Electronic Supplementary Information

Efficient synthesis of 2-nitroimidazole derivatives and the bioreductive clinical candidate Evofosfamide (TH-302).

Liam J. O'Connor,^{a,b} Cindy Cazares-Körner,^{a,b} Jaideep Saha,^a Charles N. G. Evans,^{a,b} Michael R. L. Stratford,^b Ester M. Hammond^b and Stuart J. Conway^{*a}

^aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

^bCancer Research UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.

*To whom correspondence should be addressed: stuart.conway@chem.ox.ac.uk, telephone: +44 (0)1865 285 109, fax: +44 (0)1865 285 002.

Table of contents

General experimental procedures	S2
Experimental procedures	S5
¹ H, ¹³ C and ³¹ P NMR spectra	S13
HPLC purity data for TH-302	S31
References	S33

General experimental procedures

¹**H NMR** spectra were recorded on Bruker AVC500, AVX500, DRX500 (500 MHz) or Bruker AV600 (600 MHz) using deuterochloroform (unless indicated otherwise) as a reference for the internal deuterium lock. The chemical shift data for each signal are given as $\delta_{\rm H}$ in units of parts per million (ppm) relative to tetramethylsilane (TMS) where $\delta_{\rm H}$ (TMS) = 0.00 ppm. The multiplicity of each signal is indicated by s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); or m (multiplet). The number of protons (n) for a given resonance signal is indicated by nH. Coupling constants (*J*) are quoted in Hz and are recorded to the nearest 0.1 Hz. Identical proton coupling constants (*J*) are averaged in each spectrum and reported to the nearest 0.1 Hz. The coupling constants are determined by analysis using Bruker TopSpin software. Spectra were assigned using COSY, HSQC and HMBC experiments as necessary.

¹³**C NMR** spectra were recorded on Bruker DRX500, AVC500, AVX600 or AV600 (126 MHz) spectrometers in the stated solvents, with broadband proton decoupling and an internal deuterium lock. The chemical shift data for each signal are given as $\delta_{\rm C}$ in units of parts per million (ppm) relative to tetramethylsilane (TMS) where $\delta_{\rm C}$ (TMS) = 0.00 ppm. The shift values of resonances are quoted to 1 decimal place. The multiplicity of each signal is singlet unless indicated by: d (doublet). Where appropriate, coupling constants (*J*) are quoted to the nearest 0.1 Hz, and were determined using Bruker TopSpin software.

³¹**P NMR** spectra were recorded on a Bruker AVB400 (162 MHz) or AVX500 (202 MHz) in the stated solvents as a reference for the internal deuterium lock with broadband proton decoupling. The chemical shift data for each signal are given as δ_P in units of parts per million (ppm). Signals are quoted as proton decoupled singlets.

Mass spectra were acquired on a VG platform spectrometer and an Agilent 6120 spectrometer (low resolution). Electro-spray ionisation spectra were obtained on Micromass LCT Premier and Bruker MicroTOF spectrometers, operating in positive or negative mode as

S2

indicated, from solutions of MeOH or MeCN. *m*/z values are reported in Daltons and followed by their percentage abundance in parentheses.

Melting points were determined using a Leica Galen III hot stage microscope and are uncorrected.

Infrared spectra were obtained from neat samples, either as solids or liquids using a diamond ATR module. The spectra were recorded on a Bruker Tensor 27 spectrometer. Absorption maxima are recorded in wavenumbers (cm⁻¹), and reported as s (strong), m (medium), w (weak) or br (broad).

Analytical thin layer chromatography (TLC) was carried out on normal phase Merck silica gel 60 F_{254} aluminium-supported chromatography sheets. Visualisation was by absorption of UV light (λ_{max} 254 and 365 nm).

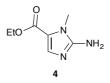
Flash column chromatography was performed manually using VWR Prolabo silica gel 60 (240-400 mesh) under a positive pressure of nitrogen.

Semi-preparative HPLC was carried out on a Waters system (2695 pump/autosampler, 2996 diode array detector and ZQ2000 mass spectrometer). The column was a Phenomenex Luna C18(2) 10 μ m column, 250 x 10 mm, eluents water (A) and methanol (B), with a gradient from 50 – 70% B over 5 min, flow rate 5 ml/min.

In vacuo refers to removal of solvent on a Buchi[®] rotary evaporator under reduced pressure in a water bath at 40 °C.

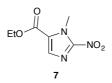
Petroleum ether refers to the fraction in the boiling point range 40–60 °C.

Chemicals were purchased from Sigma Aldrich UK and Alfa Aesar UK, and were used as supplied unless otherwise stated.

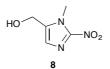

Compound purity for compounds was determined by elemental analysis or HPLC. Elemental analysis was obtained at the Elemental Analysis Service, London Metropolitan University, London. Elemental analysis was carried out in duplicate; average values are

S3

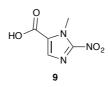
reported in Supporting Information. For all tested compounds, experimentally determined hydrogen, carbon, and nitrogen composition was within 0.4% of the expected value, implying a purity of >95%.


HPLC was carried out on a Waters system (2695 pump/autosampler, 2996 diode array detector and ZQ2000 mass spectrometer). The column was a Hichrom RPB, 5 μ m, 100 x 3.2 mm, and the eluents were 10 mM formic acid (A), and acetonitrile (B), with a gradient of 35 – 95% B in 5 min, flow rate 0.5 mL/min.

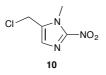
Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (4)


To a suspension of sarcosine ethyl ester hydrochloride (5, 2 g, 0.013 mol, 1 eq.) in ethyl formate (45 mL) and THF (45 mL), was added NaH (60% dispersion in mineral oil, 5 g, 0.13 mol, 10 eq.) slowly at ambient temperature, and allowed to stir for 3 h. After this time a yellow suspension had formed, and the mixture was concentrated and dried in vacuo. The resulting solid was triturated with hexane (2 × 75 mL), the hexane decanted, and the remaining solid dried in vacuo. EtOH (40 mL) and concentrated aqueous HCI (8 mL) were added to the solid, and the suspension heated under reflux for 2 h. The reaction mixture was filtered while hot, and the resulting colourless solid washed with boiling EtOH (2 × 30 mL). The filtrate was concentrated in vacuo to leave an aqueous solution, which was diluted with EtOH (70 mL) and distilled water (30 mL). The pH of the solution was adjusted to 3, using an aqueous 2 M solution of NaOH, and cyanamide (1.09 g, 0.026 mol, 2 eq.) was added. The resulting solution was heated under reflux for 1.5 h. After this time the solution was cooled to ambient temperature, and concentrated *in vacuo* to approximately 1/8 of the original volume. The pH was then adjusted to 8-9 using solid K₂CO₃, resulting in the formation of a precipitate. The solid was removed by filtration, washed with aqueous K₂CO₃ solution (1 M, 1 × 20 mL), H₂O (2 × 10 mL), and dried in vacuo, to afford 4 as a pale yellow solid (1.10 g, 50%): (found C, 35.2; H, 2.8; N 24.4. C₇H₁₁N₃O₂ requires C, 35.1; H, 3.0; N, 24.6); *R*_f 0.42 (CH₂Cl₂ - MeOH, 9:1); mp 130-133 °C (from H₂O); *v*_{max} (solid)/cm⁻¹ 3126 (w), 1648 (s), 1246 (m), 1167 (s); δ_H (CDCl₃, 500 MHz) 7.44 (1H, s, CH), 4.41 (2H, s, NH₂), 4.27 (2H, q, J 7.1, CH₂CH₃), 3.68 (3H, s, CH₃), 1.34 (3H, t, J 7.1, CH₂CH₃); δ_C (CDCl₃, 126 MHz) 160.7, 152.1, 135.5, 119.1, 59.9, 30.6, 14.5; HRMS *m*/*z* (ESI⁺) [found (M+H)⁺ 170.0919, $C_7H_{11}N_3O_2$ requires M⁺ 170.0924]; *m/z* (ES⁺) 170.1 ([M+H]⁺, 100 %). These data are in good agreement with the literature values.¹

