Electronic Supplementary Information

Iridium(III)- and Rhodium(III)-Catalyzed Coupling of Anilines with

α-Diazoesters via Chelation-Assisted C-H Activation

Guo-Dong Tang,^{a,b} Cheng-Ling Pan,^b Xingwei Li*^a

^a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 ^b Laboratory of Multi Scale Materials and Molecular Catalysis, School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China Email: xwli@dicp.ac.cn

Contents

1.	General remarks	S2
2.	General procedure and characterization data	S2
3.	KIE Studies	S10
4.	Crystal data and Structure Refinement for Complex 7	S11
5.	NMR spectra	

1. General Remarks

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using sealed tube. NMR Spectra were recorded on a Bruker 400 MHz or 500 MHz NMR spectrometer in the solvents indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained on an Agilent Q-TOF 6540 spectrometer. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE). *N*-phenylpyridin-2-amine derivatives,^{1,2} *N*-phenylpyrimidin-2-amine,³ and diazo esters⁴ were prepared according to literature reports.

2. General Procedure and Characterization Data

General procedure for the preparation of ethyl 2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3aa)

A mixture of *N*-phenylpyridin-2-amine **1a** (51 mg, 3 mmol, 1.0 equiv), $[IrCp*Cl_2]_2$ (6 mg, 0.0075mmol, 2.5 mol%) and CsOAc (14.4 mg, 0.075 mmol, 25 mol%) were weighted into a pressure tube equipped with a stir bar. Water (2 mL), EtOH (1 mL), HOAc (9 mg, 0.15 mmol, 50 mol%) and ethyl diazoacetoacetate **2a** (70.2 mg, 0.45 mmol, 1.5 equiv) were added successively. The mixture was stirred in a sealed tube at 100 °C for 5 h under air. Afterwards, it was cooled to room temperature, and water was removed under reduced pressure and the solid residue was purified by column chromatography to afford pure product **3aa** (74.8 mg, 89% yield).

Ethyl 2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3aa**) 89% yield ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.70 (d, J = 4.7 Hz, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.26 (t, J = 7.2 Hz, 1H), 7.23 – 7.14 (m, 2H), 4.43 (q, J = 7.1 Hz, 2H), 2.71 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 166.1, 150.2, 150.0, 145.1,

138.7, 136.7, 126.8, 123.4, 122.8, 122.4, 122.2, 121.5, 110.4, 106.3, 59.7, 14.6, 13.2. HRMS $[M + H]^+$ calculated for $C_{17}H_{17}N_2O_2$: 281.1285, found 281.1287.

Ethyl 2,5-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3ba) 78% yield

¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.70 (d, J = 3.8 Hz, 1H), 7.98 (s, 1H), 7.92 (td, J = 7.7, 1.6 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.10 (d, J = 8.3 Hz, 1H), 7.00 (d, J = 8.3 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 2.69 (s, 3H), 2.48 (s, 2H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 150.4, 150.0, 144.9, 138.6, 135.0, 131.8, 127.1, 124.2, 123.2, 122.0, 121.3, 110.0, 105.9, 59.6, 21.7, 14.7, 13.. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₂: 295.1441, found 295.1443.

Ethyl 5-methoxy-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3ca**) 87% yield ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.58 (d, J = 4.2 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 7.36 – 7.21 (m, 2H), 7.02 (d, J = 8.9 Hz, 1H), 6.71 (dd, J = 8.9 Hz, 2.1 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.79 (s, 3H), 2.59 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 156.0, 150.2, 150.0, 145.1, 138.6, 131.6, 127.7, 123.3, 122.0, 112.3, 111.2, 106.0, 103.6, 59.6, 55.7, 14.6, 13.4. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₃: 311.1390, found 311.1391.

Ethyl 5-(tert-butyl)-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3da) 65% yield

¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, J = 4.7, 1.0 Hz, 1H), 8.25 (d, J = 1.3 Hz, 1H), 7.91 (td, J = 7.7, 1.9 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.26 (dd, J = 8.6 Hz, 1.6 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 2.70 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 150.4, 150.0, 145.4, 145.0, 138.5, 134.8, 126.7, 123.2, 121.9, 120.9, 117.6, 109.9, 106.3, 59.6, 34.8, 31.9, 14.6, 13.3. HRMS [M + H]⁺ calculated for C₂₁H₂₅N₂O₂: 337.1911, found 337.1913.

