Electronic Supporting Information (ESI)

Silver-Catalyzed Regioselective Cycloaddition of Isocyanides with Diazo Compounds: Access to 1,4-Disubstituted-1,2,3-triazoles

Shuai Wang,^a Li-Jun Yang,^a Jun-Liang Zeng,^a Yan Zheng,^a Jun-An Ma*^{a,b}

^a Department of Chemistry, Key Laboratory of Systems Bioengineering (the Ministry of Education), Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China.

^b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China.

*Email: majun_an68@tju.edu.cn

General information:

¹H, ¹³C and ¹⁹F NMR were recorded at Bruker AVANCE III 600 M spectrometer. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃: $\delta_H = 7.26$ ppm, $\delta_C = 77.16$ ppm; DMSO-d₆: $\delta_H = 2.50$ ppm, $\delta_C =$ 39.52 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), dq (doublet of quartets). Coupling constants were reported in Hertz (Hz). High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker miorOTOF-QII instrument. IR spectra were recorded on an AVATAR 360 FT-IR spectrometer. Melting points (MP) were measured on a WRS-1A digital melting point apparatus and are uncorrected. X-ray structural analysis was conducted on the XtaLAB mini instrument.

Materials:

N,N-Dimethylformamide (DMF) was dried by CaH_2 . Analytical thin layer chromatography was performed on 0.20 mm silica gel plates. Silica gel (200–300 mesh) was used for flash chromatography. All the isocyanides were prepared according to literatures.¹ 2,2,2-Trifluorodiazoethane (CF₃CHN₂) in different solutions was prepared as flows.

As shown in the figure: A solution of 6.1 g NaNO₂ in 15 mL water was added slowly to the stirring solution of 10.8 g of tritluoroethylamine hydrochloride in 25 mL water

at rt. And then the rapidly generated yellow gas was gradually blown off through a drying tube (MgSO₄) into a gas absorber containing 100 mL anhydrous solvent equipped with an ice bath. After about 2 hours later, there would be no gas bubbling any more. Then the apparatus was removed carefully. Finally the concentration of the stock solution was determined by ¹⁹F-NMR analysis with dispersion method.

Experimental part

General procedure for the cycloaddition of diazo compound with isocyanides

$$\begin{array}{c} \text{R-NC} + & \begin{array}{c} N_2 \text{CHCF}_3 & \text{Ag}_2 \text{CO}_3, 4\text{Å MS} \\ \text{or} & \text{or} & \begin{array}{c} N = N \\ \text{N}_2 \text{CHCO}_2 \text{Et} \end{array} \end{array} \xrightarrow{\text{DMF}, 40 \ ^\circ\text{C}, 6.0 \ \text{h}} & \begin{array}{c} N = N \\ \text{R}^{-N} & \text{CF}_3 \ \text{or} & \begin{array}{c} N = N \\ \text{N} & \text{CO}_2 \text{Et} \end{array} \end{array}$$

Isocyanobenzene (**1a**, 20.6 mg, 0.2 mmol), Ag_2CO_3 (5.5 mg, 0.02 mmol), 4Å MS (25.0 mg), and DMF (1.0 mL) were added into a 10.0 mL Schlenk tube. The tube was sealed well and 2,2,2-trifluorodiazoethane (26.4 mg, 0.24 mmol, 12 µL of 0.02 M in DMF) was added at room temperature. The reaction mixture was stirred at 40 °C for 6 h. After the reaction mixture was cooled down to room temperature, 10 mL water was added and extracted with EtOAc (8 mL × 3). The organic phases were collected, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel with petroleum ether / ethyl acetate (25:1, v:v) afforded pure 1-phenyl-4-(trifluoromethyl)-1*H*-1,2,3-triazole (**2a**) as a white solid.

1-Phenyl-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2a).

White solid (36.2 mg, mp: 76–78 °C, yield: 85%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.56 (t, *J* = 7.7 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.18 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 139.55 (q, *J* = 39.5 Hz), 136.20, 130.12, 129.90, 121.71, 120.99, 120.44 (q, *J* = 267.9 Hz). **HRMS** (ESI): calcd. for C₉H₆F₃N₃[M+Na]⁺: 236.0406, found: 236.0410. **IR** (**KBr**) v 3105, 1596, 1571, 1505, 1380, 1335, 1256, 1134, 1042, 995, 852, 755, 687 cm⁻¹.

1-(4-Fluorophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2b).

White solid (43.0 mg, mp: 83–85 °C, yield: 93%). ¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 7.77 – 7.73 (m, 2H), 7.30 – 7.24 (m, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ – 61.28 (s), –110.33 ~ –110.38 (m). ¹³C NMR (150 MHz, CDCl₃) δ 163.14 (d, J = 250.9 Hz), 139.73 (q, J = 39.7 Hz), 132.54, 123.21 (d, J = 8.8 Hz), 121.90, 120.41 (q, J = 267.8 Hz), 117.19 (d, J = 23.4 Hz). HRMS (ESI): calcd. for C₉H₅F₄N₃[M+Na]⁺: 254.0312, found: 254.0313. IR (KBr) v 3145, 3114, 1571, 1519, 1378, 1303, 1262, 1240, 1172, 1126, 1101, 1039, 996, 836 cm⁻¹.

1-(3-Fluorophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2c).

White solid (38.8 mg, mp: 82–84 °C, yield: 84%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.57 – 7.52 (m, 3H), 7.21 (ddd, J = 11.5, 5.4, 3.2 Hz, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.39 (s), –108.99 ~ –109.04 (m). ¹³C NMR (150 MHz, CDCl₃) δ 163.19 (d, J = 249.8 Hz), 139.80 (q, J = 39.6 Hz), 137.33 (d, J = 10.0 Hz), 131.69 (d, J = 8.9 Hz), 121.79, 120.34 (q, J = 268.0 Hz), 116.89 (d, J = 21.1 Hz), 116.35 (d, J = 3.4 Hz), 108.88 (d, J = 26.4 Hz). **HRMS (ESI):** calcd. for C₉H₅F₄N₃[M+Na]⁺: 254.0312, found: 254.0312. **IR (KBr)** v 3145, 3115, 1610, 1573, 1484, 1380, 1267, 1222, 1179, 1150, 1042, 977, 870, 848, 780, 679 cm⁻¹.

1-(2-Fluorophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2d).

White solid (46.1 mg, mp: 55–57 °C, yield: 90%). ¹H NMR (600 MHz, CDCl₃) δ 8.39

(s, 1H), 8.02 - 7.94 (m, 1H), 7.54 - 7.48 (m, 1H), 7.42 - 7.31 (m, 2H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.22 (s), -123.74 (ddd, J = 11.4, 7.5, 2.4 Hz). ¹³**C NMR** (150 MHz, CDCl₃) δ 153.50 (d, J = 251.5 Hz), 139.48 (q, J = 39.7 Hz), 131.40 (d, J = 8.0 Hz), 125.68 (d, J = 3.8 Hz), 125.14, 124.55, 120.43 (q, J = 267.9 Hz), 117.35 (d, J = 19.8 Hz). **HRMS (ESI):** calcd. for C₉H₅F₄N₃[M+H]⁺: 232.0492, found: 232.0496. **IR** (**KBr**) v 3027, 1538, 1522, 1498, 1455, 1399, 1388, 1243, 1138, 1098, 1022, 937, 774, 672 cm⁻¹.

1-(3,5-Difluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2e).