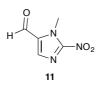
Ethyl 1-methyl-2-nitro-1*H*-imidazole-5-carboxylate (7)


To an aqueous solution of sodium nitrite (5 mL, 3.95 g, 57.24 mmol, 10 eq.), was added aminoimidazole **4** (0.97 g, 5.72 mmol) in acetic acid (10 mL) in a drop wise manner. The solution was stirred at room temperature for 4 h, after this time no more nitrogen gas was evolved. The organic mixture was extracted with CH_2Cl_2 (1 × 20 mL), washed with brine (1 × 20 mL) and a saturated aqueous solution of Na₂SO₃ (1 × 20 mL), dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*, the residue adsorbed onto Celite[®], and the product purified by silica gel column chromatography, eluting with CH_2Cl_2 , to afford **7** (826 mg, 72 %) as a yellow solid: (found C, 42.3; H, 4.4; N, 21.0. $C_7H_9N_3O_4$ requires C, 42.2; H, 4.6; N, 21.1); R_f 0.85 (CH_2Cl_2 - MeOH, 9:1); mp 56-58 °C (from CH_2Cl_2) [lit.² mp 65-66 °C]; v_{max} (solid)/cm⁻¹ 2983, 1723, 1519, 1281, 1234; δ_H (CDCl₃, 500 MHz) 7.76 (1H, s, CH), 4.40 (2H, q, *J* 7.3, CH_2CH_3), 4.35 (3H, s, CH_3), 1.41 (3H, t, *J* 7.3, CH_2CH_3); δ_C (CDCl₃, 126 MHz) 159.1, 134.6, 126.3, 61.8, 35.4, 14.1; HRMS *m/z* (ESI⁻) [found (M+Na)⁺ 222.0480, $C_7H_9N_3NaO_4$ requires M⁺ 222.0485]; *m/z* (ES⁺) 222.1 ([M+Na]⁺, 100 %). These data are in good agreement with the literature values.²

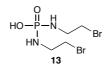
(1-Methyl-2-nitro-1*H*-imidazol-5-yl)methanol (8)


To a solution of nitroimidazole 7 (230 mg, 1.16 mmol, 1 eq.) in anhydrous THF (6 mL) and MeOH (0.5 mL) at 0 °C, was added sodium borohydride (131 mg, 3.47 mmol, 3 eq.) portion wise. The reaction mixture was stirred at 0 °C for 45 min, and then at ambient temperature for 1 h. The reaction mixture was cooled to 0 °C, quenched by addition of ice and the pH adjusted to 7 using 1 M aqueous HCI. The aqueous mixture was saturated with solid NaCI, and the organic components extracted with EtOAc (5 × 15 mL). The organic layers were combined, washed with saturated aqueous NaHCO₃, dried over MgSO₄ and filtered. The filtrate was concentrated in vacuo, the residue adsorbed onto Celite[®], and the product purified by silica gel column chromatography, eluting with petroleum ether and EtOAc (gradient; 50-100% EtOAc) to afford 8 as pale yellow crystals (109 mg, 66%): (found C, 38.2; H, 4.5; N 26.6. C₅H₇N₃O₃ requires C, 38.2; H, 4.5; N, 26.7); R_f 0.5 (CH₂Cl₂ - MeOH, 9:1); mp 141-143 °C (from EtOAc) [lit.² mp 142-144 °C]; v_{max} (solid)/cm⁻¹ 3228 (br), 1490 (s), 1396 (s), 1038 (s); δ_H (DMSO-D₆, 400 MHz) 7.12 (1H, s, CH), 5.50 (1H, t, J 5.4, OH), 4.54 (2H, d, J 5.4, CH₂), 3.92 (3H, s, CH₃); δ_C (DMSO-D₆, 126 MHz) 146.7, 138.6, 126.5, 53.0, 34.1; HRMS m/z (ES+) [found (M-H)⁻ 156.0412, C₅H₆N₃O₃ requires M⁻ 156.0414]; m/z (ESI⁻) 156.04 ([M-H]⁻, 100%). These data are in good agreement with the literature values.²

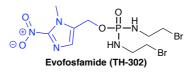
1-Methyl-2-nitro-1*H*-imidazole-5-carboxylic acid (9)


To nitroimidazole **7** (100 mg, 0.50 mmol, 1 eq.), was added a 0.75 M aqueous solution of NaOH (2 mL), and the resulting suspension was stirred for 2 h at room temperature, after which time a homogenous solution had formed. The reaction solution was acidified to pH 1 using conc. HCl, resulting in the formation of an off-white precipitate. The organic components were extracted with EtOAc (5 × 15 mL), the organic layers combined, dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*, to afford **9** as an off-white solid (82 mg, 95 %): (found C, 35.2; H, 2.8; N 24.4. C₅H₅N₃O₄ requires C, 35.1; H, 3.0; N, 24.6); *R*_f 0.15 (AcOH-CH₂Cl₂-MeOH, 0.1:9:1); mp 155-157 °C (from CHCl₃) [lit.² mp 161-163 °C]; v_{max} (solid) cm⁻¹: 2924 (br), 1712 (s), 1497 (s), 1362 (s), 1236 (s); δ_{H} (MeOD-D₄, 500 MHz) 7.73 (1H, s, *CH*), 4.33 (3H, s, *CH*₃); δ_{C} (MeOD-D₄, 126 MHz) 161.6, 149.0, 134.8, 128.5, 35.8; HRMS *m*/*z* (ESI⁻) [found; (M-H)⁻ 170.0207, C₅H₄N₃O₄ requires M⁻ 170.0207]; *m*/*z* (ESI⁻) 170.02 ([M-H]⁻, 68%). These data are in good agreement with the literature values.²

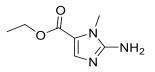
5-(Chloromethyl)-1-methyl-2-nitro-1H-imidazole (10)


