Supporting Information

Microwave-assisted Simultaneous *O*,*N*-Sulfonation for the Synthesis of Heparin-like Oligosaccharides

Peng Xu,[†] Stephane Laval,[†] Zheng Guo,[‡] and Biao Yu[†]*

[†]State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. <u>byu@mail.sioc.ac.cn.</u>[‡]School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.

General experimental procedures. All reactions were carried out under nitrogen or argon with anhydrous solvents in flame-dried glassware, unless otherwise noted. All glycosylation reactions were performed in the presence of 4Å or 5Å molecular sieves, which were flame-dried immediately before use in the reaction under high vacuum. Glycosylation solvents were dried using a solvent purification system and used directly without further drying. The chemicals used were reagent grade as supplied, except where noted. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates. Compound spots were visualized by UV light (254 nm) or by heating with a solution with 10% H₂SO₄ in ethanol. Flash column chromatography was performed on silica gel H. NMR spectra were referenced using Me₄Si (0 ppm), residual CHCl₃ (¹H NMR δ = 7.26 ppm, ¹³C NMR δ = 77.16 ppm), CD₃OD (¹H NMR δ = 3.31 ppm, ¹³C NMR δ = 49.00 ppm), D₂O (¹H NMR δ = 4.79 ppm). Peak and coupling constant assignments are based on ¹H NMR, ¹H-¹H COSY, and ¹H-¹³C HMQC experiments. All optical rotations were measured at room temperature using the sodium D line. Splitting patterns are indicated as s (singlet), d (doublet), t (triplet), q (quartet), and brs (broad singlet) for ¹H NMR data. ESI-MS and MALDI-MS were run on an IonSpec Ultra instrument using HP5989A or VG Quattro MS. Optical rotations were measured using a Perkin-Elmer 241 polarimeter. Microwave-based sulfonation reactions were performed using a CEM Initiator synthesizer in sealed reaction vessels.

Methyl (methyl 3,4-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-benz yl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-benzyl -2-deoxy- α -D-glucopyranoside (2)

Tetrasaccharide **1** (44 mg, 0.030 mmol) was dissolved in THF (1 mL) containing H₂O (0.1 mL). Silica gel (88 mg) and PPh₃ (40 mg, 0.15 mmol) were added at room temperature. Stirring was continued until TLC indicated disappearance of the raw material (~ 1 d). The mixture was filtered, and the filtrate was concentrated in vacuum. The residue was purified by Sephadex LH-20 chromatography column (CH₂Cl₂/MeOH, 1/1) to give **2** (36 mg, 85%) as a white solid.

An alternative method. Tetrasaccharide **1** (125 mg, 0.085 mmol) was dissolved in pyridine (3 mL) and H₂O (0.75 mL), protected from light and stirred with propane-1,3-dithiol (0.68 mL) and trimethylamine (0.34 mL) overnight. The mixture was concentrated in vacuum, and then co-evaporated with toluene and ethanol (4 mL, 5/1 v/v) for three times. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 20:1 + 1% Et₃N) to give **2** (114 mg, 96%) as a white solid: $[\alpha]_D^{25} = 67.4$ (*c* 1.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.4 Hz, 2H), 8.01 (d, *J* = 7.4 Hz, 2H), 7.62–7.00 (m, 31H), 5.38–5.28 (m, 3H), 5.20 (d, *J* = 11.2 Hz, 1H), 5.08 (d, *J* = 11.4 Hz, 1H), 4.94–4.69 (m, 4H), 4.62 (dd, *J* = 11.0, 8.5 Hz, 2H), 4.53 (t, *J* = 10.6 Hz, 2H), 4.46 (d, *J* = 11.4 Hz, 1H), 4.14 (t, *J* = 8.6 Hz, 1H), 4.01 (d, *J* = 6.1 Hz, 2H), 3.90 (d, *J* = 8.9 Hz, 1H), 3.88–3.74 (m, 3H), 3.74–3.50 (m, 6H), 3.33 (ddd, *J* = 18.9, 16.0, 9.5 Hz, 3H), 3.17 (s, 2H), 3.13 (d, *J* = 10.0 Hz, 1H), 3.00 (s, 3H), 2.66–2.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 169.77, 168.26,