White solid (40.3 mg, mp: 66–68 °C, yield: 81%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.35 (s, 1H), 7.38 (dd, J = 6.8, 2.0 Hz, 2H), 6.99 (tt, J = 8.5, 2.2 Hz, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.48 (s), –105.12 (dd, J = 8.6, 7.4 Hz). ¹³**C** NMR (150 MHz, CDCl₃) δ 163.66 (dd, J = 252.2, 13.7 Hz), 140.14 (q, J = 40.0 Hz), 137.81 (t, J = 12.5 Hz), 121.67 (d, J = 2.5 Hz), 120.19 (q, J = 268.2 Hz), 105.35 (t, J = 25.2 Hz), 104.89 – 104.57 (m). **HRMS (ESI):** calcd. for C₉H₄F₅N₃[M+H]⁺: 250.0398, found: 250.0404. **IR (KBr)** v 3122, 3074, 1616, 1514, 1500, 1480, 1428, 1379, 1268, 1233, 1171, 1136, 1029, 997, 977, 855 cm⁻¹.

1-(3,4-Difluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2f).

White solid (39.3 mg, mp: 85–87 °C, yield: 79%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.72 – 7.67 (m, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.39 (q, J = 8.8 Hz, 1H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.43 (s), –132.56 ~ –132.76 (m), –134.18 ~ –134.77 (m). ¹³C NMR (150 MHz, CDCl₃) δ 151.74 (dd, J = 35.7, 13.0 Hz), 150.06 (dd, J =

35.3, 13.1 Hz), 139.86 (q, J = 39.7 Hz), 132.43 (dd, J = 7.8, 3.4 Hz), 121.97 (d, J = 2.3 Hz), 120.22 (q, J = 267.9 Hz), 118.86 (d, J = 18.9 Hz), 117.17 (dd, J = 6.7, 4.0 Hz), 111.31 (d, J = 21.8 Hz). **HRMS (ESI):** calcd. for C₉H₄F₅N₃[M+H]⁺: 250.0398, found: 250.0405. **IR (KBr)** v 3149, 3115, 1622, 1576, 1527, 1479, 1380, 1282, 1260, 1225, 1210, 1176, 1122, 1040, 979, 879, 845, 821, 782, 746, 645, 605 cm⁻¹

1-(3-Chloro-4-fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2g).

White solid (45.1 mg, mp: 70–72 °C, yield: 85%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.87 (dd, J = 6.1, 2.6 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.36 (t, J = 8.5 Hz, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.36 (s), –111.19 ~ –114.89 (m). ¹³C NMR (150 MHz, CDCl₃) δ 158.72 (d, J = 253.5 Hz), 139.95 (q, J = 39.8 Hz), 132.80, 123.75, 123.13 (d, J = 19.4 Hz), 121.89 (d, J = 2.5 Hz), 120.96 (d, J = 7.7 Hz), 120.26 (q, J = 268.0 Hz), 118.10 (d, J = 23.0 Hz). **HRMS (ESI):** calcd. for C₉H₄ClF₄N₃[M+H]⁺: 266.0103, found: 266.0109. **IR (KBr)** v 3143, 3108, 1603, 1566, 1511, 1455, 1407, 1373, 1277, 1256, 1181, 1126, 1065, 1040, 980, 879, 830, 750, 720 cm⁻¹.

1-(4-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2h).

White solid (39.0 mg, mp: 126–128 °C, yield: 79%). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.29 (s). ¹³C NMR (150 MHz, CDCl₃) δ 139.80 (q, J = 39.7 Hz), 135.87, 134.74, 130.33, 122.23, 121.70, 120.35 (q, J = 268.0 Hz). HRMS (ESI): calcd. for C₉H₅ClF₃N₃[M+Na]⁺: 270.0016, found: 270.0015. IR (KBr) v 3005, 1555, 1507, 1446, 1397, 1256, 1142, 1040, 933 cm⁻¹.

1-(3-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2i).

White solid (40.0 mg, mp: 79–81 °C, yield: 81%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.80 (s, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.51 (q, J = 8.0 Hz, 2H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.29 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 139.78 (q, J = 39.7 Hz), 136.99, 135.96, 131.24, 130.00, 121.75, 121.27, 120.27 (q, J = 267.9 Hz), 118.96. **HRMS (ESI):** calcd. for C₉H₅ClF₃N₃[M+Na]⁺: 270.0016, found: 270.0022. **IR (KBr)** v 3139, 3113, 1600, 1579, 1566, 1423, 1420, 1384, 1243, 1199, 1162, 1033, 976, 866, 847, 776, 743, 669 cm⁻¹.

1-(2-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2j).

Oil (32.6 mg, yield: 66%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.24 (s, 1H), 7.53 – 7.49 (m, 2H), 7.41 (dt, J = 23.9, 7.2 Hz, 2H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –61.14 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 138.73 (q, J = 39.6 Hz), 133.91, 131.77, 130.99, 128.76, 128.26, 127.87, 125.43 (d, J = 2.6 Hz), 120.42 (q, J = 267.9 Hz). **HRMS (ESI):** calcd. for C₉H₅ClF₃N₃[M+Na]⁺: 270.0016, found: 270.0018. **IR (KBr)** v 3023, 1532, 1500, 1441, 1372, 1301, 1243, 1141, 1037, 931 cm⁻¹.

1-(3,4-Dichlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2k).

White solid (42.3 mg, mp: 97–99 °C, yield: 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.91 (s, 1H), 7.64 (s, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.37 (s). ¹³C

NMR (150 MHz, CDCl₃) δ 139.96 (q, J = 39.8 Hz), 135.20, 134.45, 134.26, 131.85, 122.83, 121.76 (d, J = 2.6 Hz), 120.21 (q, J = 268.0 Hz), 119.95. **HRMS (ESI):** calcd. for C₉H₄Cl₂F₃N₃[M+Na]⁺: 303.9627, found: 303.9631. **IR (KBr)** v 3112, 1568, 1488, 1440, 1400, 1373, 1263, 1177, 1137, 1040, 1014, 977, 882, 852, 817,741, 675 cm⁻¹.

1-(4-Bromophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2l).

White solid (39.4 mg, mp: 139–141 °C, yield: 68%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.28 (s). ¹³**C** NMR (150MHz, CDCl₃) δ 139.82 (q, J = 39.6 Hz), 135.22, 133.31, 123.77, 122.42, 121.62. 120.34 (q, J = 267.9 Hz). **HRMS (ESI):** calcd. for C₉H₅BrF₃N₃[M+Na]⁺: 313.9511, found: 313.9517. **IR (KBr)** v 3135, 3027, 1561, 1278, 1253, 1212, 1201, 1143, 1111, 1022, 996, 832 cm⁻¹

1-(4-Iodophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2m).

White solid (35.3 mg, mp: 159–161 °C, yield: 52%). ¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.25 (s). ¹³C NMR (150 MHz, CDCl₃) δ 139.88 (q, J = 39.7 Hz), 139.29, 135.92, 122.49, 121.46, 120.34 (q, J = 267.8 Hz), 95.12. HRMS (ESI): calcd. for C₉H₅F₃IN₃[M+H]⁺: 339.9553, found: 339.9560. IR (KBr) v 3136, 3106, 1588, 1564, 1493, 1374, 1256, 1168, 1135, 1040, 989, 851, 821, 748 cm⁻¹.

4-(Trifluoromethyl)-1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (2n).

White solid (47.8 mg, mp: 139–141 °C, yield: 85%). ¹H NMR (600 MHz, DMSO) δ 9.72 (s, 1H), 8.18 (d, J = 8.5 Hz, 2H), 7.97 (d, J = 8.6 Hz, 2H). ¹⁹F NMR (565 MHz, DMSO) δ –60.28 (s), –61.55 (s). ¹³C NMR (150 MHz, DMSO) δ 138.80, 138.08 (q, J = 38.8 Hz), 129.76 (q, J = 32.6 Hz), 127.30 (q, J = 3.7 Hz), 124.70, 123.76 (q, J = 272.4 Hz), 121.29, 120.68 (q, J = 267.3 Hz). HRMS (ESI): calcd. for C₁₀H₅F₆N₃[M+Na]⁺: 304.0280, found: 304.0286. IR (KBr) v 3145, 3112, 1572, 1525, 1380, 1336, 1260, 1175, 1071, 1038, 994, 847 cm⁻¹.