Ethyl 5-chloro-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3ea**) 67% yield ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 4.8, 1.1 Hz, 1H), 8.15 (s, 1H), 7.94 (td, J = 7.7, 1.8 Hz, 1H), 7.44 (dd, J = 7.2, 5.1 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H), 7.11 (d, J = 0.9 Hz, 2H), 4.43 (q, J = 7.1Hz, 2H), 2.69 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 150.1, 149.8, 146.1, 138.8, 135.0, 128.1, 127.9, 123.7, 123.0, 122.0, 121.1, 111.5, 105.9, 59.9, 14.6, 13.3. HRMS [M + H]⁺ calculated for C₁₇H₁₆N₂O₂Cl: 315.0895, found 315.0897.

Ethyl 5-fluoro-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3fa**) 87% yield ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.68 (m, 1H), 7.95 (td, *J* = 7.8, 1.8 Hz, 1H), 7.83 (dd, *J* = 9.9, 2.5 Hz, 1H), 7.44 (dd, *J* = 7.4, 5.0 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.13 (dd, *J* = 8.9, 4.4 Hz, 1H), 6.90 (td, *J* = 9.0, 2.5 Hz, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 2.70 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 159.4 (d, *J* = 235 Hz), 150.1, 150.0, 146.4, 138.8, 133.1, 127.6 (d, *J* = 11.0 Hz), 123.6, 122.0, 111.2 (d, *J* = 9.6 Hz), 110.8 (d, *J* = 25.9 Hz) 107.0 (d, *J* = 25.3 Hz), 106.3 (d, *J* = 4.0 Hz), 59.8, 14.6, 13.3. HRMS $[M + H]^+$ calculated for $C_{17}H_{16}N_2O_2F$: 299.1190, found 299.1190.

Ethyl 5-cyano-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3ga) 67% yield

¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.6 Hz, 1H), 8.52 (s, 1H), 8.01 (t, *J* = 7.7 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.28 – 7.22 (m, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 2.71 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 150.4, 149.2, 147.3, 139.1, 138.2, 126.9, 126.6, 125.9, 124.15, 122.1, 120.4, 111.4, 106.6, 105.6, 60.2, 14.6, 13.2. HRMS [M + H]⁺ calculated for C₁₈H₁₆N₃O₂: 306.1237, found 306.1238.

Ethyl 2,6-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3ha) 85% yield

¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.2 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.44 – 7.33 (m, 2H), 7.08 (d, J = 8.1 Hz, 1H), 6.99 (s, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.68 (s, 3H), 2.39 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 150.3, 150.0, 144.6, 138.6, 137.0, 132.7, 124.6, 124.0, 123.3, 122.2, 121.2, 110.4, 106.1, 77.4, 77.1, 76.8, 59.6, 21.7, 14.6, 13.2. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₂: 295.1441, found 295.1444.

Ethyl 6-methoxy-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3ia**) 63% yield ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 3.7 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.98 – 7.92 (m, 1H), 7.46 – 7.37 (m, 2H), 6.91 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.71 (d, *J* = 2.1 Hz, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 3H), 2.67 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 156.8, 150.3, 150.1, 144.0, 138.7, 137.4, 123.4, 122.1, 122.1, 120.9, 111.2, 106.2, 94.7, 59.6, 55.7, 14.6, 13.2. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₃: 311.1390, found 311.1392.

Ethyl 6-chloro-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**2ja**) 82% yield ¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 4.8, 1.2 Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.95 (td, J = 7.7, 1.9 Hz, 1H), 7.44 (ddd, J = 7.5, 4.9, 0.8 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.24 – 7.17 (m, 2H), 4.43 (q, J = 7.1 Hz, 2H), 2.68 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 150.1, 149.6, 145.5, 138.8, 136.9, 128.6, 125.3, 123.6, 122.9, 122.4, 122.0, 110.5, 106.3, 59.8, 14.5, 13.2.

HRMS $[M + H]^+$ calculated for $C_{17}H_{16}N_2O_2Cl$: 315.0895, found 315.0893.

Eethyl 2-methyl-1-(pyridin-2-yl)-6-(trifluoromethyl)-1H-indole-3-carboxylate (**3ka**) 83% yield ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 3.7 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.98 (td, *J* = 7.8, 1.7 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.40 (d, *J* = 7.9 Hz, 1H), 4.45 (q, *J* = 7.1 Hz, 2H), 2.72 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 150.3, 149.4, 147.4, 138.9, 135.7, 129.3, 124.9 (*J* = 270.0), 124.8 (*J* = 31.9 Hz), 123.9, 122.1, 121.9, 119.0 (*J* = 3.5 Hz), 107.9 (*J* = 4.3 Hz), 106.4, 59.9, 14.5, 13.2. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₂: 349.1158, found 349.1159.