166.01, 165.57, 164.87, 138.22, 138.09, 137.83, 137.75, 137.35, 133.44, 133.31, 132.91, 130.15, 129.98, 129.90, 129.85, 129.68, 129.33, 129.27, 128.64, 128.57, 128.52, 128.45, 128.42, 128.31, 128.30, 128.23, 128.11, 128.02, 127.98, 127.79, 127.71, 127.68, 127.34, 102.06, 101.46, 98.56, 98.06, 81.10, 79.49, 79.45, 78.26, 78.17, 77.41, 77.16, 76.91, 75.73, 75.54, 75.39, 75.27, 74.70, 74.61, 74.57, 73.52, 73.21, 73.15, 72.89, 70.86, 70.66, 68.89, 66.72, 63.17, 62.64, 62.50, 55.53, 52.88, 51.77; ESI-MS *m/z* calcd for $C_{76}H_{84}N_2O_{23}Na [M+Na]^+$ 1415.5357, found 1415.5371.

Methyl (methyl

3,4-di-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-b enzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl

3-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzy l-2-deoxy- α -D-glucopyranoside (4)

SO₃·Py (23 mg, 0.145 mmol) was added to a solution of tetrasaccharide **2** (10 mg, 0.0073 mmol) in pyridine (1.0 mL). The mixture was protected from light, stirred for 24 h at room temperature and then heated for 24 h at 55 °C. MeOH (0.4 mL) was added to quench the reaction. The mixture was concentrated in vacuum, and successively purified by a small RP-18 silica gel column (H₂O/CH₃OH, 1/0 to 1/3). The fractions containing product were concentrated in vacuum, and the residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using CH₃OH as eluent. The fractions containing product were concentrated in vacuum to provide **4** (7.4 mg, 66%) as a white solid: $[\alpha]_D^{28} = 16.1$ (*c* 0.3, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 8.24 (d, *J* = 7.4 Hz, 2H), 8.15 (d, *J* = 7.5 Hz, 2H), 7.72–7.01 (m, 31H), 5.37 (d, *J* = 3.4 Hz, 1H), 5.32–5.18 (m, 6H), 4.83–4.69 (m, 4H), 4.69–4.54 (m, 4H),

4.53–4.37 (m, 3H), 4.32–3.84 (m, 10H), 3.81–3.63 (m, 2H), 3.60 (s, 3H), 3.51–3.40 (m, 2H), 3.27 (s, 3H), 3.21 (s, 3H), 3.17 (dd, J = 10.3, 3.4 Hz, 1H), 3.03 (d, J = 10.2 Hz, 1H); ESI-MS *m*/*z* calcd for C₇₆H₈₂N₂O₂₉S₂ [M-2H]²⁻ 775.2, found 775.1.

Methyl (methyl

3,4-di-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-be nzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl

3-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-benzyl -6-*O*-sulfo-2-deoxy- α -D-glucopyranoside (5)

SO₃·Py (10.0 mg, 0.063 mmol) was added to a solution of tetrasaccharide **2** (4.4 mg, 0.00316 mmol) in DMF (0.8 mL). The mixture was stirred for 24 h at room temperature. MeOH (0.4 mL) was added to quench the reaction. The mixture was concentrated in vacuum, and successively purified by a small RP-18 silica gel column (H₂O/CH₃OH, 1/0 to 1/4). The fractions containing product were concentrated in vacuum, and the residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using CH₃OH as eluent. The fractions containing product were concentrated in vacuum to provide tetrasaccharide **5** (4.7 mg, 95%): $[\alpha]_D^{26} = 28.4$ (*c* 0.4, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 8.26 (d, *J* = 7.5 Hz, 2H), 8.17 (d, *J* = 7.5 Hz, 2H), 7.80–6.95 (m, 31H), 5.33–5.09 (m, 7H), 4.76 (dd, *J* = 14.5, 6.6 Hz, 3H), 4.68 (d, *J* = 3.4 Hz, 1H), 4.65–4.52 (m, 4H), 4.51–4.34 (m, 3H), 4.24 (d, *J* = 9.7 Hz, 1H), 4.21–3.98 (m, 5H), 3.97–3.84 (m, 4H), 3.67–3.53 (m, 4H), 3.52–3.37 (m, 4H), 3.25 (s, 3H), 3.23 (s, 3H), 2.91 (dd, 1H), 2.71 (d, *J* = 10.2 Hz, 1H); ESI-MS *m/z* calcd for C₇₆H₈₂N₂O₂₉S₂ [M-2H]²⁻775.2, found 775.5.