1-(4-Ethoxycarbonylphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (20).

White solid (49.6 mg, mp: 126–128 °C, yield: 87%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 8.21 (d, J = 8.6 Hz, 2H), 7.85 (d, J = 8.6 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.36 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 165.23, 139.87 (q, J = 39.8 Hz), 139.19, 131.71, 131.51, 121.74, 120.45, 120.31 (q, J = 268.0 Hz), 61.70, 14.30. **HRMS (ESI):** calcd. for C₁₂H₁₀F₃N₃ O₂[M+H]⁺: 286.0798, found: 286.0801. **IR (KBr)** v 3143, 3112, 2996, 1714, 1568, 1376, 1286, 1257, 1145, 1038, 001, 851, 769 cm⁻¹.

1-(4-Acetylphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2p).

White solid (43.3 mg, mp: 198–200 °C, yield: 85%). ¹H NMR (600 MHz, DMSO) δ 9.71 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.5 Hz, 2H), 2.64 (s, 3H). ¹⁹F NMR (565 MHz, DMSO) δ –59.99 (s). ¹³C NMR (150 MHz, DMSO) δ 196.95, 138.87, 137.91 (q, J = 38.7 Hz), 137.16, 130.03, 124.54, 120.63 (q, J = 267.4 Hz), 120.58, 26.86 (q, J = 8.8 Hz). HRMS (ESI): calcd. for C₁₁H₈F₃N₃O[M+Na]⁺: 278.0512, found: 278.0513. **IR (KBr)** v 3106, 3070, 1683, 1601, 1515, 1459, 1403, 1364, 1259, 1145, 1083, 1038, 994, 846, 802, 760, 620, 592 cm⁻¹

1-(4-Nitrophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2q).

White solid (42.3 mg, mp: 193–195 °C, yield: 82%). ¹H NMR (600 MHz, DMSO) δ 9.78 (s, 1H), 8.46 (d, *J* = 8.0 Hz, 2H), 8.25 (d, *J* = 8.3 Hz, 2H). ¹⁹F NMR (565 MHz, DMSO) δ –60.15 (s). ¹³C NMR (150 MHz, DMSO) δ 147.38, 140.13, 138.05 (q, *J* = 38.7 Hz) 125.49, 124.98, 121.47, 120.52 (q, *J* = 267.7 Hz). HRMS (ESI): calcd. for C₉H₅F₃N₄O₂[M+H]⁺: 259.0437, found: 259.0444. IR (KBr) v 3121, 3092, 1528, 1396, 1350, 1294, 1262, 1150, 1114, 860 cm⁻¹.

1-(3-Nitrophenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2r).

White solid (48.0 mg, mp: 142–144 °C, yield: 93%). ¹**H** NMR (600 MHz, DMSO) δ 9.76 (s, 1H), 8.74 (s, 1H), 8.39 (d, J = 7.6 Hz, 1H), 8.32 (d, J = 7.7 Hz, 1H), 7.88 (td, J = 8.2, 2.1 Hz, 1H). ¹⁹**F** NMR (565 MHz, DMSO) δ –60.34 (s). ¹³C NMR (150 MHz, DMSO) δ 148.40, 137.97 (q, J = 38.7 Hz), 136.51, 131.48, 126.58, 124.75, 123.85, 120.50 (q, J = 267.4 Hz), 115.43. **HRMS (ESI):** calcd. for C₁₂H₁₀F₃N₃O₂[M+H]⁺: 259.0437, found: 259.0441. **IR (KBr)** v 3149, 3120, 3068, 1574, 1539, 1495, 1381, 1352, 1297, 1261, 1180, 1141, 1040, 1010, 976, 902, 869, 844, 814, 751, 667 cm⁻¹.

1-(2-Methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2s).

White solid (38.8 mg, mp: 63–65 °C, yield: 80%). ¹H NMR (600 MHz, CDCl₃) δ 8.43

(s, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.13 (t, J = 8.3 Hz, 2H), 3.92 (s, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ -61.00 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 151.06, 138.52 (q, J = 39.4 Hz), 131.08, 125.56, 125.44, 125.41, 121.52, 120.74 (q, J = 267.6 Hz), 112.48, 56.21. **HRMS (ESI):** calcd. for C₁₀H₈F₃N₃O[M+Na]⁺: 266.0512, found: 266.0515. **IR (KBr)** v 3175, 2947, 1605, 1569, 1510, 1477, 1380, 1258, 1234, 1139, 1029, 981, 940, 837, 762, 673 cm⁻¹.

1-(3-Methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2t).

White solid (46.2 mg, mp: 63–65 °C, yield: 95%). ¹H NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.44 (t, J = 8.2 Hz, 1H), 7.32 (t, J = 2.2 Hz, 1H), 7.26 (dd, J = 8.0, 1.3 Hz, 1H), 7.03 (dd, J = 8.4, 1.9 Hz, 1H), 3.88 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃) δ – 61.25 (s). ¹³C NMR (150 MHz, CDCl₃) δ 160.84, 139.49 (q, J = 39.5 Hz), 137.23, 130.90, 121.76, 120.47 (q, J = 267.8 Hz), 115.55, 112.77, 106.93, 55.76. HRMS (ESI): calcd. for C₁₀H₈F₃N₃O[M+H]⁺: 244.0692, found: 266.0699. IR (KBr) v 3121, 3011, 1610, 1573, 1483, 1449, 1410, 1376, 1211, 1150, 1066, 1018, 972, 921, 822 cm⁻¹.

1-(4-Methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2u).

White solid (39.3 mg, mp: 121–123 °C, yield: 81%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.02 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.18 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 160.65, 139.34 (q, *J* = 39.4 Hz) 129.56, 122.67, 121.75, 120.54 (q, *J* = 267.8 Hz), 115.09, 55.75. **HRMS** (**ESI**): calcd. for C₁₀H₈F₃N₃O[M+Na]⁺: 266.0512, found: 266.0517. **IR (KBr)** v 3104, 1568, 1517, 1466, 1425, 1380, 1261, 1174, 1137, 1043, 826 cm⁻¹.

1-(3,5-Dimethoxyphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2v).

White solid (39.2 mg, mp: 65–67 °C, yield: 72%). ¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 6.87 (s, 2H), 6.54 (s, 1H), 3.85 (s, 6H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.24. ¹³C NMR (150 MHz, CDCl₃) δ 161.69, 139.35 (q, J = 39.5 Hz), 137.61, 121.78, 120.40 (q, J = 267.8), 101.27, 99.33, 55.81. HRMS (ESI): calcd. for C₁₁H₁₀F₃N₃O [M+H]⁺: 274.0798, found: 274.0804. IR (KBr) v 3113, 3010, 1616, 1495, 1462, 1377, 1231, 1210, 1150, 1062, 1020, 976, 924, 826, 675 cm⁻¹.

1-(*p*-Tolyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2w).

White solid (25.4 mg, mp: 95–97 °C, yield: 56%). ¹H NMR (600 MHz, CDCl₃) δ 8.27 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 2.42 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.20 (s). ¹³C NMR (150 MHz, CDCl₃) δ 140.22, 139.45 (q, J = 39.6 Hz), 133.98, 130.59, 121.61, 120.88, 120.54 (q, J = 267.2 Hz), 21.18. HRMS (ESI): calcd. for C₁₀H₈F₃N₃[M+Na]⁺: 250.0563, found: 250.0566. IR (KBr) v 3111, 3049, 1569, 1522, 1379, 1259, 1166, 1134, 1041, 994, 853, 818 cm⁻¹.

1-(3,5-Dimethylphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2x).