3-ethyl 6-methyl 2-methyl-1-(pyridin-2-yl)-1H-indole-3,6-dicarboxylate (**3la**) 90% yield ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 3.8 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.02 – 7.93 (m, 2H), 7.90 (s, 1H), 7.48 (dd, *J* = 7.4, 5.0 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 2.72 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 165.6, 150.3, 149.6, 148.0, 139.0, 136.1, 130.6, 124.5, 123.9, 123.5, 122.3, 121.1, 112.5, 106.6, 59.9, 52.0, 14.6, 13.4. HRMS [M + H]⁺ calculated for C₁₉H₁₉N₂O₄: 339.1339, found 339.1337.

COOEt

Ethyl 2,7-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3ma**) 93% yield ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.1 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.1 Hz, 1H), 4.42 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 3H), 1.76 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 152.1, 149.5, 145.6, 138.2, 135.6, 127.3, 125.5, 124.4, 124.3, 122.1, 121.0, 119.5, 105.5, 59.6, 19.0, 14.6, 12.7. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₂: 295.1441, found 295.1440.

Ethyl 7-methoxy-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3na**) 85% yield ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 3.4 Hz, 1H), 7.82 (t, J = 8.4 Hz, 2H), 7.46 – 7.35 (m, 1H), 7.34 – 7.24 (m, 1H), 7.15 (t, J = 7.7 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 4.41 (q, J = 6.9 Hz, 2H), 3.52 (s, 3H), 2.52 (s, 3H), 1.45 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 152.1, 148.5, 146.4, 145.6, 137.4, 128.7, 126.2, 123.6, 123.4, 122.4, 114.2, 105.9, 104.4, 59.5, 55.5, 14.6, 12.6. HRMS [M + H]⁺ calculated for C₁₈H₁₉N₂O₃: 311.1390, found 311.1391.

Ethyl 7-fluoro-2-methyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3oa) 70% yield

¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, J = 4.8, 0.9 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.97 (td, J = 7.8, 1.8 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.21 (td, J = 8.0, 4.6 Hz, 1H), 6.93 (dd, J = 12.1, 8.0 Hz, 1H), 4.50 (q, J = 7.1 Hz, 2H), 2.66 (s, 3H), 1.53 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 150.81, 150.34, 150.34, 149.29, 147.90, 147.90, 146.43, 138.27, 130.34, 130.30, 124.3(J = 9.1 Hz), 123.97, 122.9 (J = 3.5 Hz), 122.3 (J = 3.5 Hz), 117.3 (J = 3.6 Hz), 108.75, 108.57, 106.64, 59.83, 14.57, 12.74. HRMS [M + H]⁺ calculated for C₁₇H₁₆N₂O₂F: 299.1190, found 299.1192.

Ethyl 2-methyl-7-phenyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3pa) 66% yield

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 3.4 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 6.98 (dt, J = 119.1, 60.4 Hz, 7H), 6.67 (t, J = 10.9 Hz, 1H), 4.46 (q, J = 6.9 Hz, 2H), 2.58 (s, 3H), 1.48 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.12, 150.53, 148.52, 146.60, 139.24, 137.01, 133.70, 127.94, 127.47, 126.73, 125.98, 125.57, 123.65, 122.84, 122.00, 120.79, 105.99, 77.40, 77.08, 76.77, 59.71, 14.65, 13.06. HRMS [M + H]⁺ calculated forC₂₃H₂₁N₂O₂: 357.1598, found 357.1601.

Ethyl 2-methyl-1-(pyridin-2-yl)-1,5,6,7-tetrahydrocyclopenta[f]indole-3-carboxylate (**3qa**) 76% yield ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, J = 4.9, 1.2 Hz, 1H), 8.06 (s, 1H), 8.00 (td, J = 7.7, 1.9 Hz, 1H), 7.48 (M, J = 13.8, 8.9, 4.4 Hz, 2H), 7.11 (s, 1H), 4.51 (q, J = 7.1 Hz, 2H), 3.08 (t, J = 7.3 Hz, 2H), 2.98 (t, J = 7.3 Hz, 2H), 2.75 (s, 3H), 2.17 (p, J = 7.3 Hz, 2H), 1.54 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 150.5, 149.9, 144.2, 139.6, 139.0, 138.5, 136.2, 125.8, 123.1, 122.2, 116.4, 105.8, 59.5, 32.9, 32.6, 26.4, 14.6, 13.2. HRMS [M + H]⁺ calculated for C₂₀H₂₁N₂O₂: 321.1598, found 321.1599.

Methyl 2,7-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3mb) 89% yield

¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 3.9 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.93 – 7.83 (m, 1H), 7.47 (dd, *J* = 7.2, 5.1 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.2 Hz, 1H), 3.95 (s, 3H), 2.49 (s, 3H), 1.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 152.1, 149.5, 145.6, 138.2, 135.6, 127.1, 125.4, 124.4, 124.3, 122.1, 120.9, 119.4, 105.4, 50.8, 18.88, 12.7. HRMS [M + H]⁺ calculated forC₁₇H₁₇N₂O₂: 281.1285, found 281.1284.