4-Methoxyphenyl 2-azido-3,6-di-*O*-benzyl-2-deoxy- α -D-glucopyranosyl- $(1 \rightarrow 4)$ - (methyl 2-*O*-benzoyl- α -L-iduropyranosiduronate) (6)

То hemiacetal **S1** (1.10)2.09 mmol) acetone (10)mL), in g, *N*-phenyl-trifluoroacetimidoyl chloride (350 µL, 3.13 mmol) and K₂CO₃ (720 mg, 5.23 mmol) were added. Stirring was continued until TLC indicated disappearance of the starting material (~ 2 h). The mixture was concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1, containing 1% Et₃N) to give S2 (1.25 g, 99%) as a white solid.

Compound **S2** (778 mg, 1.3 mmol) and monosaccharide **S3** (507 mg, 1.0 mmol) were combined in a flask and co-evaporated with toluene (3 × 3 mL), and were then dissolved in toluene (20 mL). Powdered freshly activated 5Å molecular sieves (1.3 g) were added, and the mixture was stirred for 1 hour at ambient temperature and then cooled to -30 °C. TMSOTf (20 μ L, 0.1 mmol) was added, and stirring was continued until TLC indicated the disappearance of the donor (2 hour). The reaction was quenched by the addition of Et₃N (0.5 mL). The mixture was filtered, and the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) to give **S4** (851 mg, 93%) as a white solid: $[\alpha]_D^{28}$ = -20.9 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.4 Hz, 2H), 7.56–7.20 (m, 16H), 7.13–7.05 (m, 4H), 6.83 (d, *J* = 9.0 Hz, 2H), 5.81 (s, 1H), 5.35 (s, 1H), 5.12 (t, *J* = 9.8 Hz, 1H), 5.00 (d, *J* = 12.1 Hz, 2H), 4.87–4.76 (m, 2H), 4.47 (dd, *J* = 24.6, 11.8 Hz, 2H), 4.27 (s, 1H), 4.08 (dd, *J* = 23.2, 14.5 Hz, 3H), 3.88 (s, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.64–3.49 (m, 2H), 3.41 (dd, *J* = 11.1, 3.7 Hz, 1H), 3.33 (dd, *J* = 10.0, 3.1 Hz, 1H), 1.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.43,

169.33, 165.70, 155.41, 150.67, 137.84, 137.66, 137.60, 133.51, 130.15, 129.82, 128.70, 128.56, 128.47, 128.43, 128.12, 127.88, 127.80, 118.10, 114.80, 99.03, 98.36, 78.33, 75.32, 74.57, 73.78, 72.94, 72.72, 70.78, 70.00, 68.49, 63.37, 55.79, 52.39, 20.91; ESI-MS *m*/*z* calcd for $C_{50}H_{51}N_3O_{14}Na$ [M+Na]⁺ 940.3263, found 940.3264.

General Procedure for the Deprotection of the Esters. The starting material was stirred with MeONa (1.0 equiv) in MeOH (0.2 M) until TLC indicated disappearance of the material (\sim 1 h). The mixture was then neutralized with acidic resin, filtered and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) to give the product.

Compound **6** (500 mg, 95%) was thus obtained as a white solid: $[\alpha]_D^{28} = -23.4$ (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.27 (m, 15H), 7.13–7.02 (m, 2H), 6.91–6.79 (m, 2H), 5.69 (s, 1H), 5.05 (dd, *J* = 5.7, 2.5 Hz, 2H), 4.93–4.79 (m, 3H), 4.71–4.58 (m, 2H), 4.53 (d, *J* = 12.0 Hz, 1H), 4.27 (s, 1H), 4.12–3.96 (m, 2H), 3.83–3.69 (m, 9H), 3.67–3.47 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.77, 155.11, 150.71, 138.04, 137.64, 137.58, 128.70, 128.63, 128.28, 128.15, 128.10, 128.04, 127.85, 127.77, 117.70, 114.78, 100.14, 94.99, 80.87, 75.67, 73.88, 72.12, 72.03, 71.59, 70.88, 69.47, 67.66, 66.06, 63.26, 55.77, 52.52; ESI-MS *m/z* calcd for C₄₁H₄₅N₃O₁₂Na [M+Na]⁺ 794.2896, found 794.2920.