White solid (36.2 mg, mp: 63–65 °C, yield: 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.22 (s, 2H), 6.99 (s, 1H), 2.26 (s, 6H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.25 (s). ¹³C NMR (150 MHz, CDCl₃) δ 140.12, 139.26 (q, *J* = 39.4 Hz), 136.09, 131.34,

121.72 (d, J = 2.6 Hz), 120.54 (q, J = 267.7 Hz), 118.59, 21.14. **HRMS (ESI):** calcd. for C₁₁H₁₀F₃N₃[M+H]⁺: 242.0900, found: 242.0905. **IR (KBr)** v 3144, 3113, 1618, 1597, 1571, 1489, 1436, 1378, 1290, 1255, 1225, 1169, 1133, 1036, 988, 945, 896, 846 cm⁻¹

1-(o-Tolyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2y).

Oil (32.7 mg, yield: 72%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.09 (s, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 2.19 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.04 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 138.78 (q, J = 39.5 Hz), 135.53, 133.77, 131.77, 130.71, 127.15, 125.97, 124.84, 120.56 (q, J = 267.8 Hz), 17.70. **HRMS (ESI):** calcd. for C₁₀H₈F₃N₃[M+H]⁺: 250.0563, found: 250.0570. **IR (KBr)** v 3121, 3099, 1567, 1522, 1441, 1422, 1399, 1379, 1263, 1200, 1173, 1122, 1019, 987, 877, 815, 760 cm⁻¹.

1-([1,1'-Biphenyl]-2-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2z).

White solid (38.2 mg, mp: 67–69 °C, yield: 66%). ¹**H** NMR (600 MHz, CDCl₃) δ 7.64 (dd, J = 15.5, 7.7 Hz, 2H), 7.56 (t, J = 7.3 Hz, 2H), 7.47 (s, 1H), 7.32 (p, J = 6.0 Hz, 3H), 7.10 – 7.04 (m, 2H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.22 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 138.66 (q, J = 39.5 Hz), 137.37, 136.69, 134.23, 131.36, 130.79, 129.02, 128.91, 128.50, 128.45, 126.63, 125.34 (d, J = 2.6 Hz), 120.33 (q, J = 267.8 Hz). **HRMS (ESI):** calcd. for C₁₅H₁₀F₃N₃[M+Na]⁺: 312.0719, found: 312.0720. **IR** (**KBr**) v 3146, 3114, 1592, 1565, 1506, 1486, 1465, 1447, 1435, 1423, 1394, 1295, 1261, 1230, 1131, 1084, 1037, 1009, 997, 979, 910, 840, 780, 765, 737 cm⁻¹.

1-(Naphthalen-1-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2a').

White solid (46.3 mg, mp: 94–96 °C, yield: 88%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.24 (s, 1H), 8.05 (dd, J = 8.7, 7.3 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.60 (t, J = 5.2 Hz, 1H), 7.59 – 7.53 (m, 3H), 7.51 (d, J = 8.4 Hz, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ – 60.89 (s). ¹³C NMR (150 MHz, CDCl₃) δ 138.98 (q, J = 39.6 Hz), 134.22, 132.63, 131.32, 128.55, 128.42, 128.28, 127.46, 125.86, 125.00, 123.92, 121.74, 120.61 (q, J = 267.9 Hz). **HRMS (ESI):** calcd. for C₁₃H₈F₃N₃[M+H]⁺: 264.0743, found: 264.0749. **IR (KBr)** v 3134, 3100, 1599, 1567, 1376, 1269, 1246, 1216, 1148, 1038, 985, 861, 803, 772, 741 cm⁻¹.

1-(1-Phenylethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2b').

White solid (20.8 mg, mp: 54–56 °C, yield: 43%). ¹**H** NMR (600 MHz, CDCl₃) δ 7.71 (s, 1H), 7.40 (dd, J = 15.5, 8.3 Hz, 3H), 7.30 (d, J = 7.0 Hz, 2H), 5.87 (q, J = 6.8 Hz, 1H), 2.03 (d, J = 7.0 Hz, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.08 (s). ¹³C NMR (150 MHz, CDCl₃) δ 138.97 (q, J = 39.3 Hz), 138.78, 129.45, 129.24, 126.77, 122.07, 120.60 (q, J = 267.7 Hz), 61.19, 21.35. **HRMS (ESI):** calcd. for C₁₁H₁₀F₃N₃[M+Na]⁺: 264.0719, found: 264.0718. **IR (KBr)** v 3141, 3104, 3033, 3005, 1566, 1496, 1455, 1384, 1259, 1229, 1157, 1041, 994, 855, 778, 749, 706 cm⁻¹.

1-Cyclohexyl-4-(trifluoromethyl)-1H-1,2,3-triazole (2c').

White solid (12.3 mg, mp: 34–36 °C, yield: 28%). ¹**H** NMR (600 MHz, CDCl₃) δ 7.83 (s, 1H), 4.51 (tt, J = 11.8, 3.8 Hz, 1H), 2.25 (dd, J = 13.2, 1.8 Hz, 2H), 1.96 (dd, J = 10.9, 3.0 Hz, 2H), 1.77 (ddd, J = 25.0, 12.6, 3.6 Hz, 3H), 1.53 – 1.45 (m, 2H), 1.35 – 1.26 (m, 1H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.06 (s). ¹³C NMR (150 MHz, CDCl₃) δ 138.72 (q, J = 39.2 Hz), 120.91, 120.81 (q, J = 267.6 Hz), 60.93, 33.63, 25.18, 25.16. **HRMS (ESI):** calcd. for C₉H₁₂F₃N₃[M+Na]⁺: 242.0876, found: 242.0881. **IR** (**KBr**) v 3119, 2961, 1537, 1440, 1212, 1147, 1030, 990, 889, 766 cm⁻¹.

Ag₂CO₃ (0.04 mmol, 0.10 equiv), isocyanide 1 (0.40 mmol, 1.0 equiv), 4Å MS (100.0 mg), and trifluoromethylbenzene (0.4 mmol, 1.0 equiv) were added into a 10.0 mL Schlenk tube. The tube was sealed well and diazo compound (0.48 mmol, 1.2 equiv) in DMF (1.0 mL) was added. The reaction mixture was conducted at 40 °C for 6.0 h, and cooled at room temperature. A little sample (~ 40 μ L) was used for the ¹⁹F NMR spectroscopic analysis and the determination of yield (2d': 26%). To the reaction mixture was added sodium hydride (0.8 mmol, 2.0 equiv) at 0 °C. After stirring for 1 h at the same temperature, I₂ (0.88 mmol, 2.2 equiv) was added and stirred overnight at room temperature. The reaction was guenched with water and extracted with ether $(8.0 \text{ mL} \times 3)$. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexane / ethyl acetate =50:1) afforded the corresponding iodotriazole: 1-(tert-butyl)-5-iodo-4-(trifluoromethyl)-1H-1,2,3-triazole, white solid (26.8 mg, mp: 84-86 °C, yield: 21%). ¹H NMR (400 MHz, CDCl₃) δ 1.17 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ –59.46 (s). ¹³C NMR (100 MHz, CDCl₃) δ 126.57, 120.31 (q, J = 267.4 Hz), 54.12, 29.89. **IR** (**KBr**) v 3445, 3179, 2975, 2925, 1581, 1418, 1141, 971, 768, 610, 432 cm⁻¹. **HRMS (EI):** calcd. for $C_7H_9F_3IN_3[M]^+$: 318.9788, found: 318.9793.

Ethyl 1-phenyl-1*H*-1,2,3-triazole-4-carboxylate (2e').²

White solid (31.2 mg, mp: 83–85 °C, yield: 72%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.64, 140.84, 136.38, 129.95, 129.52, 125.59, 120.81, 61.48, 14.34.

Ethyl 1-(4-methoxyphenyl)-1*H*-1,2,3-triazole-4-carboxylate (2f').²

White solid (41.0 mg, mp: 110–112 °C, yield: 83%). ¹**H** NMR (600 MHz, CDCl₃) δ 8.41 (s, 1H), 7.62 (d, *J* = 8.9 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 4.42 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.77, 160.40, 140.69, 129.76, 125.65, 122.50, 114.98, 61.47, 55.74, 14.39.

