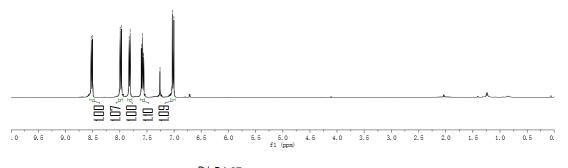


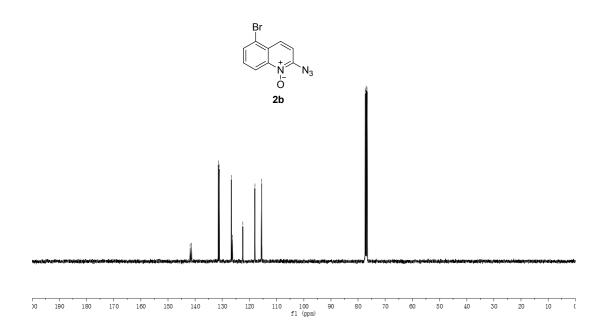
Figure S6. Four hour later, EPR spectra of 1a, TMSN₃, PIFA and MNP in EtOAc at room temperature.

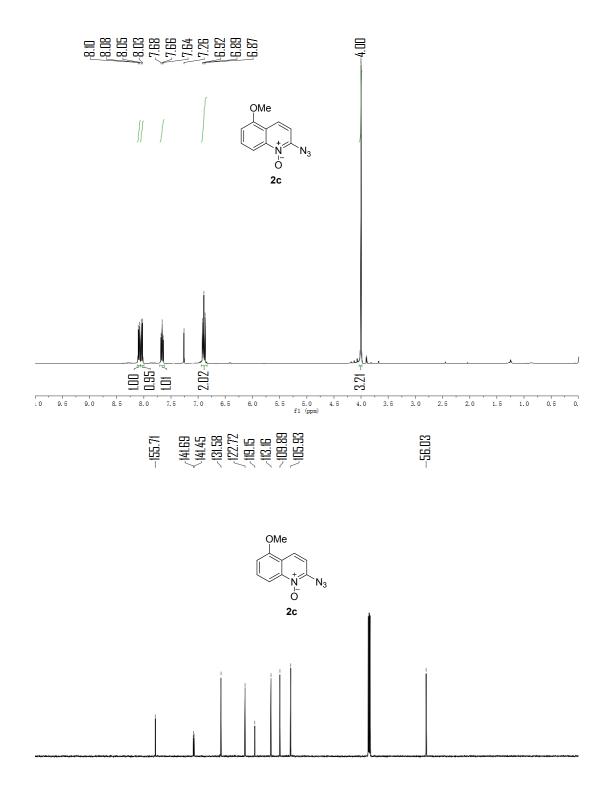
Procedure for EPR Investigation of TMSN₃, PIFA and MNP in EtOAc.