Benzyl 2,6-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (3hc) 92% yield

¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 4.7, 1.2 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.93 (td, J = 7.7, 1.8 Hz, 1H), 7.50 (d, J = 7.3 Hz, 2H), 7.43 – 7.30 (m, 5H), 7.06 (d, J = 8.2 Hz, 1H), 6.99 (s, 1H), 5.44 (s, 2H), 2.68 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 150.2, 150.1, 144.9, 138.6, 137.0, 132.8, 128.6, 128.0, 127.9, 124.5, 124.1, 123.4, 122.2, 121.2, 110.4, 105.8, 65.5, 21.7, 13.3. HRMS [M + H]⁺ calculated forC₁₇H₁₇N₂O₂: 357.1598, found 357.1600.

Ethyl 6-methyl-2-phenyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3hd**) 82% yield ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, *J* = 4.8, 1.1 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.56 (td, *J* = 7.8, 1.8 Hz, 1H), 7.36 – 7.14 (m, 8H), 6.81 (d, *J* = 8.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 150.8, 149.3, 144.7, 137.9, 137.4, 133.8, 131.4, 131.1, 128.5, 127.6, 124.8, 124.6, 122.7, 122.6, 121.7, 111.3, 107.3, 59.7, 21.8, 14.3. HRMS [M + H]⁺ calculated for C₁₇H₁₇N₂O₂: 357.1598, found 357.1600.

COOEt

Ethyl 2-methyl-1-(pyrimidin-2-yl)-1H-indole-3-carboxylate (3ra) 87% yield

¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 4.1 Hz, 2H), 8.18 (d, J = 7.3 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.27 (m, 3H), 4.45 (q, J = 13.6, 6.6 Hz, 2H), 2.95 (s, 3H), 1.48 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 158.6, 157.3, 145.6, 136.0, 127.2, 123.3, 123.0, 121.4, 118.8, 112.5, 108.3, 59.9, 14.59, 14.3. HRMS [M + H]⁺ HRMS [M + H]⁺ calculated for C₁₇H₁₈N₃O₂: 282.1237, found 282.1235.

Ethyl 2,5-dimethyl-1-(pyrimidin-2-yl)-1H-indole-3-carboxylate (3sa) 80% yield

¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 4.8 Hz, 2H), 7.97 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.29 (t, *J* = 4.8 Hz, 2H), 7.13 – 7.03 (m, 1H), 4.45 (q, *J* = 7.1 Hz, 2H), 2.94 (s, 3H), 2.48 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 158.5, 157.4, 145.5, 134.3, 132.4, 127.4, 124.7, 121.2, 118.6, 112.2, 108.1, 59.8, 21.7, 14.6, 14.5. HRMS [M + H]⁺ calculated for C₁₇H₁₈N₃O₂: 296.1394, found 296.1396.

Ethyl 2,6-dimethyl-1-(pyrimidin-2-yl)-1H-indole-3-carboxylate (**3ta**) 83% yield ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 4.4 Hz, 2H), 8.11 (d, J = 8.0 Hz, 1H), 7.77 (s, 1H), 7.36 (s, 1H), 7.19 (d, J = 7.9 Hz, 1H), 4.51 (q, J = 6.7 Hz, 2H), 2.99 (s, 3H), 2.53 (s, 3H), 1.54 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.06, 158.5, 157.3, 144.9, 136.3, 133.1, 124.9, 124.5, 121.0, 118.7, 112.3, 108.2, 104.9, 59.7, 21.8, 14.5, 14.2. HRMS [M + H]⁺ calculated for C₁₇H₁₈N₃O₂: 296.1394, found 296.1393.

Ethyl 2,7-dimethyl-1-(pyrimidin-2-yl)-1H-indole-3-carboxylate (3ua) 67% yield

¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 4.6 Hz, 2H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 4.5 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 6.9 Hz, 1H), 4.42 (q, *J* = 6.9 Hz, 2H), 2.58 (s, 3H), 1.80 (s, 3H), 1.45 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 158.8, 158.5, 145.5, 135.5, 127.3, 125.7, 122.4, 120.9, 120.6, 119.6, 106.3, 59.7, 19.1, 14.6, 12.7. HRMS [M + H]⁺ calculated for C₁₇H₁₈N₃O₂: 296.1394, found 296.1395.

Ethyl 7-methoxy-2-methyl-1-(pyrimidin-2-yl)-1H-indole-3-carboxylate (**3va**) 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 4.3 Hz, 2H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.36 (s, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 1H), 4.42 (q, *J* = 6.7 Hz, 2H), 3.55 (s, 3H), 2.68 (d, *J* = 64.2 Hz, 3H), 1.45 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 158.3, 146.2, 145.2, 128.7, 126.2, 122.8, 120.2, 114.3, 106.4, 104.7, 59.7, 55.8, 29.7, 14.6, 12.5. HRMS [M + H]⁺ calculated for C₁₇H₁₈N₃O₃: 312.1343, found 312.1342.