4-Methoxyphenyl 2-amino-3,6-di-*O*-benzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl- α -L-iduropyranosiduronate) (7)

General Procedure for the Reduction of the Azide group. A portion of the starting material was dissolved in pyridine and H₂O (0.1 M, 4/1), protected from light and stirred with propane-1,3-dithiol (10 equiv) and trimethylamine (20 equiv) for overnight. The mixture was concentrated in vacuum, and then concentrated with toluene and ethanol (4 mL, 5/1) for three times. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 20:1 + 1% Et₃N) to give the product.

Compound 7 (130 mg, 92%) was thus prepared as a light yellow solid: $[\alpha]_D^{25} =$ -3.0 (*c* 0.8, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.27 (m, 15H), 7.06 (d, *J* = 9.1 Hz, 2H), 6.83 (d, *J* = 9.1 Hz, 2H), 5.64 (s, 1H), 5.07–4.89 (m, 3H), 4.83 (d, *J* = 11.5 Hz, 1H), 4.73–4.48 (m, 4H), 4.28 (s, 1H), 4.02 (s, 2H), 3.79–3.60 (m, 9H), 3.55 (dd, *J* = 9.4, 4.5 Hz, 1H), 3.50–3.40 (m, 1H), 2.90 (dd, *J* = 10.1, 3.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.99, 155.09, 150.88, 138.69, 137.79, 137.71, 128.76, 128.66, 128.62, 128.08, 128.07, 128.04, 128.02, 127.94, 127.76, 117.83, 114.79, 100.45, 97.02, 82.44, 75.58, 73.94, 73.25, 71.94, 71.82, 71.16, 70.76, 70.29, 67.95, 66.28, 55.82, 54.52, 52.41; ESI-MS *m*/*z* C₄₁H₄₇NO₁₂Na [M+Na]⁺ 768.2991, found 768.3005.

4-Methoxyphenyl

2-azido-3,6-di-*O*-benzyl-4-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl-2-*O*-sulfo- α -L-iduropyranosiduronate) (8)

SO₃·Py (82 mg, 0.52 mmol) was added to a solution of disaccharide **6** (20 mg, 0.026 mmol) in DMF (1.0 mL). The mixture was stirred at ambient temperature for 4 h until TLC indicated completion of the reaction. After addition of CH₃OH (0.5 mL), stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1 + 5% Et₃N) to give **8** (24 mg, 99%) as a white solid: $[\alpha]_D^{27}$ = 24.8 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.27 (m, 6H), 7.24–7.01 (m, 9H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.02 (s, 1H), 4.93–4.61 (m, 6H), 4.56 (d, *J* = 8.8 Hz, 1H), 4.47 (d, *J* = 20.0 Hz, 3H), 4.28 (s, 2H), 4.01 (s, 2H), 3.83 (s, 1H), 3.72 (d, *J* = 9.2 Hz, 1H), 3.54 (s, 3H), 3.43 (s, 3H), 3.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.99, 155.09, 150.88, 138.69, 137.79, 137.71, 128.76, 128.66, 128.62, 128.08, 128.07, 128.04, 128.02, 127.94, 127.76, 117.83, 114.79, 100.45, 97.02, 82.44, 77.48, 77.16, 76.84, 75.58, 73.94, 73.25, 71.94, 71.82, 71.16, 70.76, 70.29, 67.95, 66.28, 55.82,

54.52, 52.41; ESI-MS *m/z* calcd for $C_{41}H_{43}N_3O_{18}S_2[M-2H]^{2-}$ 464.6, found 465.0.