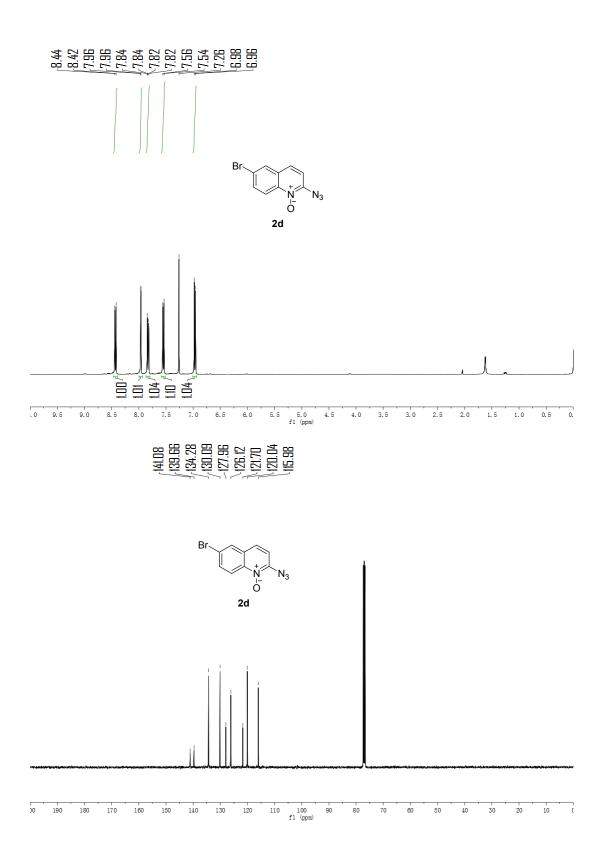




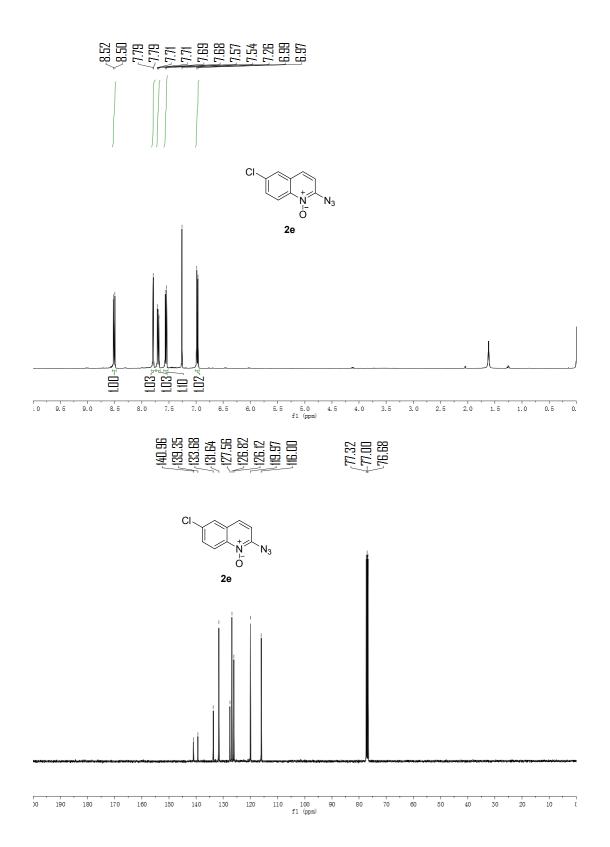

Figure S6. EPR spectra of TMSN₃, PIFA and MNP in EtOAc at room temperature.