EtOOC COOEt

Diethyl 2-(4-methyl-2-(pyridin-2-ylamino)phenyl)malonate (5ha) 67% yield

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 4.3 Hz, 1H), 7.39 – 7.32 (m, 1H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.11 (s, 1H), 6.69 – 6.56 (m, 1H), 6.09 (d, *J* = 8.3 Hz, 1H), 4.03 (m, 4H) 2.20 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 157.0, 148.2, 137.7, 137.5, 136.8, 132.5, 131.4, 128.5, 126.8, 113.9, 106.9, 61.8, 55.2, 18.8, 13.9. HRMS [M + H]⁺ calculated for C₁₈H₂₁N₂O₄: 343.1652, found 343.1650.

EtOOC COOEt

Diethyl 2-(3-methyl-2-(pyridin-2-ylamino)phenyl)malonate (5ma) 54% yield

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 3.8 Hz, 1H), 7.40 – 7.18 (m, 4H), 7.07 (s, 1H), 6.71 – 6.54 (m, 1H), 6.09 (d, *J* = 8.1 Hz, 1H), 4.87 (s, 1H), 4.10 – 3.88 (m, 4H), 2.20 (s, 3H), 1.17 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 157.0, 148.2, 137.7, 137.5, 136.8, 132.5, 131.4, 128.5, 126.8, 113.9, 106.9, 61.8, 55.2, 18.8, 13.9. HRMS [M + H]⁺ calculated for C₁₈H₂₁N₂O₄: 343.1652, found 343.1653.

Representative Synthetic Procedure of 6.

Ethyl 2,6-dimethyl-1-(pyridin-2-yl)-1H-indole-3-carboxylate (**3ha**, 88.2 mg, 0.3 mmol) was placed into a 20 mL two-necked reaction flask filled with nitrogen. The flask was cooled to 0 °C with an ice-water bath. CH_2Cl_2 (3 mL) and methy trifluoromethanesulfonate (36 μ L, 0.32 mmol) were then added to the flask. The mixture was allowed to warm to room temperature and stirred for 20 h. All volatiles were evaporated under vacuum, and sodium *tert*-butoxide (87 mg, 0.9 mmol) was added, which was again filled with nitrogen by using the standard Schlenk technique. EtOH (0.6 mL) and Et₂O (2.4 mL) were added, and the resulting suspension was stirred for 4 h at room temperature. The mixture was quenched with water and extracted with Et₂O. The combined organic layer was dried over sodium sulfate. After concentration, column chromatographic purification afforded ethyl 2,6-dimethyl-1H-indole-3-carboxylate (6, 41 mg, 0.090 mmol) in 63% yield.

Ethyl 2,6-dimethyl-1H-indole-3-carboxylate (6)

¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.11 – 6.94 (m, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.71 (s, 3H), 2.44 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.3, 134.9, 132.2, 125.0, 123.3, 121.0, 110.5, 104.5, 59.5, 21.6, 14.6, 14.2. HRMS [M + H]⁺ calculated for C₁₃H₁₆NO₂: 218.1176, found 218.1174.

Synthetic Procedure of Complex 7. A mixtue of N-(4-(tert-butyl)-phenyl)pyridin-2-amine (0.2 mmol, 1 equiv), [IrCp*Cl₂]₂ (0.5 eq), and NaOAc (1.1equiv) in 4 mL DCM was stirred under N₂ at RT overnight. After filtration, the solvent was removed. The residue was washed with Et₂O (10 mL *2), then the solvent was remove to afford 7 in analytically pure form.

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.51 (d, J = 6.0 Hz, 1H), 7.58 (d, J = 2.2 Hz, 1H), 7.42 – 7.35 (m, 1H), 6.76 (dd, J = 8.0 Hz, 2.2, 1H), 6.60 – 6.47 (m, 3H), 6.31 (s, 1H), 1.46 (s, 15H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 154.8, 154.1, 145.9, 138.0, 137.1, 136.4, 131.3, 119.8, 116.0, 112.0, 111.3, 87.5, 31.67, 8.7. HRMS [M - Cl]⁺ calculated for C₂₅H₃₂N₂Ir: 553.2195, found 553.2199.