To a solution of nitroimidazole **8** (200 mg, 1.27 mmol, 1 eq.) in dry CH₂Cl₂ (8 mL) and distilled pyridine (0.30 ml, 3.63 mmol, 2.9 eq.), was added SOCl₂ (0.28 mL, 3.90 mmol, 3 eq.) in dry CH₂Cl₂ (2 mL) drop wise at 0 °C. The reaction solution was stirred at 0 °C for 1 h, followed by 1 h at room temperature. The excess SOCl₂ was quenched by addition of ice, and saturated aqueous NaHCO₃ solution (5 mL) was added. The organic mixture was extracted with CH₂Cl₂ (2 × 15 mL), the organic layers combined, washed with brine (30 mL), dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*, the residue adsorbed onto Celite[®], and the product purified by silica gel column chromatography, eluting with petroleum ether and EtOAc (gradient; 50-100% EtOAc) to afford **10** as pale yellow crystals (147 mg, 66%): (found C, 34.3; H, 3.5; N 23.8. C₅H₆ClN₃O₂ requires C, 34.2; H, 3.4; N, 23.9); *R*_f 0.4 (petroleum ether - EtOAc, 1:1); mp 87-90 °C (from EtOAc) [lit.³ mp 94-96 °C]; v_{max} (solid) cm⁻¹: 1483 (s), 1360 (s); δ_{H} (CDCl₃, 500 MHz) 7.17 (1H, s, C*H*), 4.63 (2H, s, C*H*₂), 4.06 (3H, s, C*H*₃); δ_{C} (CDCl₃, 126 MHz) 146.3, 132.9, 128.5, 34.2, 33.9; HRMS *m/z* (ESI⁺) [found (M+Na)⁺ 198.0041, C₅H₆ClN₃NaO₂ requires M⁺ 198.0041]; *m/z* (ESI⁺) 198.1 ([M+Na]⁺, 100%). These data are in good agreement with the literature values.³

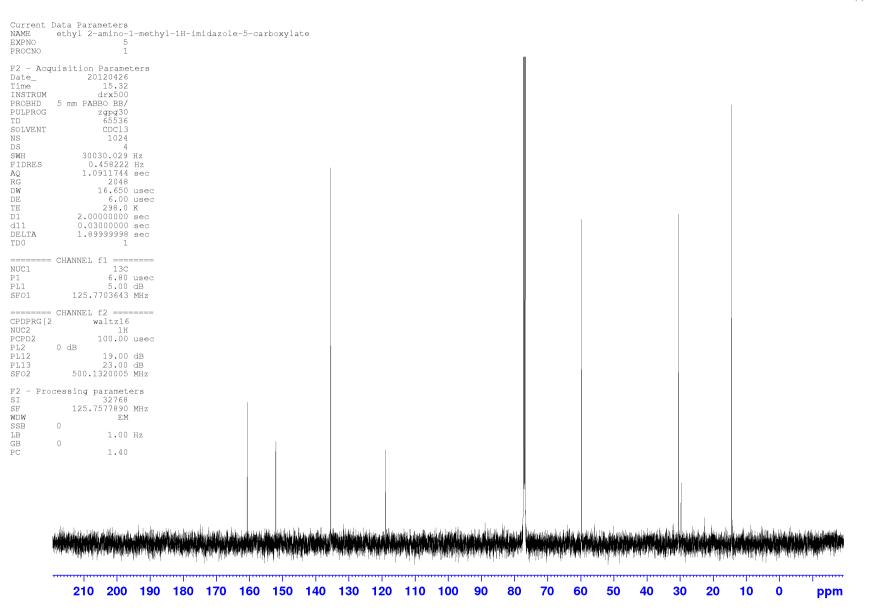
1-Methyl-2-nitro-1*H*-imidazole-5-carbaldehyde (11)


To a solution of nitroimidazole **8** (50 mg, 0.32 mmol, 1 eq.) in acetone (0.3 mL) and CH₂Cl₂ (2.7 mL), was added manganese(IV) dioxide (157 mg, 1.8 mmol, 6 eq.), and the reaction solution was stirred at ambient temperature for 3 d, under an argon atmosphere. The reaction suspension was filtered through Celite[®], and washed with CH₂Cl₂ (10 mL). The elutant was adsorbed onto Celite[®], and the product purified using silica gel column chromatography eluting with acetone and petroleum ether (1:4), to afford the carbaldehyde **11** as a colourless solid (25 mg, 52%): $R_{\rm f}$ 0.72 (acetone - petroleum ether, 1:1); mp 113-115 °C (from acetone) [lit.² mp 114-115 °C]; $v_{\rm max}$ (solid)/cm⁻¹ 1681 (s), 1490 (s), 1327 (s); $\delta_{\rm H}$ (CDCl₃, 500 MHz) 9.93 (1H, s, CHO), 7.82 (1H, s, CH), 4.36 (3H, s, CH₃); $\delta_{\rm C}$ (CDCl₃, 126 MHz) 180.7, 148.6, 139.8, 132.7, 35.9; HRMS m/z (ESI⁺) [found (M+MeOH+Na)⁺ 210.0484, C₆H₉N₃NaO₄ requires M⁺ 210.0485]; m/z (ES⁺) 210.1 ([M+MeOH+Na]⁺, 100 %). These data are in good agreement with the literature values.²

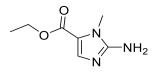
N,*N*'-bis(2-Bromoethyl)phosphorodiamidic acid (Br-IPM, 13)

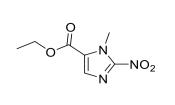

Following the procedure of Duan et al.⁴. To a vigorously stirring suspension of 2bromoethylamine hydrobromide (12.6 g, 62 mmol, 1 eq.) in CH₂Cl₂ (110 mL), was added POCI₃ (2.84 mL, 31 mmol, 0.5 eq.) drop wise, while maintaining the temperature between -10 °C and -15 °C. A solution of triethylamine (17.5 mL, 124 mmol, 2 eq.) in CH₂Cl₂ (30 mL) was then added, drop wise, over a period of 30 min, while maintaining the temperature between -10 °C and -15 °C. The reaction mixture was then filtered, and the filtrate was concentrated in vacuo to a volume of approximately 30 mL. The residue was filtered, the combined solids were washed with cold CH₂Cl₂, and the filtrate concentrated and dried in vacuo. The residue was dissolved in THF (7 mL), H₂O added (10 mL), and the mixture stirred at room temperature for 2 h. The THF was removed under a flow of N₂ gas, and the remaining aqueous solution cooled to 4 °C overnight. The resulting solid was filtered, and washed with cold H_2O (5 mL) and diethyl ether (5 mL) to afford **13** as a colourless solid that was contaminated with its triethylamine salt: mp 109-112 °C (from H₂O) [lit. mp 134-135 °C]; v_{max} (solid) cm⁻¹: 3305 (w), 1249 (s), 1126 (s); δ_{H} (DMSO-D₆, 600 MHz) 3.43 (t, 4H, J 7.2, CH₂Br), 3.08 (dt, 4.37H, J 12.2, 7.2, NCH₂/CH₃CH₂N), 1.19 (0.7H, t, J 7.3, CH₃CH₂N); δ_C (DMSO-D₆, 126 MHz) 45.7, 43.0, 34.0 (d, J 4.4, CH₂Br), 8.6; δ_P (DMSO-D₆, 162 MHz) 11.9. The ¹H NMR data are in good agreement with the literature values.⁵