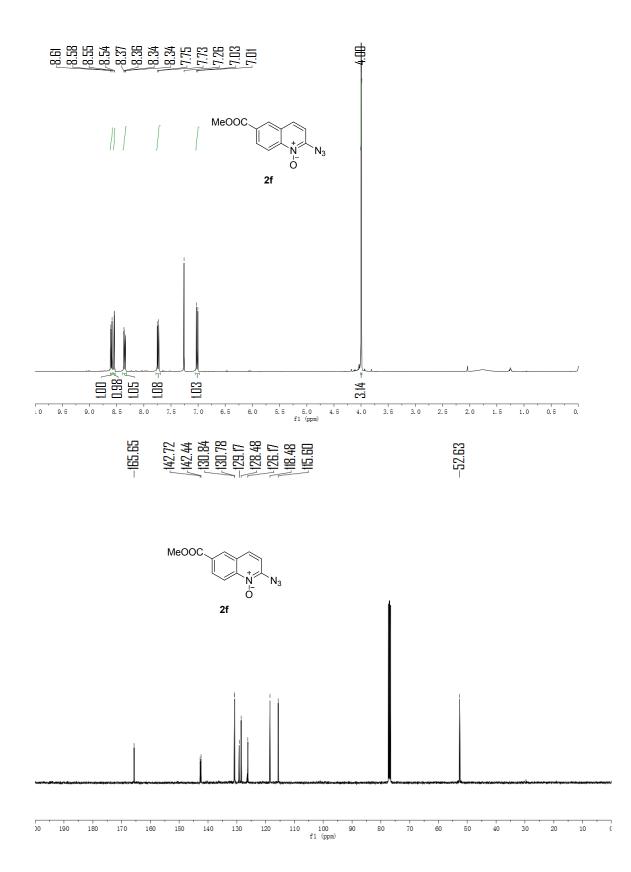
¹H NMR and ¹³C NMR Copies of Products

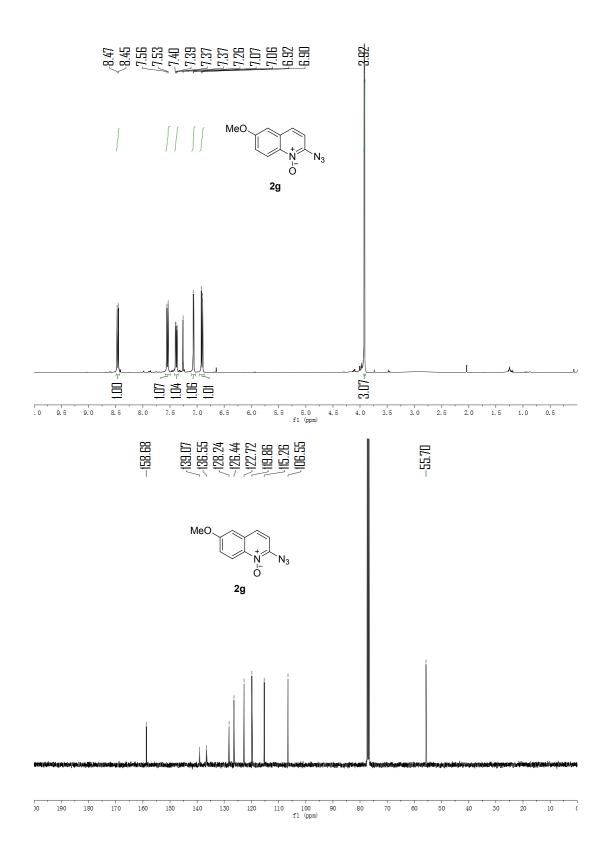


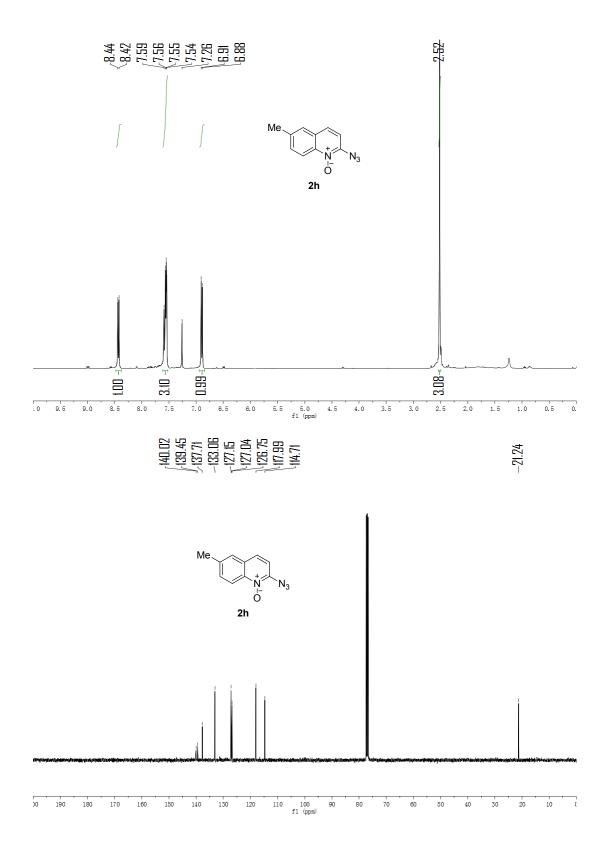

.