3. KIE STUDIES

A mixture of *N*-phenylpyridin-2-amine (**1a**, 51.3 mg, 0.3 mmol, 1 equiv), *N*-(2, 3, 4, 5, 6-pentadeueriophenyl) pyridin-2-amine (**1a**- d_5 , 52.5 mg, 0.6 mmol, 1 equiv), [IrCp*Cl₂]₂ (6 mg, 0. 0075 mmol, 2.5 mol%) and CsOAc (14 mg, 0.075 mmol, 25 mol%) were weighted into a pressure tube equipped with a stir bar. Water (2 mL), EtOH (1 mL), HOAc (9 mg, 0.15 mmol, 50 mol%) and ethyl diazoacetoacetate (70 mg, 0.45 mmol, 1.5 equiv) were added successively. The mixture was stirred at 100 °C for 20 min. Afterwards, it was cooled in an ice bath and the mixture was filtered off immediately. The solid residue was washed with water thoroughly, and purified by passing through a short pad of silica gel with PE /EA as eluent. The ratio of **3aa**/**3aa**- d_4 was indicated to be 2.0:1 by ¹H NMR analysis (see below), and the KIE value was determined to be 2.0.

4. Crystal data and Structure Refinement for Complex 7

Table 1. Crystal data and structure refinement for complex 7.

Empirical formula	$C_{25}H_{32}ClIrN_2$
Formula weight	588.18
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	a = 13.083(3) A alpha = 90 °.
	b = 9.848(2) A beta = 93.26(3) °.
	c = 18.876(4) A gamma = 90 °.
Volume	2428.2(8) A ³
Z, Calculated density	4, 1.609 Mg/m^3

Absorption coefficient	5.621 mm ⁻¹
F(000)	1160
Crystal size	0.30 x 0.20 x 0.10 mm
Theta range for data collection	3.32 to 27.59°.
Limiting indices	-17<=h<=17, -12<=k<=12, -24<=l<=24
Reflections collected / unique	48591 / 5599 [R(int) = 0.0422]
Completeness to theta	99.5 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5599 / 0 / 262
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	$R1 = 0.0232$, $wR^2 = 0.0533$
R indices (all data)	$R1 = 0.0331$, $wR^2 = 0.0575$
Largest diff. peak and hole	0.896 and -0.583 e.A ⁻³

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)	
Ir(1)	8177(1)	7670(1)	3975(1)	31(1)	
Cl(1)	8034(1)	10091(1)	4135(1)	44(1)	
N(1)	8811(2)	8005(3)	2990(1)	36(1)	
N(2)	7564(2)	6703(3)	2373(1)	47(1)	
C(1)	6790(3)	7681(3)	3413(2)	35(1)	
C(2)	6703(2)	7136(3)	2733(2)	36(1)	
C(3)	5752(3)	6976(4)	2379(2)	48(1)	
C(4)	4881(3)	7340(4)	2706(2)	54(1)	
C(5)	4919(3)	7915(4)	3373(2)	48(1)	
C(6)	5891(3)	8094(4)	3706(2)	42(1)	
C(7)	3941(3)	8294(5)	3726(3)	72(1)	
C(8)	3310(7)	7036(11)	3791(7)	226(7)	
C(9)	4098(5)	9065(11)	4383(4)	216(6)	
C(10)	3291(5)	9228(10)	3245(4)	175(4)	
C(11)	8496(3)	7284(3)	2414(2)	39(1)	
C(12)	9136(3)	7121(4)	1842(2)	57(1)	
C(13)	10062(4)	7769(5)	1867(3)	69(1)	
C(14)	10353(3)	8576(4)	2440(2)	63(1)	
C(15)	9722(3)	8658(4)	2986(2)	49(1)	
C(16)	9019(3)	5818(4)	4178(2)	56(1)	
C(17)	7987(3)	5681(4)	4386(2)	58(1)	
C(18)	7855(3)	6655(4)	4942(2)	51(1)	
C(19)	8811(3)	7314(3)	5072(2)	47(1)	
C(20)	9528(3)	6806(4)	4624(2)	50(1)	

C(21)	9517(5)	4996(5)	3628(2)	110(2)	
C(22)	7196(5)	4671(5)	4110(3)	121(3)	
C(23)	10643(4)	7190(6)	4616(3)	92(2)	
C(24)	6941(4)	6803(7)	5382(3)	104(2)	
C(25)	9024(4)	8404(5)	5626(2)	81(2)	

 Table S3.
 Bond lengths [A] and angles [deg] for complex 7.