Ethyl 1-(*p*-tolyl)-1*H*-1,2,3-triazole-4-carboxylate (2g').²

White solid (39.3 mg, mp: 96–98 °C, yield: 85%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 2.43 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.64, 140.63, 139.70, 134.03, 130.37, 125.49, 120.62, 61.36, 21.09, 14.30.

Ethyl 1-(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxylate (2h').²

White solid (37.3 mg, mp: 170–172 °C, yield: 74%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.50 (s, 1H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 8.7 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 160.57, 141.17, 135.55, 134.95, 130.27, 125.53, 122.10, 61.70, 14.43.

Ethyl 1-(3-nitrophenyl)-1*H*-1,2,3-triazole-4-carboxylate (2i').²

White solid (31.9 mg, mp: 142–144°C, yield: 61%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.66 (s, 2H), 8.37 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 8.1 Hz, 1H), 4.48 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.29, 149.13, 141.63, 137.22, 131.40, 126.38, 125.58, 124.12, 115.80, 61.93, 14.44.

Tert-butyl 1-(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxylate (2j').

White solid (36.9 mg, mp: 169–171 °C, yield: 66%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.70 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 1.58 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 159.66, 142.29, 135.23, 134.98, 130.11, 125.20, 122.01, 82.69, 28.25. **HRMS (ESI):** calcd. for C₁₃H₁₄ClN₃O₂[M+Na]⁺: 302.0667, found: 302.0668. **IR (KBr)** v 3408, 3145, 3110, 2983, 2935, 1713, 1543, 1498, 1400, 1264, 1038, 836, 800, 516 cm⁻¹.

1-Phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole (2k').

White solid (13.9 mg, mp: 96–98 °C, yield: 32%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.73 (d, J = 7.7 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H), 0.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.45, 137.21, 129.78, 128.58, 127.25, 120.92, -1.01. **HRMS (ESI):** calcd. for C₁₁H₁₅N₃Si[M+Na]⁺: 240.0927, found: 240.0930. **IR (KBr)** v 3444, 3137, 2957, 2226, 1674, 1399, 1245, 1207, 839, 749, 687, 513 cm⁻¹.

1-(*p*-Tolyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (2l').

White solid (16.2 mg, mp: 95–97 °C, yield: 35%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.60 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 2.40 (s, 3H), 0.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.25, 138.61, 134.94, 130.26, 127.23, 120.82, 21.19, -1.00. **HRMS (ESI):** calcd. for C₁₂H₁₇N₃Si[M+Na]⁺: 254.1084, found: 254.1090. **IR (KBr)** v 3130, 3046, 2959, 2226, 1721, 1519, 1249, 1205, 842, 815, 755, 517 cm⁻¹.

1-(4-Chlorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (2m').

White solid (20.6 mg, mp: 123–125 °C, yield: 41%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.69 (d, J = 6.9 Hz, 2H), 7.48 (d, J = 6.8 Hz, 2H), 0.37 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 147.86, 135.73, 134.32, 129.98, 127.09, 122.04, –1.03. HRMS (ESI): calcd. for C₁₁H₁₄ClN₃Si[M+Na]⁺: 274.0538, found: 274.0539. IR (KBr) v 3448, 3117, 2980, 2902, 2231, 1677, 1502, 1248, 1201, 1038, 983, 840, 761, 514 cm⁻¹.

1-(3,5-Dimethoxyphenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (2n').

Colorless oil (23.3 mg, yield: 42%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (s, 1H), 6.87 (s, 2H), 6.47 (s, 1H), 3.82 (s, 6H), 0.35 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.52, 147.32, 138.65, 127.36, 100.36, 99.31, 55.76, -1.06. **HRMS (ESI):** calcd. for C₁₃H₁₉N₃O₂Si[M+Na]⁺: 300.1139, found: 300.1140. **IR (KBr)** v 3122, 3005, 2958, 2843, 1608, 1492, 1203, 1157, 1065, 843, 759, 632 cm⁻¹.

1-(3-Nitrophenyl)-4-(trimethylsilyl)-1H-1,2,3-triazole (2o').

White solid (19.9 mg, mp: 107–109 °C, yield: 38%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.28 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.07 (s, 1H), 7.74 (t, J = 8.2 Hz, 1H), 0.39 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 149.00, 148.58, 137.94, 131.05, 127.07, 126.43, 123.03, 115.44, –1.08. **HRMS (ESI):** calcd. for C₁₁H₁₄N₄O₂Si[M+Na]⁺: 285.0778, found: 285.0782. **IR (KBr)** v 3742, 3125, 2961, 1743, 1698, 1535, 1399, 1349, 1248, 840, 735, 667 cm⁻¹.

Methyl 2-methoxy-5-(4-(trifluoromethyl)-1*H*-1,2,3-triazol-1-yl)benzoate (2p'). White solid (45.2 mg, mp: 126–128 °C, yield: 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 8.10 (d, J = 2.8 Hz, 1H), 7.86 (dd, J = 9.0, 2.8 Hz, 1H), 7.13 (d, J = 9.0Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃) δ –61.24 (s). ¹³C NMR (150 MHz, CDCl₃) δ 165.09, 159.93, 139.54 (q, J = 39.6 Hz), 128.89, 126.22, 124.43, 121.79 (d, J = 2.5 Hz), 121.09, 120.40 (q, J = 267.8 Hz), 113.42, 56.60, 52.53. **HRMS (ESI):** calcd. for C₁₂H₁₀F₃N₃O₃[M+Na]⁺: 324.0566, found: 324.0566. **IR** (**KBr**) v 3113, 2960, 1687, 1614, 1510, 1323, 1262, 1194, 1138, 1044, 1018, 983, 912, 847, 822, 785, 747 cm⁻¹.

The preparation of Mesalazine-derived 1,2,3-triazole

To a solution of 2p'(0.29 mmol, 87.3 mg) in methanol (5.0 mL) was added 2 N aqueous sodium hydroxide solution (4.5 mL) and the mixture heated at reflux for 1.5 h. The reaction was cooled to ambient temperature, filtered and the filtrate concentrated *in vacuo* to remove the methanol. The residual aqueous phase was washed with diethyl ether, acidified to pH 1 with concentrated HCl and extracted with ethyl acetate. The organic extracts were dried (MgSO₄) and the solvent removed in vacuo to give 2-methoxy-5-(4-(trifluoromethyl)-1*H*-1,2,3-triazol-1-yl)benzoic acid as a white solid (82.7 mg), which was used without further purification.

A solution of boron tribromide (0.66 mmol) in dichloromethane (1.0 mL) was added dropwise to a solution of 2-methoxy-5-(4-(trifluoromethyl)-1*H*-1,2,3-triazol-1-yl)-benzoic acid (82.7 mg, 0.29 mmol) in dried dichloromethane (2.0 mL) under argon at 0 °C. The reaction was stirred for 1 hour at 0 °C and allowed to warm to ambient temperature and stirred for further 16 hours. It was then poured into ice water and extracted with dichloromethane then with ethyl acetate. The combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate and the aqueous phase acidified to pH 1 with concentrated HCl and extracted with ethyl acetate. The ethyl acetate extracts were dried (MgSO₄) and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the corresponding product.

2-Hdroxy-5-(4-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)benzoic acid (3).

White solid [75.2 mg, mp: 222–224 °C, yield: 95% (two steps)]. ¹H NMR (600 MHz, DMSO) δ 9.55 (s, 1H), 8.28 (d, J = 2.3 Hz, 1H), 8.04 (dd, J = 8.7, 1.8 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 3.91 (s, 1H). ¹⁹F NMR (565 MHz, DMSO) δ –59.83 (s). ¹³C NMR (150 MHz, DMSO) δ 170.68, 161.37, 137.51 (q, J = 38.4 Hz), 128.14, 127.79, 124.31, 122.77, 120.70 (q, J = 267.3 Hz), 118.62, 113.90. HRMS (ESI): calcd. for C₁₀H₆F₃ N₃O₃[M-H]⁻: 272.0288, found: 272.0289. IR (KBr) v 3247, 3053, 3011, 2955, 1660, 1613, 1502, 1312, 1260, 1182, 1022, 1000, 982, 903, 843, 822, 773 cm⁻¹.