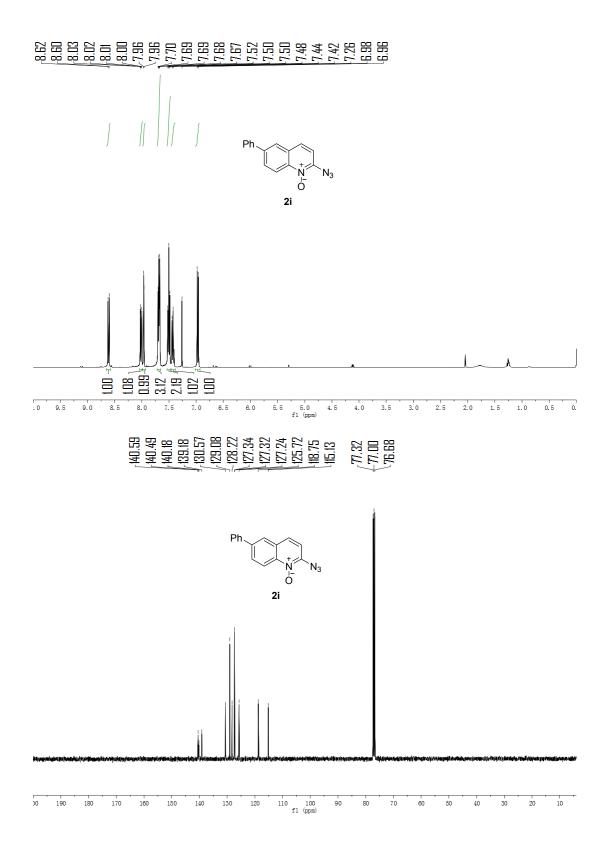


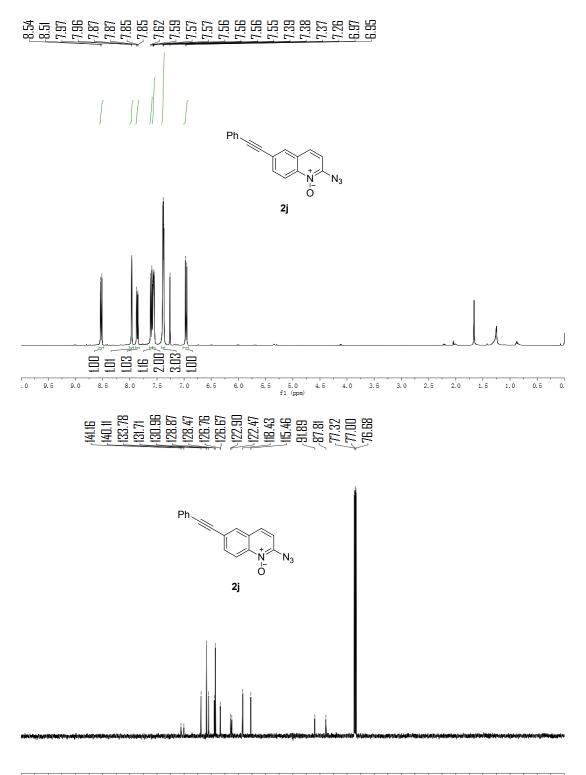

(44.82) (18.140) (18.13140) (12.662) (18.00) (16.51) (16.51) (16.51) (17.00) (16.68) (17.00)