Ir(1)-C(1)	2.049(3)	
Ir(1)-N(1)	2.106(3)	
Ir(1)-C(17)	2.126(3)	
Ir(1)-C(18)	2.143(3)	
Ir(1)-C(16)	2.153(3)	
Ir(1)-C(19)	2.214(4)	
Ir(1)-C(20)	2.259(3)	
Ir(1)-Cl(1)	2.4114(10)	
N(1)-C(11)	1.343(4)	
N(1)-C(15)	1.355(4)	
N(2)-C(11)	1.346(5)	
N(2)-C(2)	1.413(4)	
N(2)-H(2A)	0.8600	
C(1)-C(6)	1.388(5)	
C(1)-C(2)	1.391(5)	
C(2)-C(3)	1.388(5)	
C(3)-C(4)	1.373(5)	
C(3)-H(3A)	0.9300	
C(4)-C(5)	1.379(6)	
C(4)-H(4A)	0.9300	
C(5)-C(6)	1.399(5)	
C(5)-C(7)	1.523(6)	
C(6)-H(6A)	0.9300	
C(7)-C(9)	1.458(8)	
C(7)-C(8)	1.497(10)	
C(7)-C(10)	1.519(9)	
C(8)-H(8A)	0.9600	
C(8)-H(8B)	0.9600	
C(8)-H(8C)	0.9600	
C(9)-H(9A)	0.9600	
C(9)-H(9B)	0.9600	
C(9)-H(9C)	0.9600	
C(10)-H(10A)	0.9600	
C(10)-H(10B)	0.9600	

C(10)-H(10C)	0.9600
C(11)-C(12)	1.412(5)
C(12)-C(13)	1.369(7)
C(12)-H(12A)	0.9300
C(13)-C(14)	1.378(6)
C(13)-H(13A)	0.9300
C(14)-C(15)	1.360(5)
C(14)-H(14A)	0.9300
C(15)-H(15A)	0.9300
C(16)-C(20)	1.427(5)
C(16)-C(17)	1.434(6)
C(16)-C(21)	1.496(5)
C(17)-C(18)	1.439(6)
C(17)-C(22)	1.507(5)
C(18)-C(19)	1.419(6)
C(18)-C(24)	1.501(6)
C(19)-C(20)	1.392(6)
C(19)-C(25)	1.513(5)
C(20)-C(23)	1.507(6)
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(1)-Ir(1)-N(1)	85.59(12)
C(1)-Ir(1)-C(17)	94.31(13)
N(1)-Ir(1)-C(17)	121.77(15)
C(1)-Ir(1)-C(18)	103.42(14)
N(1)-Ir(1)-C(18)	158.71(13)
C(17)-Ir(1)-C(18)	39.40(15)
C(1)-Ir(1)-C(16)	121.70(14)
N(1)-Ir(1)-C(16)	93.82(13)
C(17)-Ir(1)-C(16)	39.14(16)

C(18)-Ir(1)-C(16)	64.98(15)
C(1)-Ir(1)-C(19)	139.35(15)
N(1)-Ir(1)-C(19)	134.89(14)
C(17)-Ir(1)-C(19)	63.81(13)
C(18)-Ir(1)-C(19)	37.96(15)
C(16)-Ir(1)-C(19)	62.56(14)
C(1)-Ir(1)-C(20)	157.72(13)
N(1)-Ir(1)-C(20)	101.69(12)
C(17)-Ir(1)-C(20)	63.87(14)
C(18)-Ir(1)-C(20)	63.17(14)
C(16)-Ir(1)-C(20)	37.63(15)
C(19)-Ir(1)-C(20)	36.24(14)
C(1)-Ir(1)-Cl(1)	89.23(9)
N(1)-Ir(1)-Cl(1)	89.60(8)
C(17)-Ir(1)-Cl(1)	148.60(13)
C(18)-Ir(1)-Cl(1)	109.53(11)
C(16)-Ir(1)-Cl(1)	149.04(12)
C(19)-Ir(1)-Cl(1)	93.86(9)
C(20)-Ir(1)-Cl(1)	111.64(11)
C(11)-N(1)-C(15)	118.5(3)
C(11)-N(1)-Ir(1)	121.0(2)
C(15)-N(1)-Ir(1)	118.0(2)
C(11)-N(2)-C(2)	126.0(3)
C(11)-N(2)-H(2A)	117.0
C(2)-N(2)-H(2A)	117.0
C(6)-C(1)-C(2)	117.0(3)
C(6)-C(1)-Ir(1)	122.7(2)
C(2)-C(1)-Ir(1)	120.0(2)
C(3)-C(2)-C(1)	120.8(3)
C(3)-C(2)-N(2)	116.9(3)
C(1)-C(2)-N(2)	122.3(3)
C(4)-C(3)-C(2)	119.9(3)
C(4)-C(3)-H(3A)	120.0
C(2)-C(3)-H(3A)	120.0
C(3)-C(4)-C(5)	122.0(3)
C(3)-C(4)-H(4A)	119.0
C(5)-C(4)-H(4A)	119.0
C(4)-C(5)-C(6)	116.5(3)
C(4)-C(5)-C(7)	120.9(4)
C(6)-C(5)-C(7)	122.5(4)
C(1)-C(6)-C(5)	123.7(3)
C(1)-C(6)-H(6A)	118.2
C(5)-C(6)-H(6A)	118.2
C(9)-C(7)-C(8)	114.4(7)