1-(Adamantan-1-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (2q').

White solid (28.2 mg, mp: 148–150 °C, yield: 52%). ¹**H** NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 2.26 (d, J = 19.4 Hz, 6H), 2.23 (s, 3H) 1.79 (q, J = 12.5 Hz, 6H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –60.96 (s). ¹³C NMR (150 MHz, CDCl₃) δ 138.06 (q, J = 38.8 Hz), 120.87 (q, J = 267.5 Hz), 119.80, 60.91, 43.00, 35.81, 29.50. HRMS (ESI): calcd. for C₁₃H₁₆F₃N₃[M+Na]⁺: 294.1189, found: 294.1190. **IR** (**KBr**) v 3146, 3109, 2914, 2859, 1566, 1453, 1380, 1308, 1253, 1227, 1196, 1161, 1135, 1053, 1016, 983 cm⁻¹.

(2*S*,3*R*,5*S*,6*R*)-6-(Acetoxymethyl)-3-(4-(trifluoromethyl)-1*H*-1,2,3-triazol-1-yl)tetr ahydro-2*H*-pyran-2,4,5-triyl triacetate (2r').

White solid (34.5 mg, mp: 174–176 °C, yield: 37%). ¹**H** NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 6.20 (d, J = 7.8 Hz, 1H), 5.80 (t, J = 8.8 Hz, 1H), 5.22 (t, J = 8.5 Hz, 1H), 4.72 (t, J = 8.5 Hz, 1H) 4.39 (d, J = 9.5 Hz, 1H), 4.17 (d, J = 11.9 Hz, 1H), 4.08 (d, J = 5.0 Hz, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.87 (s, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.20 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 170.57, 169.68, 169.14, 168.02, 139.19 (q, J = 39.8 Hz), 123.90, 120.25 (q, J = 268.2 Hz), 91.59, 73.25, 72.07, 68.18, 63.36, 61.47, 20.76, 20.60, 20.54, 20.24. **HRMS (ESI):** calcd. for C₉H₁₂F₃ N₃[M+Na]⁺: 490.1044, found: 490.1045. **IR (KBr)** v 2995, 1770, 1759, 1383, 1245, 1103, 1056, 764, 750 cm⁻¹.

Pd-catalyzed arylation of 1,4-disubstituted 1,2,3-triazoles:³

Typical Preparative Procedure A

1-(3-methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole **2t** (36.4 mg, 0.15 mmol, 1.0 equiv), Pd(Ph₃P)₂Cl₂ (5.26 mg, 0.05 equiv), tetrabutylammonium acetate (90.3 mg, 2.0 equiv) were added into a 10.0 mL Schlenk tube under Ar atmosphere. 1.0 mL of NMP was then added, followed by the addition of aryl bromine (1.5 equiv), and the reaction mixture was stirred at 100°C for 2 h. After the reaction was completed, the reaction mixture was diluted with ethyl acetate (10 mL), washed twice with 10 mL portions of water and brine, dried over Na₂SO₄, concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 15:1) afforded the corresponding product.

Typical Preparative Procedure B

1-(3-methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (36.4 mg, 0.15 mmol, 1.0 equiv), Pd(OAc)₂ (1.34 mg, 0.04 equiv), PCy₃ (3.36 mg, 0.08 equiv), chlorobenzene or aryl trifluoromethanesulfonate (1.50 equiv), and K₂CO₃ (41.4 mg, 2.0 equiv) were added into a 10.0 mL Schlenk tube under Ar atmosphere. 1.0 mL of PhMe was then added and the reaction mixture was stirred for 22 h. at 120 °C. Et₂O (5.0 mL) and H₂O (5.0 mL) were added to the cold reaction mixture. The separated aqueous phase

was extracted with Et_2O (2 × 5.0 mL). The combined organic layers were washed with aqueous NH₄Cl (5.0 mL), H₂O (5.0 mL) and brine (5.0 mL), dried over Na₂SO₄ and concentrated in vacuum. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 15:1) afforded the corresponding product.

1-(3-Methoxyphenyl)-5-phenyl-4-(trifluoromethyl)-1*H*-1,2,3-triazole (4a).

Prepared according to Procedure **A**, white solid (41.0 mg, mp: 82–84 °C, yield: 86%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 7.8 Hz, 3H), 6.95 (d, J = 8.3 Hz, 1H), 6.84 (s, 1H), 6.81 (d, J = 7.9 Hz, 1H), 3.71 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –59.10 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 160.23, 137.31, 136.53, 136.43 (q, J = 38.3 Hz), 130.45, 130.25, 129.85, 128.99, 124.77, 120.94 (q, J = 268.7 Hz), 117.32, 115.98, 110.75, 55.59. **HRMS** (**ESI**): calcd. for C₁₆H₁₂ F₃N₃O₂[M+Na]⁺: 342.0825, found: 342.0824. **IR** (**KBr**) v 3064, 2957, 2926, 2833, 1597, 1500, 1488, 1455, 1427, 1377, 1246, 1147, 1030, 987, 863, 831, 770 cm⁻¹.

1-(3-Methoxyphenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (4b).

Prepared according to Procedure **B**, white solid (39.3 mg, mp: 101–103 °C, yield: 71%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (dd, J = 18.1, 9.0 Hz, 4H), 7.60 – 7.54 (m, 2H), 7.25 – 7.18 (m, 2H), 6.93 (dd, J = 8.6, 1.6 Hz, 2H), 6.83 – 6.80 (m, 1H), 3.68 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –58.97 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ

160.29, 137.39, 137.38, 136.65 (q, J = 38.0 Hz), 136.61, 133.69, 132.81, 130.27, 128.86, 128.55, 127.97, 127.93, 127.24, 126.04, 122.02, 121.02 (q, J = 268.8 Hz), 117.32, 115.88, 110.91, 55.57. **HRMS (ESI):** calcd. for C₂₀H₁₄F₃N₃O[M+Na]⁺: 392.0981, found: 392.0985. **IR (KBr)** v 3056, 3006, 2962, 1493, 1472, 1262, 1197, 1162, 1134, 1092, 843 cm⁻¹.

1-(3-Methoxyphenyl)-5-(4-methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (4c).

Prepared according to Procedure **A**, oil (37.8 mg, yield: 73%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.7 Hz, 2H), 6.93 (dd, J = 8.4, 1.9 Hz, 1H), 6.88 (d, J = 8.8 Hz, 2H), 6.85 (t, J = 2.2 Hz, 1H), 6.78 (dd, J = 7.9, 1.1 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –59.14 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 161.19, 160.34, 137.33, 136.80, 136.23 (q, J = 37.9 Hz), 131.30, 130.24, 121.10 (q, J = 268.6 Hz), 117.46, 116.64, 115.89, 114.55, 111.00, 55.66, 55.48. **HRMS (ESI):** calcd. for C₁₇H₁₄F₃N₃O₂[M+Na]⁺: 372.0930, found: 372.0935. **IR (KBr)** v 3076, 2961, 2931, 2841, 1613, 1584, 1512, 1494, 1469,1451, 1443, 1386, 1252, 1157, 1090,1032, 989, 863, 834, 780 cm⁻¹.