4-Methoxyphenyl 2-*N*-sulfo-3,6-di-*O*-benzyl-4-*O*-sulfo-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 3-*O*-benzyl-2-*O*-sulfo-α-L-iduropyranosiduronate) (9)

A solution of PMe₃ in THF (1 M, 0.016 mL, 0.016 mmol) was added to a solution of disaccharide 8 (3.0 mg, 0.0032 mmol) in THF (1.0 mL) and H₂O (0.1 mL). The progress of the reaction was monitored by TLC (RP-18 silica gel, H₂O/CH₃OH, 1/3). The mixture was concentrated in vacuum and co-evaporated with toluene (3 \times 3 mL). The residue was dissolved in pyridine (1.0 mL) and trimethylamine (0.1 mL). SO₃·Py (2.5 mg, 0.16 mmol) was added. The progress of the reaction was monitored by TLC (RP-18 silica gel, H₂O/CH₃OH, 1/3). MeOH (0.4 mL) was then added to quench the reaction. The mixture was concentrated in vacuum. The residue was purified by a small RP-18 silica gel column (H₂O/CH₃OH, 1/0 to 1/9 to 1/2). The fractions containing product were concentrated in vacuum, and the residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin (CH₃OH/H₂O, 9/1). The fractions containing product were concentrated in vacuum to provide 9 (2.6 mg, 83%) as a white solid: $[\alpha]_D^{28} = 5.7$ (c 0.1, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.65 (d, J = 7.2 Hz, 2H), 7.53–7.15 (m, 12H), 7.05 (d, J = 9.0 Hz, 2H), 6.85 (d, J =9.0 Hz, 2H), 5.88 (s, 1H), 5.43 (d, J = 3.2 Hz, 1H), 5.05–4.93 (m, 3H), 4.80–4.71 (m, 2H), 4.66 (d, J = 11.8 Hz, 1H), 4.53 (d, J = 10.6 Hz, 3H), 4.28 (s, 1H), 3.98–3.70 (m, 8H), 3.65 (s, 3H), 3.54 (dd, J = 10.7, 3.2 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 171.28, 156.64, 151.87, 139.92, 139.66, 130.46, 129.26, 129.21, 129.18, 128.98, 128.78, 128.55, 128.43, 128.32, 119.09, 115.63, 99.66, 99.45, 79.02, 77.49, 75.50, 74.39, 74.33, 74.27, 73.20, 72.48, 72.29, 69.90, 68.59, 58.76, 56.03, 53.06; ESI-MS m/z calcd for C₄₁H₄₅NO₂₁S₃ [M-2H]²⁻ 491.6, found 492.2.

4-Methoxyphenyl 2-amino-3,6-di-*O*-benzyl-4-*O*-sulfo-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 3-*O*-benzyl-2-*O*-sulfo-α-L-iduropyranosiduronate) (10)

SO₃·Py (32 mg, 0.201 mmol) was added to a solution of disaccharide 7 (10 mg, 0.013 mmol) in pyridine (1.0 mL). The mixture was stirred at room temperature for 5 min, then subjected to microwave radiation for 15 min at a fix temperature of 55 °C (average power of 18 W). The progress of the reaction was monitored by TLC (RP-18 silica gel, H_2O/CH_3OH , v/v = 1/3). The mixture was subjected to microwave radiation for 15 min at 55 °C (fix temperature) twice. After the addition of CH₃OH (0.5 mL) stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column (H₂O/CH₃OH, 1/0 to 1/9 to 1/4). The fractions containing the product were concentrated in vacuum. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin (CH₃OH). The fractions containing the product were concentrated in vacuum to provide 10 (8.0 mg. 66%) as a white solid: $[\alpha]_{D}^{28} = 26.4$ (c 1.0, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.51 (d, J = 7.0 Hz, 2H), 7.31 (m, 13H), 7.03 (d, J = 9.1 Hz, 2H), 6.87 (d, J = 9.1 Hz, 2H), 5.79 (s, 1H), 5.36 (t, J = 6.6 Hz, 2H), 5.08 (s, 1H), 4.72–4.52 (m, 5H), 4.43 (t, J= 9.4 Hz, 1H, 4.34 (d, J = 19.4 Hz, 2H), 4.10 (d, J = 9.6 Hz, 1H), 3.93-3.63 (m, 9H);¹³C NMR (100 MHz, MeOD) δ 171.13, 156.92, 151.68, 139.85, 139.34, 138.82, 130.24, 129.47, 129.29, 129.12, 129.01, 128.94, 128.91, 128.75, 128.53, 119.15, 115.81, 99.53, 92.45, 77.98, 77.80, 76.38, 74.43, 73.09, 72.87, 70.41, 69.86, 69.26, 68.14, 56.09, 54.83, 53.32; ESI-MS m/z calcd for C₄₁H₄₆NO₁₈S₂ [M-H]⁻904.2, found 904.8.