(1-Methyl-2-nitro-1*H*-imidazol-5-yl)-*N*,*N*–bis(2-bromoethyl) phosphordiamidate (TH-302)



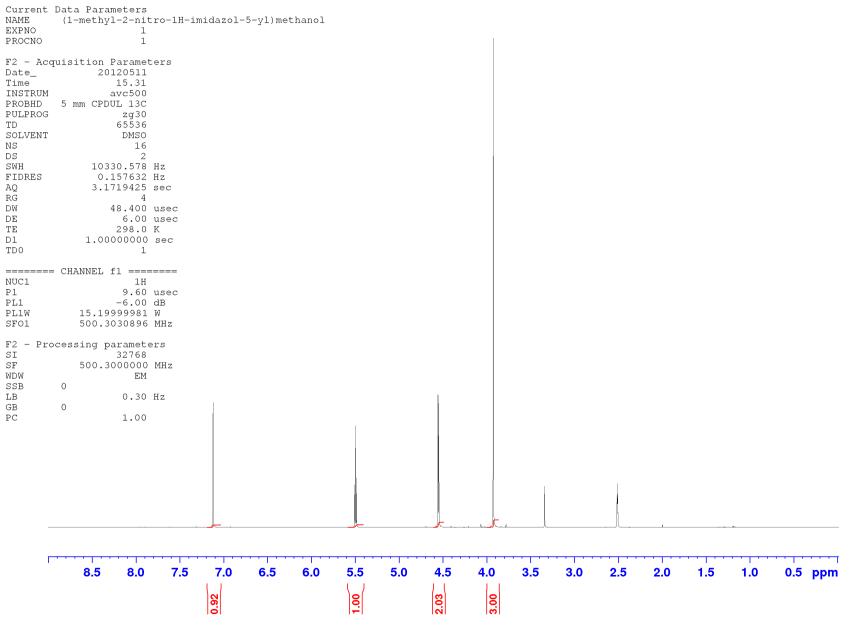
To a suspension of Br-IPM (78 mg, 0.25 mmol, 1 eq.), was added nitroimidazole alcohol **8** (80 mg, 0.50 mmol, 2 eq.), and triphenylphosphine (133 mg, 0.50 mmol, 2 eq.) in THF (7 mL), and DIAD (100 μ L, 101 mg, 0.50 mmol, 2 eq.) at 0 °C. The reaction mixture was stirred at room temperature for 3 h, the solvent removed under a flow of N₂ gas, and the resulting residue dried *in vacuo*. The residue was then purified by semi-preparative HPLC on a Phenomenex Luna (C18(2), 10 μ m, 250 × 10 mm) column, eluting with H₂O and methanol (50 – 70% methanol over 10 min, then 1 min wash with methanol, 5 mL/min flow rate) to afford **TH-302** as a yellow gum: v_{max} (solid) cm⁻¹: 3212 (br), 1489 (m), 1350 (m), 1105 (m), 1004 (s); δ_{H} (DMSO-D₆, 400 MHz) 7.25 (1H, s, CH), 5.10–4.90 (2H, m, NHCH₂CH₂Br), 4.98 (2H, d, *J* 7.8, CH₂O), 3.94 (3H, s, CH₃), 3.42 (4H, t, *J* 7.0, NHCH₂CH₂Br), 3.11 (4H, dt, *J* 9.8, 7.2, NHCH₂CH₂Br); δ_{C} (DMSO-D₆, 126 MHz) 146.1, 134.2 (d, *J* 7.5, OCH₂CN), 128.2, 55.6 (d, *J* 4.6, CH₂O), 42.7, 34.2 (d, *J* 26.4, CH₂Br), 34.1; δ_{P} (DMSO-D₆, 202 MHz) 15.4; HRMS m/z (ESI⁺) 448.0 ([M-H]⁻, 60%, [C₉H₁₅⁷⁹Br⁸¹BrN₅O₄P]⁻), 493.9 ([M+formate]⁻, 100%, [C₁₀H₁₇⁷⁹Br⁸¹BrN₅O₄P]⁻). These data are in good agreement with the literature values.⁴


Ethyl 2-amino-1-methyl-1*H*-imidazole-5-carboxylate (4)


Current NAME EXPNO PROCNO	Data Parameters ethyl 2-amino-1-methy 1 1	l-1H-imidazole-5-ca	urboxylate			
Date_ Time INSTRUM	uisition Parameters 20120426 13.43 drx500 5 mm PABBO BB/ 2q30 65536 CDC13 16 2 10330.578 Hz 0.157632 Hz 3.1719425 sec 322.5 48.400 usec 6.00 usec 298.0 K 1.0000000 sec 1					
======= NUC1 P1 PL1 SF01	CHANNEL f1 ====== 1H 11.00 usec 0 dB 500.1330885 MHz					
F2 - Pro SI SF WDW SSB LB GB PC	cessing parameters 32768 500.1300237 MHz EM 0 0 0.30 Hz 0 1.00					
					ut	
	8.5 8.0	7.5 7.0	6.5 6.0 5.5	5.0 4.5 4.0	3.5 3.0 2.5	2.0 1.5 1.0 0.5 ppm

Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (4)

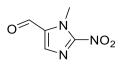
Ethyl 2-nitro-1-methyl-1*H*-imidazole-5-carboxylate (7)



Current Data Parameters NAME ethyl 2-amino-1-meth EXPNO 1	nyl-1H-imidazole-5-carboxy	ylate			
PROCNO 1					
FROCING 1 F2 - Acquisition Parameters Date_ Date_ 20120426 Time 13.43 INSTRUM drx500 PROBHD 5 mm PABBO BB/ PULPROG PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 10330.578 Hz FIDRES 0.157632 Hz AQ 3.1719425 sec RG 322.5 DW 48.400 usec DE 6.00 usec TE 2.98.0 K					
IL LOG Sec D1 1.00000000 sec TD0 1 ======= CHANNEL f1 ======= NUC1 1H P1 11.00 usec PL1 0 dB					
Fill 0 dB SF01 500.1330885 MHz F2 - Processing parameters 32768 SF 500.1300237 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00	1				
					, de r
8.5 8.0 7.5	7.0 6.5 6.0	5.5 5.0	4.5 4.0 3.5	3.0 2.5 2.0	1.5 1.0 0.5 ppm

Ethyl 2-nitro-1-methyl-1*H*-imidazole-5-carboxylate (**7**)