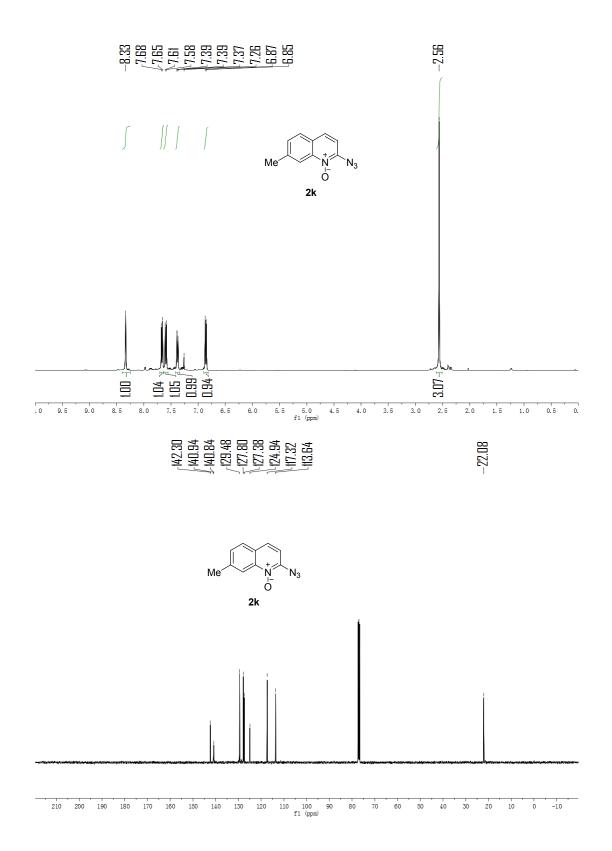


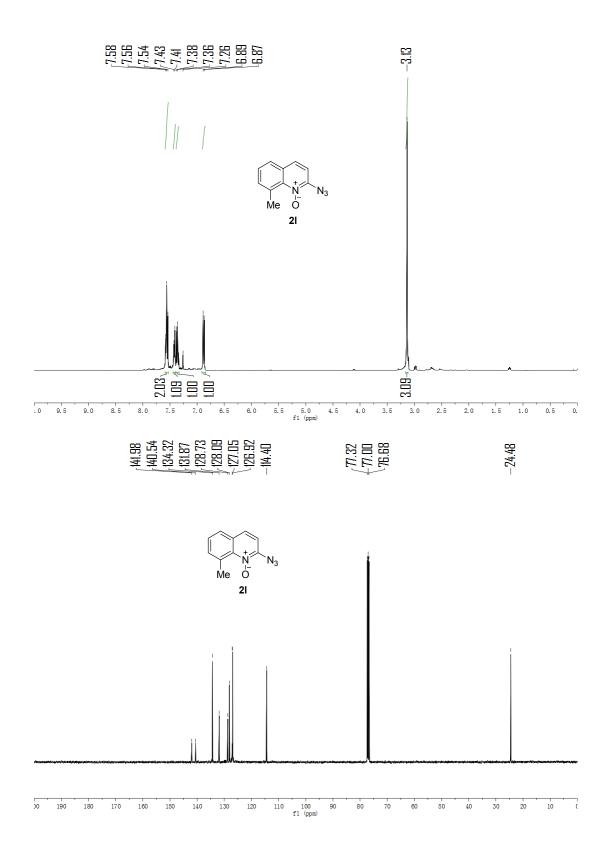


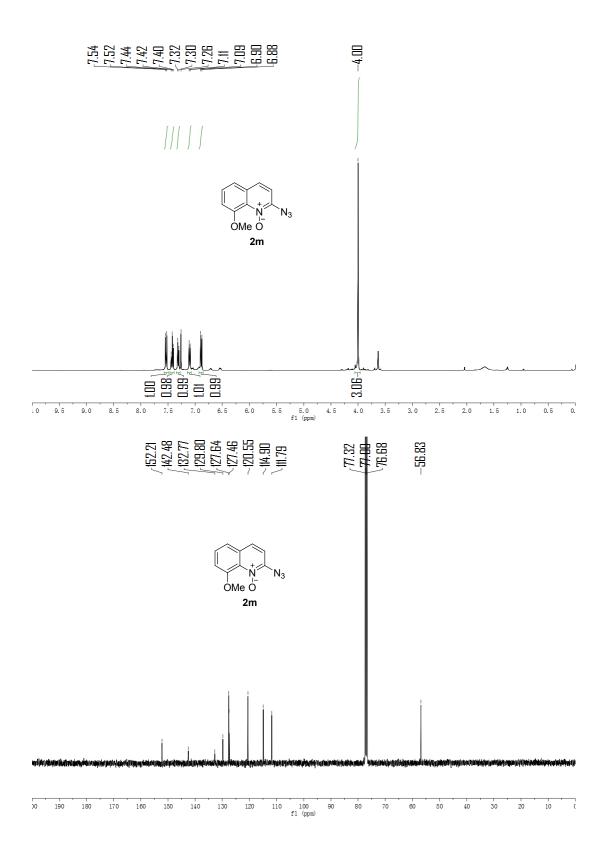