C(9)-C(7)-C(10)	103.9(6)
C(8)-C(7)-C(10)	104.9(7)
C(9)-C(7)-C(5)	114.7(4)
C(8)-C(7)-C(5)	108.3(5)
C(10)-C(7)-C(5)	110.0(5)
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(7)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
С(7)-С(10)-Н(10А)	109.5
C(7)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(7)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
N(1)-C(11)-N(2)	120.5(3)
N(1)-C(11)-C(12)	120.7(3)
N(2)-C(11)-C(12)	118.8(3)
C(13)-C(12)-C(11)	118.9(4)
С(13)-С(12)-Н(12А)	120.5
С(11)-С(12)-Н(12А)	120.5
C(12)-C(13)-C(14)	120.0(4)
С(12)-С(13)-Н(13А)	120.0
C(14)-C(13)-H(13A)	120.0
C(15)-C(14)-C(13)	118.5(4)
C(15)-C(14)-H(14A)	120.8
C(13)-C(14)-H(14A)	120.8
N(1)-C(15)-C(14)	123.2(4)
N(1)-C(15)-H(15A)	118.4
C(14)-C(15)-H(15A)	118.4
C(20)-C(16)-C(17)	108.6(3)
C(20)-C(16)-C(21)	124.8(5)
C(17)-C(16)-C(21)	126.4(4)
C(20)-C(16)-Ir(1)	75.2(2)
C(17)-C(16)-Ir(1)	69.4(2)
C(21)-C(16)-Ir(1)	125.0(3)

C(16)-C(17)-C(18)	106.9(3)
C(16)-C(17)-C(22)	127.3(5)
C(18)-C(17)-C(22)	125.7(5)
C(16)-C(17)-Ir(1)	71.5(2)
C(18)-C(17)-Ir(1)	70.9(2)
C(22)-C(17)-Ir(1)	125.0(3)
C(19)-C(18)-C(17)	106.9(3)
C(19)-C(18)-C(24)	125.6(4)
C(17)-C(18)-C(24)	126.9(5)
C(19)-C(18)-Ir(1)	73.7(2)
C(17)-C(18)-Ir(1)	69.66(19)
C(24)-C(18)-Ir(1)	128.9(3)
C(20)-C(19)-C(18)	110.4(3)
C(20)-C(19)-C(25)	124.8(4)
C(18)-C(19)-C(25)	124.8(4)
C(20)-C(19)-Ir(1)	73.6(2)
C(18)-C(19)-Ir(1)	68.3(2)
C(25)-C(19)-Ir(1)	125.3(3)
C(19)-C(20)-C(16)	107.2(3)
C(19)-C(20)-C(23)	127.0(4)
C(16)-C(20)-C(23)	125.8(4)
C(19)-C(20)-Ir(1)	70.1(2)
C(16)-C(20)-Ir(1)	67.15(19)
C(23)-C(20)-Ir(1)	128.9(3)
C(16)-C(21)-H(21A)	109.5
C(16)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(16)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(17)-C(22)-H(22A)	109.5
C(17)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(17)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(20)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
С(20)-С(23)-Н(23С)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(18)-C(24)-H(24A)	109.5
C(18)-C(24)-H(24B)	109.5

H(24A)-C(24)-H(24B)	109.5	
C(18)-C(24)-H(24C)	109.5	
H(24A)-C(24)-H(24C)	109.5	
H(24B)-C(24)-H(24C)	109.5	
C(19)-C(25)-H(25A)	109.5	
C(19)-C(25)-H(25B)	109.5	
H(25A)-C(25)-H(25B)	109.5	
C(19)-C(25)-H(25C)	109.5	
H(25A)-C(25)-H(25C)	109.5	
H(25B)-C(25)-H(25C)	109.5	

REFERENCES

- [1] X. Huang, S. Xu, Q. Tan, M. Gao, M. Li, B. Xu, Chem. Commun. 2014, 50, 1465-1468.
- [2] K.-S. Masters, T. R. M. Rauws, A. K. Yadav, W. A. Herrebout, B. Van der Veken, B. U. W. Maes, *Chem. Eur. J.* 2011, *17*, 6315-6320.
- [3] L. Ackermann, A. V. Lygin, Org. Lett. 2012, 14, 764-767.
- [4] N. D. Koduri, H. Scott, B. Hileman, J. D. Cox, M. Coffin, L. Glicksberg and S. R. Hussaini, Org. Lett, 2012, 14, 440.

3ga

3ha

S28

3ma

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (spm)