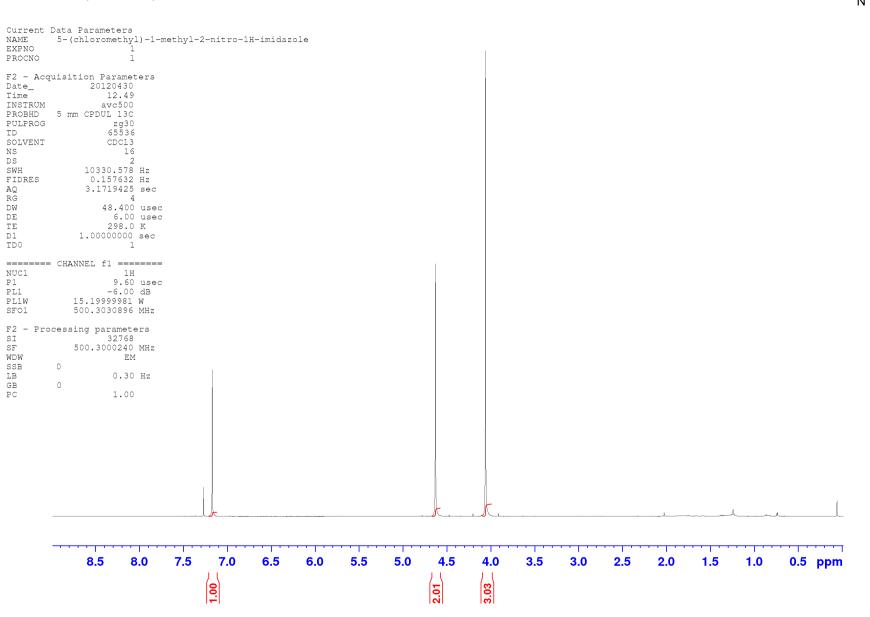
Current Data Parameters NAME ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate EXPNO 5 PROCNO 1	3		
F2 - Acquisition Parameters Date_ 20120426 Time 15.32 INSTRUM drx500 PROBHD 5 mm PABBO BB/ PULPROG zgpq30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 30030.029 Hz FIDRES 0.458222 Hz AQ 1.0911744 sec RG 2048 DW 16.650 usec DE 6.00 usec TE 298.0 K D1 2.0000000 sec d11 0.0300000 sec d11 0.0300000 sec TD0 1			
CHANNEL fl NUC1 13C P1 6.80 usec PL1 5.00 dB SF01 125.7703643 MHz			
======= CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 0 dB PL12 19.00 dB PL13 23.00 dB SF02 500.1320005 MHz			
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			
an blice when an other point of a group of a start of a The start of the start of a start o	yka a Hang dinan ki kisisi sa jing yang a king maka banyan ang kang singi king singi king mikan di ku du ku du Manang milang mang mang mang mang mang mang mang m	ji besha mata maka di dan ata siriki di mangangan na makara di saka kadi da ka kadi sa ka sa si Mangang mangang	and a light to be the physical company of a
210 200 190 180 170 160 150 1	140 130 120 110 100 90 80	مىلەر بەرە مەمۇرە مە 1990-يىلەر بەرە مەمۇرە مەمۇر	10 0 ppm


(1-Methyl-2-nitro-1H-imidazol-5-yl)methanol (8)

(1-Methyl-2-nitro-1*H*-imidazol-5-yl)methanol (8)

Current I NAME EXPNO	Data Parameters (1-methyl-2-nitro-1 4	H-imidazol	-5-yl)methan	ol												
PROCNO	1															
Date_ Time INSTRUM	isition Parameters 20120512 1.15 avc500 5 mm CPDUL 13C 2gpg30 65536 DMSO 256 2 31250.000 Hz 0.476837 Hz 1.0485760 sec 1820 16.000 usec 298.0 K 2.0000000 sec 0.0300000 sec 1												1			
======= P1 PL1 PL1W SF01	CHANNEL f1 13C 10.00 usec -4.40 dB 28.15752029 W 125.8131151 MHz															
CPDPRG[2 NUC2 PCPD2 PL2 PL12 PL13 PL2W PL12W PL12W PL13W SF02	CHANNEL f2 ======= waltz16 1H 80.00 usec -6.00 dB 12.42 dB 18.42 dB 15.19999981 W 0.21869738 W 0.05493430 W 500.3020012 MHz															
F2 - Proc SI SF WDW SSB LB GB FC	essing parameters 32768 125.8005954 MHz EM 0 1.00 Hz 0 1.40															
	Allesser, Staff og van de Staff Staff Staff staff som staff				ang ting the start of the start	Januar Kastingan San Kastaria		and a first state and state and state and	1944 Autoreta francésia de Antoi	n na han sa			and the second state of th	ĸĸijĔŧĸţĸŦĸŔŎĸŎĸŎĸĸŎĸĬŎĸŎŎ	ateria and a second	ana an
	160 15	5 0 1 4	0 130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

1-Methyl-2-nitro-1*H*-imidazole-5-carbaldehyde (**11**)

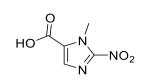


Current Data Parameters NAME 1-methyl-2-nitro EXPNO 1 PROCNO 1	-1H-imidazole-5-carbaldehy	rde					
F2 - Acquisition Paramete Date_ 20150106 Time 16.04 INSTRUM avc500 PROBHD 5 mm CPDUL 13C PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 4 SWH 10330.578 H FIDRES 0.157632 H AQ 3.1719425 s RG 3.56 DW 48.400 u DE 10.000 u TE 298.0 K D1 1.0000000 s TD0 1	z iz ec isec isec						
SF01 500.3030896 M NUC1 1H 1H P1 15.00 u 1H PLW1 7.99830008 W 1H	Hz						
F2 - Processing parameter SI 65536 SF 500.3000135 M WDW EM SSB 0 LB 0.30 H GB 0 PC 1.00 1.00 1.00	Hz						1
 1C	9	8 7 8 8	6	5 4	3	2 1	ppm

1-Methyl-2-nitro-1*H*-imidazole-5-carbaldehyde (**11**)

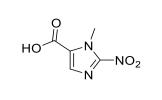
		######~###############################	**************************************	ann an an ann an an an an an an an an an	 ********	 *****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nation and the second	908-00-2840-09-00-09-264	*****	****	anning angerende	y iri ak ayna yr fyrfyryradai	& #199999999,	, gater plan el an de la de
W B	essing parameters 32768 125.8005189 MHz EM 0 1.00 Hz 0 1.40														
	CHANNEL f2 ====== 500.3020012 MHz H waltz16 80.00 usec 7.99830008 W 0.28119001 W 0.17996000 W														
	CHANNEL f1 125.8131152 MHz 13C 10.00 usec 20.18400002 W														
IH DRES	512 2 31250.000 Hz 0.476837 Hz 1.0485760 sec 912 16.000 usec 18.00 usec 298.0 K 2.0000000 sec 0.0300000 sec 1														
te_ me ISTRUM OBHD ! ILPROG	isition Parameters 20150106 16.31 avc500 5 mm CPDUL 13C zgpg30 65536 CDC13														
PNO OCNO	2 1														