The reaction temperature was elevated to $100 \,^{\circ}$ C. SO₃·Py (19.0 mg, 0.120 mmol) was added to a solution of disaccharide 7 (6.0 mg, 0.008 mmol) in pyridine (1.0 mL). The mixture was stirred at room temperature for 5 min, then subjected to microwave

radiation for 15 min at a fix temperature of 100 °C (average power of 18 W). The progress of the reaction was monitored by TLC (RP-18 silica gel, H₂O/CH₃OH, v/v = 1/3). After the addition of CH₃OH (0.5 mL), stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column, which was eluted with a stepwise gradient of H₂O and CH₃OH (from v/v = 1/0, to 1/9, to 1/4). The fractions containing the product were concentrated in vacuum. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using CH₃OH as eluent. The fractions containing the product were concentrated in vacuum to provide **10** (7.0 mg, 96%) as a white solid.

4-Methoxyphenyl

2-*N*-sulfo-3,6-di-*O*-benzyl-4-*O*-sulfo-2-deoxy-*a*-D-glucopyranosyl-(1→4)-(methyl 3-*O*-benzyl-2-*O*-sulfo-*a*-L-iduropyranosiduronate) (9)

General Procedure for the Microwave-assisted Simultaneous O,N-Sulfonation with $SO_3 \cdot Py$. SO₃·Py (5 equiv per OH/NH₂) was added to a solution of the starting material in pyridine (1.0 mL for 20 - 30 mg starting material). Then trimethylamine (0.1 mL) was added. The mixture was stirred at room temperature for 5 min, then subjected to microwave radiation for 15 min at a fix temperature of 100 °C (average power of 18 W). The color changed from light yellow to dark red. After the addition of CH₃OH (0.5 mL) stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column, which was eluted with a stepwise gradient of H₂O and CH₃OH (from v/v = 1/0, to 1/9, to 1/2). The fractions containing the product were concentrated in vacuum. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using a mixture of CH₃OH and H₂O (v/v = 9/1) as eluent. The fractions containing the product as sodium salt.

Compound 9 (30.4 mg, 92%) was thus obtained as a white solid.

General Procedure for the Microwave-assisted Simultaneous O,N-Sulfonation with $SO_3 \cdot NEt_3$. SO₃·NEt₃ (5 equiv per OH/NH₂) was added to a solution of the starting material in pyridine (1.0 mL for 20-30 mg starting material). Then trimethylamine (0.1 mL) was added. The mixture was stirred at room temperature for 5 min, then subjected to microwave radiation for 15 min at a fix temperature of 100 °C (average power of 18 W). The color was changed from light yellow to dark red. After the addition of CH₃OH (0.5 mL), stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column, which was eluted with a stepwise gradient of H₂O and CH₃OH (from v/v = 1/0, to 1/9, to 1/2). The fractions containing the product were concentrated in vacuum. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using a mixture of CH₃OH and H₂O (v/v = 9/1) as eluent. The fractions containing the product were concentrated in vacuum to provide the product as sodium salt.

Compound 9 (31.7 mg, 96%) was thus obtained as a white solid.