1-(3-Methoxyphenyl)-5-(4-nitrophenyl)-4-(trifluoromethyl)-1*H***-1,2,3-triazole (4d)** Prepared according to Procedure **B**, white solid (35.4 mg, mp: 128–130 °C, yield: 65%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.27 (d, *J* = 8.7 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.30 (t, *J* = 8.2 Hz, 1H), 7.01 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.88 (s, 1H), 6.73 (dd, *J* = 8.23 7.9, 0.9 Hz, 1H), 3.77 (s, 3H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –59.03 (s). ¹³**C** NMR (150 MHz, CDCl₃) δ 160.59, 148.97, 137.05 (q, *J* = 38.7 Hz), 135.94, 135.14, 131.25, 131.11, 130.66, 124.16, 120.63 (q, *J* = 268.9 Hz), 117.34, 116.17, 111.38, 55.76. **HRMS (ESI):** calcd. for C₁₆H₁₁F₃N₄O₃ [M+Na]⁺: 387.0675, found: 387.0679. **IR** (**KBr**) v 3117, 3015, 2967, 2845, 1609, 1520, 1493, 1443, 1388, 1345, 1290, 1242, 1201, 1168, 1132, 1077, 1044, 1005, 858, 770, 700, 680 cm⁻¹.

4-(1-(3-Methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazol-5-yl)benzonitrile (4e).

Prepared according to Procedure **A**, white solid (28.5 mg, mp: 99–101 °C, yield: 55%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.30 (t, J = 8.2 Hz, 1H), 7.00 (dd, J = 8.4, 2.2 Hz, 1H), 6.85 (t, J = 2.1 Hz, 1H), 6.73 (dd, J = 7.8, 1.2 Hz, 1H), 3.76 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –59.04 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 160.53, 136.88 (q, J = 38.5 Hz), 135.97, 135.41, 132.68, 130.66, 130.59, 129.46, 120.64 (q, J = 268.9 Hz), 117.74, 117.31, 116.15, 114.56, 111.25, 55.72. **HRMS** (**ESI**): calcd. for C₁₇H₁₁F₃N₄O [M+Na]⁺: 367.0777, found: 367.0778. **IR** (**KBr**) v 2963, 2925, 2839, 2228, 1610, 1590, 1469, 1443, 1388, 1258, 1200, 1173, 1159, 1138, 1076, 1047, 1013, 993, 875, 840 cm⁻¹.

1-(4-(1-(3-Methoxyphenyl)-4-(trifluoromethyl)-1*H*-1,2,3-triazol-5-yl)phenyl)etha none (4f).

Prepared according to Procedure **B**, white solid (44.4 mg, mp: 91–93 °C, yield: 82%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 7.0 Hz, 1H), 6.95 (dd, J = 8.4, 2.0 Hz, 1H), 6.84 (t, J = 2.1 Hz, 1H), 6.73 (dd, J = 7.9, 1.2 Hz, 1H), 3.72 (s, 3H), 2.59 (s, 3H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ –59.06 (s). ¹³**C NMR** (150 MHz, CDCl₃) δ 197.19, 160.43, 138.36, 136.77 (q, J = 38.4 Hz), 136.28, 130.45, 130.26, 129.31, 128.75, 120.79 (q, J = 268.7 Hz), 117.36, 116.05, 111.14, 55.69, 26.81. **HRMS** (**ESI**): calcd. for C₁₈H₁₄F₃N₃O₂[M+Na]⁺: 384.0930, found: 384.0933. **IR** (**KBr**) v 3058, 3014, 1688, 1606, 1498, 1475, 1425, 1260, 1202, 1165, 1132, 1095, 1067, 1038, 843 cm⁻¹.

1-Phenyl-5-(2,2,2-trifluoroethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole

(5) was also detected when excessive CF₃CHN₂ were used

Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), isocyanide **1** (20.6 mg, 0.20 mmol, 1.0 equiv), 4Å MS (25.0 mg) were added into a 10.0 mL Schlenk tube. The tube was sealed well and 2,2,2-trifluorodiazoethane in DMF (178 mg, 2.0 M, 8.0 equiv) was added. The reaction mixture was conducted at 40 °C for 6.0 h. After the reaction was completed, 5.0 mL water was added and extracted with EtOAc (8.0 mL \times 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 25:1) afforded the corresponding product **2** (23.4 mg, yield: 55%) and the product **5** (7.1 mg, yield: 12%).

White solid (mp: 102–104 °C). ¹**H** NMR (600 MHz, CDCl₃) δ 7.63 (dd, J = 16.3, 8.4 Hz, 3H), 7.42 (d, J = 7.2 Hz, 2H), 3.67 (q, J = 9.1 Hz, 2H). ¹⁹**F** NMR (565 MHz, CDCl₃) δ –61.02 (d, J = 3.7 Hz, 3F), –64.35 (dt, J = 9.2, 4.4 Hz, 3F). ¹³C NMR (150 MHz, CDCl₃) δ 138.26 (q, J = 38.7 Hz), 134.45, 131.43, 130.20, 127.56, 126.50, 123.36 (q, J = 278.1 Hz), 120.61 (q, J = 268.7 Hz), 28.62 (q, J = 33.6 Hz). **HRMS**

(**ESI**): calcd. for C₁₁H₇F₆N₃[M+Na]⁺: 318.0436, found: 318.0440. **IR** (**KBr**) v 3105, 3075, 2994, 2958, 1761, 1558, 1530, 1467, 1426, 1396, 1368, 1251, 1164, 1141, 1115, 1091, 997, 909, 844, 771, 699, 651 cm⁻¹.

Cross-coupling experiment of the cycloadduct 2a with CF₃CHN₂

Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), cycloadduct **2a** (42.6 mg, 0.20 mmol, 1.0 equiv), 4Å MS (25.0 mg) were added into a 10.0 mL Schlenk tube. The tube was sealed well and CF₃CHN₂ in DMF (44.0 mg, 0.20 M, 2.0 equiv) was added. The reaction mixture was conducted at 40 °C for 6.0 h. After cooling the tube to room temperature, 5.0 mL water was added and extracted with EtOAc (8.0 mL × 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the product. The ¹H NMR spectrogram of product indicated this reaction could not undergo and the starting reagent **2a** was 99% recovered.

General procedure for isotopic labeling experiments

The preparation of CF₃CH(D)N₂

As shown in the figure: A solution of 610 mg NaNO₂ in 1.5 mL deuterium oxide was added slowly to the stirring solution of 1.08 g of tritluoroethylamine hydrochloride in 2.5 mL deuterium oxide at rt. And then the rapidly generated yellow gas was gradually blown off through a drying tube (MgSO₄) into a gas absorber containing 10.0 mL anhydrous solvent equipped with an ice bath. After about 0.5 hour later, there would be no gas bubbling any more. Then the apparatus was removed carefully. Add the PhCF₃ (25 uL) to 1.0 mL of DMF solvent (containing CF₃CH(D)N₂) and then detected by NMR. From the CF₃CH(D)N₂–¹⁹F NMR spectrogram, the concentration of CF₃CH(D)N₂ in DMF is 0.22 mmol/mL. Combined the CF₃CH(D)N₂–¹⁹F NMR spectrogram and the CF₃CH(D)N₂ –¹H NMR spectrogram, the ratio of hydrogen to deuterium of CF₃CH(D)N₂ is 76:24.

 $CF_3CH(D)N_2 - {}^1HNMR$

The Procedure for the cycloaddition of $CF_3CH(D)N_2$ with 3-methoxyphenyl isocyanide

Having the CF₃CH(D)N₂ in hand, we then undergo the silver-catalyzed cycloaddition. Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), isocyanide (20.6 mg, 0.20 mmol, 1.0 equiv), 4Å MS (25.0 mg) were added into a 10.0 mL Schlenk tube. The tube was sealed well and CF₃CH(D)N₂ (26.4 mg, 1.2 equiv) in DMF was added. The reaction mixture was conducted at 40 °C for 6.0 h. After the reaction was completed, 5.0 mL water was added and extracted with EtOAc (8.0 mL × 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 25:1) afforded the product. The ratio of hydrogen to deuterium at the 5-position of the 1,2,3-triazole ring is 78:22 by ¹H NMR, which is almost identical to that in CF₃CH(D)N₂.