5-(Chloromethyl)-1-methyl-2-nitro-1*H*-imidazole (**10**)

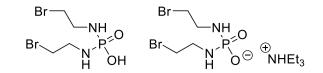


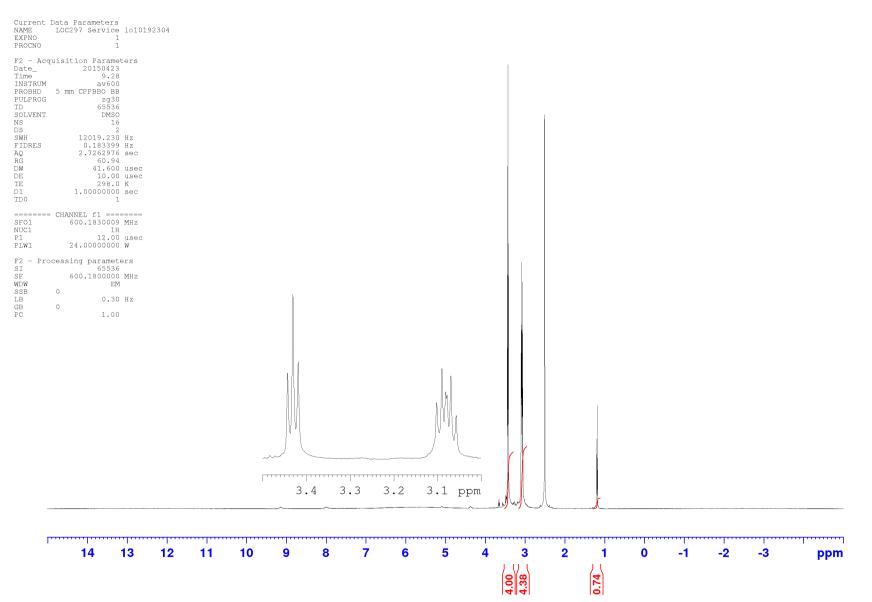
-NO₂

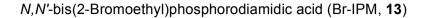
5-(Chloromethyl)-1-methyl-2-nitro-1*H*-imidazole (**10**)

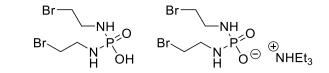

Current Data Parameters NAME 5-(chloromethyl)-1- EXENO 4 PROCNO 1	-methyl-2-nitro-1H	-imidazole									
F2 - Acquisition Parameters Date_ 20120430 Time 13.44 INSTRUM avc500 PROBHD 5 mm CPDUL 13C PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 256 DS 2 SWH 31250.0000 Hz FIDRES 0.476837 Hz AQ 1.0485760 sec DW 16.000 usec DE 20.00 usec DE 20.00 usec TE 288.0 K	c c										
D1 2.0000000 sec D11 0.0300000 sec TD0 1	=										
PLIW 28.15752029 W SF01 125.8131151 MHz CHANNEL f2 CPDPRG[2 waltz16 NUC2 1H PCCPD2 80.00 usec PL12 -6.00 dB PL13 18.42 dB PL12W 0.21869738 W PL13W 0.05493430 W SF02 500.3020012 MHz	= c										
F2 - Processing parameters SI 32768 SF 125.8005438 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40											
		100,000,000,000,000,000,000,000,000,000	, deskursky vyskaften andre angesker an	 	00000000000000000000000000000000000000		ntar the state of th	al and the state of the second	asaya Tayunda yarahi wakayo u ayafi	****	enterspacespace
150	140 130	120 110) <u>100</u>	 80	70	60 5 0	40	30	20	10	ppm

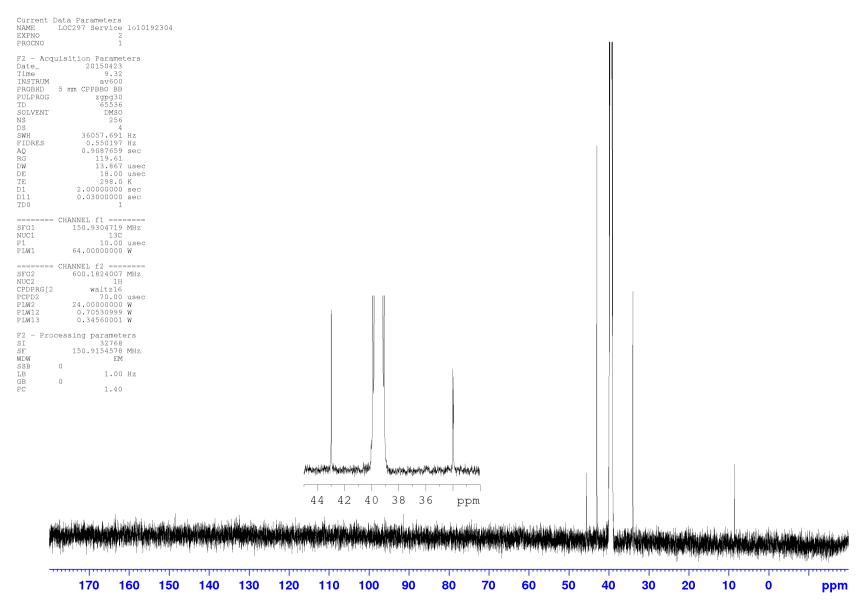
1-Methyl-2-nitro-1*H*-imidazole-5-carboxylic acid (**9**)

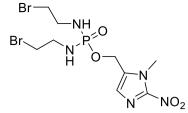

LB GB PC	0.30 Hz 0 1.00							
SI SF WDW SSB	500.3030896 MHz pocessing parameters 32768 500.3000000 MHz EM 0							
NUC1 P1 PL1 PL1W	= CHANNEL f1 ======= 1H 9.60 usec -6.00 dB 15.19999981 W							
DS SWH FIDRES AQ RG DW DE TE D1 TD0	2 10330.578 Hz 0.157632 Hz 3.1719425 sec 4 48.400 usec 298.0 K 1.00000000 sec 1							
Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	5 mm CPDUL 13C zg30 65536 MeOD 16							
Date_ Time INSTRUM	20120324 15.30 avc500							

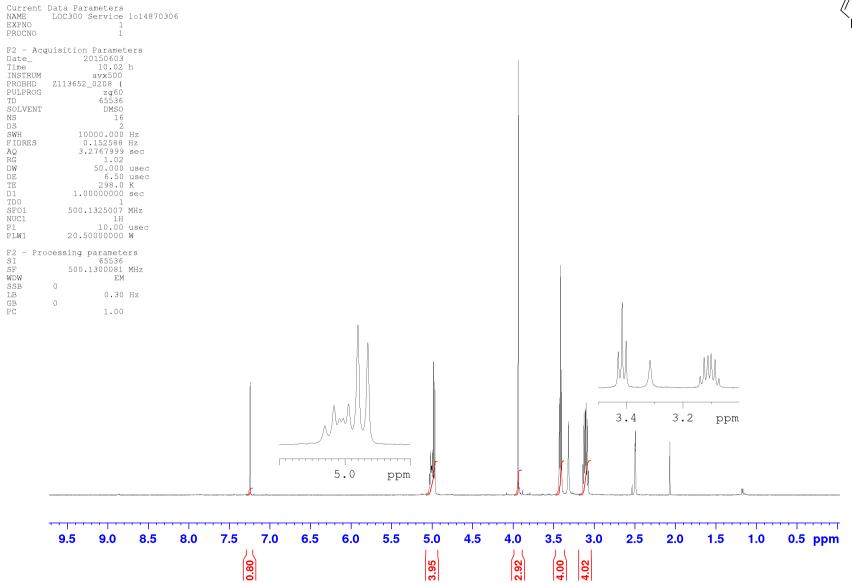

1-Methyl-2-nitro-1*H*-imidazole-5-carboxylic acid (**9**)