00 190 110 100 90 f1 (ppm) Ċ

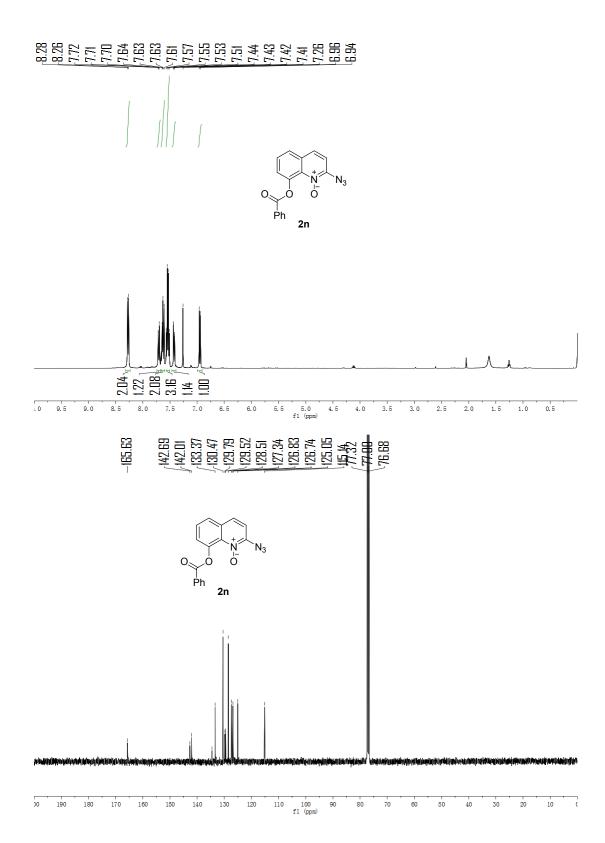


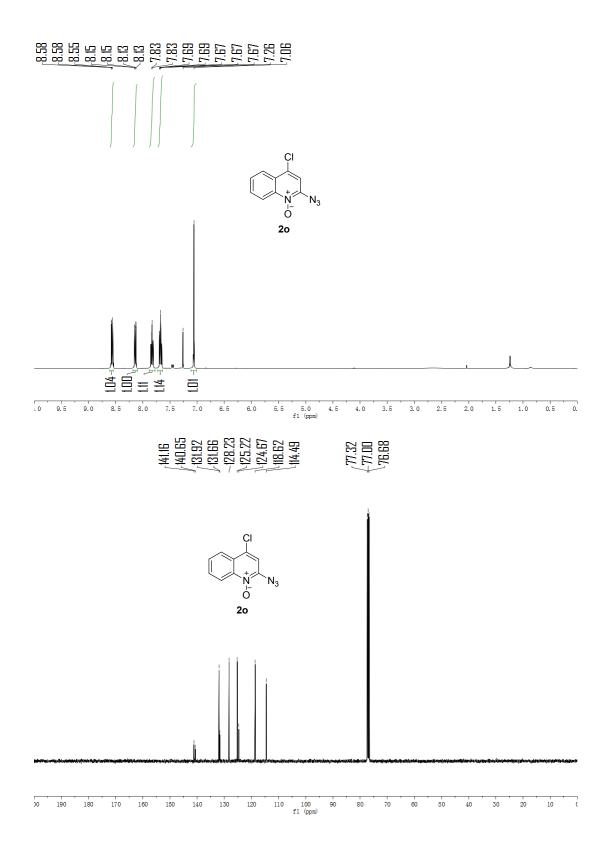











110 100 f1 (ppm) Ċ