4-Methoxyphenyl

2-*N*-sulfo-3,6-di-*O*-benzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl- β -D-glucopyranosiduronate) (11)

 $SO_3 \cdot Py$ (38.0 mg, 0.24 mmol) was added to a solution of disaccharide 7 (12.0 mg, 0.016 mmol) in pyridine (1.0 mL). The mixture was stirred at room temperature for overnight. TLC monitor (RP-18 silica gel, H₂O/CH₃OH, v/v = 1/3) indicated the completion of the reaction. After the addition of CH₃OH (0.5 mL) and trimethylamine

(1.0 mL), stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column, which was eluted with a stepwise gradient of H₂O and CH₃OH (from v/v = 1/0, to 1/9, to 1/3). The fractions containing the product were concentrated in vacuum. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using a mixture of CH₃OH and H₂O (v/v = 9/1) as eluent. The fractions containing the product were concentrated in vacuum to provide the product **11** (9.6 mg, 72%) as a white solid: $[\alpha]_D^{28} = 7.7$ (*c* 0.3, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.55–7.15 (m, 15H), 7.03 (d, *J* = 9.1 Hz, 2H), 6.85 (d, *J* = 9.1 Hz, 2H), 5.51 (s, 1H), 5.44 (d, *J* = 3.2 Hz, 1H), 5.01 (d, *J* = 10.9 Hz, 1H), 4.93 (s, 1H), 4.82–4.67 (m, 3H), 4.58 (s, 2H), 4.30 (s, 1H), 4.20 (s, 1H), 4.05 (s, 1H), 3.81–3.63 (m, 8H), 3.61–3.41 (m, 4H); ¹³C NMR (100 MHz, MeOD) δ 171.54, 156.54, 152.06, 140.54, 139.72, 129.35, 129.32, 129.07, 128.88, 128.66, 128.58, 128.29, 118.92, 115.64, 101.56, 97.99, 80.95, 75.53, 74.66, 73.68, 73.33, 73.27, 71.42, 70.75, 68.87, 67.69, 59.11, 56.03, 53.04; ESI-MS *m/z* calcd for C₄₁H₄₆NO₁₅S [M-H]⁻ 824.3, found 824.7.

Methyl 2-azido-3,4-di-*O*-benzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl- β -D-glucopyranosiduronate)-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy- α -D-glucopyranoside (86)

The general procedure for the deprotection of the esters was applied to provide compound **S6** (151 mg, 90%) as a white solid: $[\alpha]_D^{22} = 76.3$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63–6.91 (m, 20H), 5.48 (d, *J* = 3.7 Hz, 1H), 4.94 (t, *J* = 11.2 Hz, 2H), 4.90–4.80 (m, 4H), 4.78 (dd, *J* = 7.1, 3.5 Hz, 2H), 4.67 (dd, *J* = 15.5, 9.3 Hz, 2H), 4.10–3.59 (m, 14H), 3.53 (t, *J* = 9.4 Hz, 1H), 3.45–3.18 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 168.76, 138.26, 137.92, 137.84, 137.77, 128.65, 128.64, 128.61,

128.54, 128.20, 128.08, 128.06, 127.96, 127.90, 127.84, 103.06, 98.85, 97.70, 83.87, 79.93, 79.10, 77.75, 77.36, 76.06, 75.57, 75.34, 75.15, 75.10, 74.98, 74.84, 74.67, 72.14, 70.99, 63.72, 63.50, 61.32, 60.94, 55.49, 52.91; ESI-MS m/z calcd for C₄₈H₅₆N₆O₁₅Na [M+Na]⁺ 979.3696, found 979.3693.

Methyl 2-amino-3,4-di-*O*-benzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl- β -D-glucopyranosiduronate)-(1 \rightarrow 4)-2-amino-3-*O*-benzyl-2-deoxy- α -D -glucopyranoside (12)

The general procedure for the reduction of the azide was applied to provide compound **12** (135 mg, 95%) as a light yellow solid: $[\alpha]_D^{22} = 94.6$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 7.55–7.14 (m, 20H), 5.23 (d, *J* = 3.4 Hz, 1H), 5.14 (t, *J* = 10.6 Hz, 2H), 4.85–4.61 (m, 6H), 4.55 (d, *J* = 11.0 Hz, 1H), 4.12–3.97 (m, 3H), 3.93–3.82 (m, 2H), 3.80–3.64 (m, 7H), 3.64–3.45 (m, 6H), 3.40 (s, 3H), 3.37–3.27 (m, 2H), 2.67 (dd, *J* = 10.0, 3.6 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 170.45, 140.35, 139.99, 139.96, 139.86, 129.67, 129.45, 129.40, 129.38, 129.36, 129.00, 128.78, 128.70, 128.63, 104.69, 101.13, 100.84, 84.88, 83.67, 82.94, 79.27, 78.98, 77.30, 76.35, 76.27, 76.19, 75.60, 75.55, 74.26, 73.03, 61.25, 56.93, 56.43, 55.50, 53.08; ESI-MS *m/z* calcd for C₄₈H₆₀N₂O₁₅Na 927.3886 [M+Na]⁺, found 927.3886.