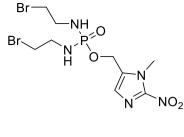

		1								
B	0 1.40						l			
I F DW SB B	cessing parameters 32768 125.8003564 MHz EM 0 1.00 Hz									
====== PDPRG[2 CPD2 L2 L12 L13 L2W L12W L12W L12W L13W FO2	CHANNEL f2 waltz16 1H 80.00 usec -6.00 dB 12.42 dB 18.42 dB 15.1999981 W 0.21869738 W 0.05493430 W 500.3020012 MHz									
UC1 1 L1 L1W F01	CHANNEL f1 13C 10.00 usec -4.40 dB 28.15752029 W 125.8131151 MHz									
IDRES Q G W E E 1 1 1 00	0.476837 Hz 1.0485760 sec 812 16.000 usec 20.00 usec 298.0 K 2.0000000 sec 0.0300000 sec 1									
ate_ ime NSTRUM ROBHD ULPROG D OLVENT S S WH	20120324 16.26 avc500 5 mm CPDUL 13C 2gpg30 65536 MeoD 256 2 31250.000 Hz									

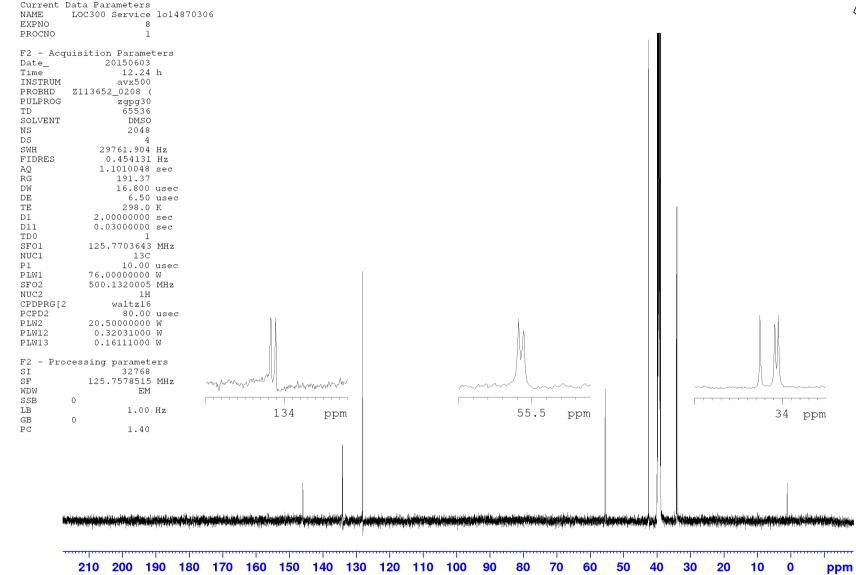

N,N'-bis(2-Bromoethyl)phosphorodiamidic acid (Br-IPM, **13**)

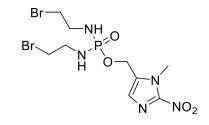

N,*N*'-bis(2-Bromoethyl)phosphorodiamidic acid (Br-IPM, **13**)


Br—	Br—
NHO	NH ∖_∠O
Br N-P-OH	$ \underset{H}{Br} \overset{N}{\longrightarrow} \underset{H}{N} \overset{P}{\longrightarrow} \underset{N}{\overset{\oplus}{\longrightarrow}} \underset{N}{HEt_3} $
н оп	$H \circ H^{2}$

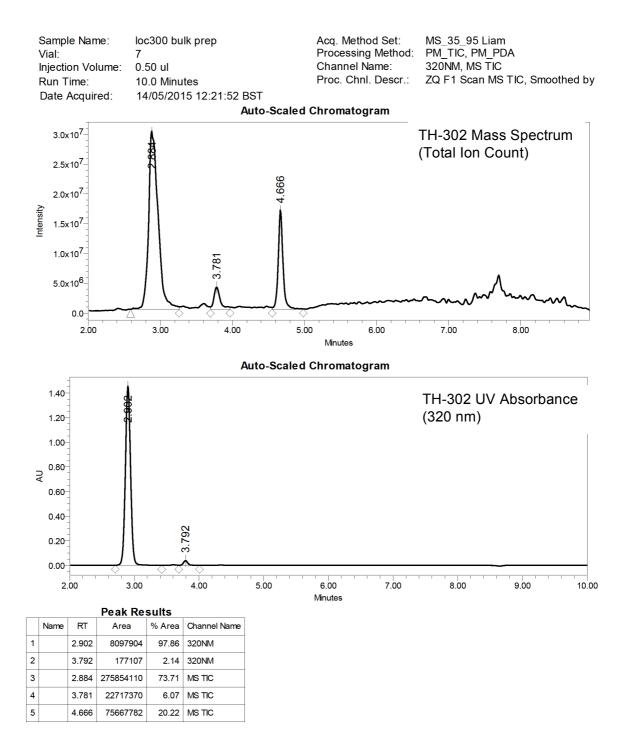
Current NAME EXPNO PROCNO	Data Parameters LOC297 AVB400 1 1) 1
Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE TE D1 D11	6.50 298.1 2.00000000 0.03000000) 5 6 7 6 6 7 8 4 8 Hz 7 Hz 8 sec 4 0 usec 0 usec 0 usec 1 K 9 sec 9 sec
TD0 ======= SF01 NUC1 P1 PLW1	1 CHANNEL fl ==== 161.9674942 31P 8.00 54.00000000	 2 MHz 2 0 usec
SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	CHANNEL f2 ==== 400.1316005 1H waltz16 70.00 14.5880030 0.29771000 0.14588000	5 MHz H 5 Usec) W 9 W
F2 - Pro SI WDW SSB LB GB PC	cessing paramete 32768 161.9755930 EM 0 1.00 0 1.40	3) MHz M D Hz
-	6-6-6-10-10-00-00-00-00-00-00-00-00-00-00-00-	eny ata any ana any any any any any any any an