1,2,3-triazole ¹H NMR

4-chlorophenyl isocyanide

Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), isocyanide (26.5 mg, 0.20 mmol, 1.0 equiv), 4Å MS (25.0 mg), and DMF (1.0 mL) were added into a 10.0 mL Schlenk tube. The tube was sealed well and N₂CH(D)CO₂Et (H/D = 15/85), 27.4 mg, 0.24 mmol, 1.2 equiv) was added. The reaction mixture was conducted at 40 °C for 6.0 h. After the reaction was completed, 5.0 mL water was added and extracted with EtOAc (8.0 mL × 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 5:1) afforded the product. The ratio of hydrogen to deuterium at the 5-position of the 1,2,3-triazole ring is 80:20 by ¹H NMR analysis.

The Procedure for the cross-over cycloaddition of $N_2CH(D)CO_2Et$ (H/D = 15/85) and $N_2CHCO_2Bu^t$ with 4-chlorophenyl isocyanide

Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), isocyanide (26.5 mg, 0.20 mmol, 1.0

equiv), 4Å MS (25.0 mg), and DMF (1.0 mL) were added into a 10.0 mL Schlenk tube. The tube was sealed well. N₂CH(D)CO₂Et (H/D = 15/85, 13.7 mg, 0.12 mmol) and N₂CHCO₂Bu^{*t*} (17.0 mg, 0.12 mmol) was added. The reaction mixture was conducted at 40 °C for 6.0 h. After the reaction was completed, 5.0 mL water was added and extracted with EtOAc (8.0 mL × 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 8:1) afforded the corresponding products. The ratio of hydrogen to deuterium at the 5-position of the 1,2,3-triazole ring was analyzed by ¹H NMR.

The Procedure for the cross-over control experiment

Ethyl 1-(4-chlorophenyl)-1*H*-1,2,3-triazole-4-carboxylate (H/D = 80/20, 25.0 mg, 0.1 mmol) and *tert*-butyl 1-(4-chlorophenyl)-1*H*-1,2,3-triazole-4-carboxylate (28.0 mg, 0.1 mmol), Ag₂CO₃ (5.50 mg, 0.02 mmol, 0.10 equiv), 4Å MS (25.0 mg), and DMF (1.0 mL) were added into a 10.0 mL Schlenk tube. The tube was sealed well and conducted at 40 °C for 6.0 h. After the reaction was completed, 5.0 mL water was added and extracted with EtOAc (8.0 mL × 3) to remove most of DMF. The organic phases were collected, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (petroleum ether / ethyl acetate = 8:1) recovered the corresponding triazoles in quantitative yields. The ratio of hydrogen to deuterium at the 5-position of the 1,2,3-triazole ring was analyzed by ¹H NMR.

The research of interaction between isocyanide and Ag(I)

AgOAc (0.1 equiv) can also promote this reaction well and 1-(3,5-Dimethoxylphen yl)-4-(trifluoromethyl)-1*H*-1,2,3-triazole (2v) was obtained in 58% yield. In view of the poor solubility of Ag₂CO₃ in DMF, AgOAc was chosen as the catalyst to do **NMR** and **IR** experiments to study the interaction between isocyanide and Ag(I).

1-Isocyano-3,5-dimethoxybenzene (0.4 mmol, 65.2 mg) was dissolved in 0.5 mL DMF-d₇ in NMR tube, then AgOAc (1 equiv) was added to tube. After 10 minutes, interaction between isocyanide and Ag(I) was detected by ¹³C NMR.

1-isocyano-3,5-dimethoxybenzene and Ag(I) in DMF-d₇-¹³C NMR

1-Isocyano-3,5-dimethoxybenzene (0.2 mmol, 32.6 mg), AgOAc (55 mg, 0.2 mmol), and DMF (1.0 mL) were added into a 10.0 mL Schlenk tube. After stiring for 10 minutes, the interaction between isocyanide and Ag(I) was detected by IR (KBr).

1-isocyano-3,5-dimethoxybenzene-IR

1-isocyano-3,5-dimethoxybenzene and AgOAc in DMF-IR
- [1] (a) J. H. Rigby, S. Laurent, J. Org. Chem., 1998, 63, 6742; (b) B. Janza, A. Studer, Org. Lett., 2003, 5, 1079; (c) O. Lopez, S. Maza, V. Ulgar, I. Maya, J. G. Bolanos. Tetrahedron, 2009, 65 2556.
- [2] (a) K. Dabak, O. Sezer, A. Akar, O Anac, Eur. J. Med. Chem., 2003, 38, 2154; (b) I. S. Park, M. S. Kwon, Y. Kim, J. S. Lee, J. Park, Org. Lett., 2003, 10, 497; (c) Z. X. Wang, H. L. Qin, Chem. Commun., 2003, 2450.
- [3] (a) L. Ackermann, H. K. Potukuchi, Org. Biomol. Chem., 2010, 8, 4503; (b) S. Chuprakov, N.
 Chernyak, A. S. Dudnik, V. Gevorgyan , Org. Lett., 2007, 9, 2333; (c) L. Ackermann, R.
 Vicente, R. Borna, Adv. Synth. Catal., 2008, 350, 741.

NMR Spectra of Products

2a-¹H NMR

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 fl (ppm)

2a-¹⁹F NMR

2a-¹³C NMR

2b-¹H NMR

2b-¹⁹F NMR

2b-¹³C NMR

2c-¹⁹F NMR

2c-¹³C NMR

2d-¹H NMR

2d-¹⁹F NMR

2d-¹³C NMR

2e-¹⁹F NMR

2e-¹³C NMR

2f-¹⁹F NMR

2f-¹³C NMR

2g-¹⁹F NMR

2h-¹⁹F NMR

2h-¹³C NMR

2i-¹⁹F NMR

2j-¹H NMR

2j-¹⁹F NMR

2j-¹³C NMR

2k-¹H NMR

2k-¹⁹F NMR

2l-¹⁹F NMR

2l-¹³C NMR

2m-¹H NMR

2m-¹⁹F NMR

2n-¹H NMR

2n-¹³C NMR

20-¹⁹F NMR

2p-¹H NMR

2p-¹⁹F NMR

2p-¹³C NMR

2q-¹H NMR

2q-¹⁹F NMR

2r-¹H NMR

2r-¹³C NMR

2s-¹⁹F NMR

2t-¹H NMR

2t-¹³C NMR

2u-¹H NMR

2u-¹⁹F NMR

2v-¹H NMR

2w-¹H NMR

2w-¹⁹F NMR

2x-¹H NMR

2x-¹⁹F NMR

2x-¹³C NMR

2y-¹⁹F NMR

2y-¹³C NMR

2z-¹H NMR

2z-¹⁹F NMR

2z-¹³C NMR

2a'-¹⁹F NMR

2b'-¹⁹F NMR

2b'-¹³C NMR

2c'-¹H NMR

2c'-¹⁹F NMR

2d'-¹³C NMR

2e'-¹³CNMR

2f'-¹³C NMR

2h'-¹³C NMR

2i'-¹H NMR

2i'-¹³C NMR

S-91

2p'-¹H NMR

2p'-¹⁹F NMR

2p'-¹³C NMR

2q'-¹H NMR

2q'-¹⁹F NMR

2q'-¹³C NMR

2r'-¹H NMR

2r'-¹⁹F NMR

3-¹H NMR

3-¹³C NMR

4a-¹H NMR

4a-¹⁹F NMR

4a-¹³C NMR

4b-¹H NMR

4b-¹³C NMR

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 fl (ppm)

4c-¹³C NMR

4d-¹H NMR

4d-¹⁹F NMR

4d-¹³C NMR

4e-¹⁹F NMR

4e-¹³C NMR

4f-¹H NMR

4f-¹⁹F NMR

5-¹⁹F NMR

X-Ray Analysis for the product 2a

CCDC 1024377 contains the supplementary crystallographic data for the product **2a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

X-Ray Analysis for the product 5

CCDC 1024379 contains the supplementary crystallographic data for the product **5**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