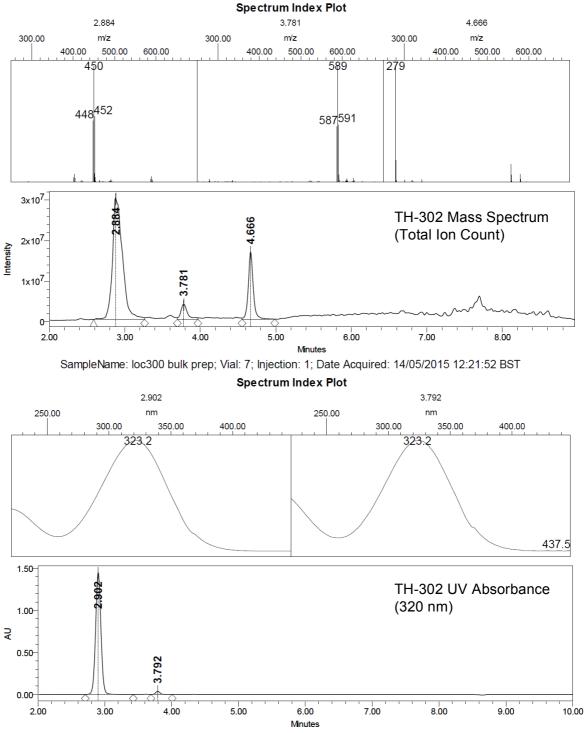

	· · · · · ·	· · · · · ·	·····		· · · · · ·		
100	50	0	-50	-100	-150	-200	ppm


(1-Methyl-2-nitro-1*H*-imidazol-5-yl) *N*, *N*-bis(2-bromoethyl) phosphordiamidate (**TH-302**)



(1-Methyl-2-nitro-1*H*-imidazol-5-yl) *N*, *N*–bis(2-bromoethyl) phosphordiamidate (**TH-302**)




(1-Methyl-2-nitro-1*H*-imidazol-5-yl) *N*, *N*–bis(2-bromoethyl) phosphordiamidate (**TH-302**)

$\begin{array}{ccccc} F2 & - \ Acquisition \ Parameters \\ Date_ 20150603 \\ Time 10.06 h \\ INSTRUM avx500 \\ PROBHD 2113652_0208 (\\ PULPROS 2gpq30 \\ TD 65536 \\ SOLVENT DMS0 \\ NS 16 \\ DS 4 \\ SWH 40760.871 \ Hz \\ FIDRES 0.621962 \ Hz \\ AQ 0.8039083 \ sec \\ RG 191.37 \\ DW 12.267 \ usec \\ DE 6.50 \ usec \\ TE 296.0 \ K \\ D1 2.00000000 \ sec \\ D11 0.03000000 \ sec \\ D11 2.00000000 \ sec \\ TD0 1 1 \\ SF01 202.4462121 \ MHZ \\ NUC1 31P \\ P1 14.00 \ usec \\ PLW1 38.2000076 \ W \\ SF02 500.1320005 \ MHZ \\ NUC2 1 H \\ CPDPRG[2 waltz16 \\ PCPD2 80.00 \ usec \\ PLW2 20.5000000 \ W \\ PLW12 0.32031000 \ W \\ PLW13 0.16111000 \ W \\ F2 - \ Processing \ parameters \\ SF 202.44563350 \ MHZ \\ WDW EM \\ SSB 0 \\ LB 1.00 \ Hz \\ GB 0 \\ PC 1.40 \\ \end{array}$	Date_ 20150603 Time 10.06 h INSTRUM avx500 PROBHD 2113652_0208 (PULPROG zgpq30 TD 65536 SOLVENT DMS0 NS 16 DS 4 SWH 40760.871 Hz FIDRES 0.621962 Hz AQ 0.8039083 sec RG 191.37 DW 12.267 usec DE 6.50 usec TE 298.0 K D1 2.0000000 sec D11 0.0300000 sec D11 0.0300000 Sec D11 0.0300000 Sec D11 0.10300000 Sec D11 0.3000000 Sec D11 0.3000000 Sec D11 0.3000000 Sec D11 0.32000000 M PLW1 38.20000076 W SFc2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW13 0.16111000 W F2 - Processing parameters SI 32768 SF 202.4563350 MHz WDW EM SSB 0 LB 1.00	Current I NAME EXPNO PROCNO	Data Parameters LOC300 Service lo14870306 3 1	
$\begin{array}{ccccc} & 1H \\ CPDPRG[2 & waltz16 \\ PCPD2 & 80.00 & usec \\ PLW2 & 20.5000000 & W \\ PLW12 & 0.32031000 & W \\ PLW13 & 0.16111000 & W \\ F2 & - Processing parameters \\ SI & 32768 \\ SF & 202.4563350 & MHz \\ WDW & EM \\ SSB & 0 \\ LB & 1.00 & Hz \\ GB & 0 \\ \end{array}$	NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 20.5000000 W PLW12 0.32031000 W PLW13 0.16111000 W F2 - Processing parameters SI 32768 SF 202.4563350 MHz WDW EM SSB 0 LB 1.00 Hz GB 0	Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D1 D1 D1 TD0 SF01 NUC1 P1 PLW1	20150603 10.06 h avx500 2113652_0208 (zgpg30 65536 DMS0 16 4 40760.871 Hz 0.621962 Hz 0.8039083 sec 191.37 12.267 usec 6.50 usec 298.0 K 2.0000000 sec 1 202.4462121 MHz 31P 14.00 usec 38.20000076 W	
SI 32768 SF 202.4563350 MHz WDW EM SSB 0 LB 1.00 Hz GB 0	SI 32768 SF 202.4563350 MHz WDW EM SSB 0 LB 1.00 Hz GB 0	NUC2 CPDPRG[2 PCPD2 PLW2 PLW12	1H waltz16 80.00 usec 20.5000000 W 0.32031000 W	
		SI SF WDW SSB LB GB	32768 202.4563350 MHz EM 0 1.00 Hz	

-			-	 	 	 						
	40	2	20	0	-20	-40	-60	-80	-100	-120		ppm

SampleName: loc300 bulk prep; Vial: 7; Injection: 1; Date Acquired: 14/05/2015 12:21:52 BST

References

- 1 B. Cavalleri, R. Ballotta and G. Lancini, J. Heterocycl. Chem., 1972, 9, 979–984.
- 2 B. Cavalleri, R. Ballotta, V. Arioli and G. Lancini, J. Med. Chem., 1973, 16, 557–560.
- 3 I. Parveen, D. P. Naughton, W. Whish and M. D. Threadgill, *Bioorg. Med. Chem. Lett.*, 1999, 9, 2031–2036.
- J.-X. Duan, H. Jiao, J. Kaizerman, T. Stanton, J. W. Evans, L. Lan, G. Lorente, M. Banica, D. Jung, J. Wang, H. Ma, X. Li, Z. Yang, R. M. Hoffman, W. S. Ammons, C. P. Hart and M. Matteucci, *J. Med. Chem.*, 2008, **51**, 2412–2420.
- 5 R. F. Struck, S. M. Schmid and W. R. Waud, *Cancer Chemotherapy and Pharmacology*, 1994, **34**, 191–196.