Methyl

2-*N*-sulfo-3,4-di-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl-2-*O*-sulfo- β -D-glucopyranosiduronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranoside (13)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation

with $SO_3 \cdot NEt_3$ was applied to provide compound **13** (30 mg, 95%) as a white solid: $[\alpha]_D^{25} = 38.1$ (*c* 0.2, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.81–6.96 (m, 20H), 5.38 (brs, J = 3.4 Hz, 1H), 5.15–5.05 (m, 3H), 5.02 (d, J = 11.2 Hz, 1H), 4.95 (d, J =10.8 Hz, 1H), 4.82–4.73 (m, 1H), 4.70 (d, J = 11.0 Hz, 2H), 4.54 (t, 1H), 4.32 (d, J =8.4 Hz, 1H), 4.27–4.19 (m, 2H), 4.18–4.07 (m, 3H), 3.96 (d, J = 6.1 Hz, 2H), 3.76–3.52 (m, 11H), 3.51–3.37 (m, 4H); ¹³C NMR (100 MHz, CD₃OD) δ 170.78, 140.62, 140.28, 140.07, 139.00, 130.33, 129.40, 129.32, 129.16, 129.14, 129.09, 129.05, 128.73, 128.38, 128.24, 128.19, 102.20, 99.97, 99.83, 81.66, 80.51, 80.17, 79.44, 78.65, 78.50, 77.13, 76.41, 75.90, 74.94, 74.46, 71.43, 70.22, 67.18, 66.95, 59.67, 58.42, 58.29, 55.78, 53.25; ESI-MS m/z calcd for C₄₈H₅₈N₂O₃₀S₅ [M-2H]²⁻ 651.1, found 651.5; C₄₈H₅₇N₂O₃₀S₅ [M-3H]³⁻ 433.7, found 434.1.

d3-Methyl 2-amino-2-deoxy-3,4-di-O-benzyl-β/a-D-glucopyranosides (14 and 16)

To a solution of pentaacetyl glucosamine **S7** (500 mg, 1.28 mol) in CD_3OD (10 mL) was slowly added acetyl chloride (1 mL) at 0 °C. Stirring was continued for another 15 min. The reaction mixture was heated to reflux for 8 h. TLC analysis showed complete consumption of the starting material. The mixture was cooled to room temperature and concentrated in vacuum.

16

The residue was dissolved in methanol (4 mL), $CuSO_4 \cdot H_2O$ (2 mg) and NEt_3 (0.36 mL) were added. The mixture was cooled to 0 °C, then fresh TfN₃ in CH₃CN

was added dropwise. The mixture was slowly warmed to room temperature. After 24 h, TLC analysis showed completed disappearance of the starting material. The reaction mixture was concentrated and the residue was co-evaporated twice with toluene and dissolved in acetonitrile (5 mL). Benzaldehyde dimethyl acetal (224 μ L, 1.48 mmol) and *p*-toluenesulfonic acid monohydrate (10 mg) were added to adjust pH = ~3, stirring was continued until TLC indicated disappearance of the raw material. Triethylamine was added and the solvent was evaporated.

The residue was dissolved in DMF (6 mL). The mixture was cooled to 0 °C, then NaH (60%) was added in batches. After 30 min, BnBr (224 μ L, 1.84 mmol) was added, After 2 h, TLC analysis showed disappearance of the starting material. MeOH (2 mL) was then added to quench the reaction. The mixture was poured into CH₂Cl₂, and washed with brine twice. The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 8:1) to give the β-product **S8** (123 mg, 12%) and α-product **S9** (368 mg, 36%) as white solids.

S9: ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.26 (m, 10 H), 5.56 (s, 1 H), 4.95 (d, 1 H, J = 10.8 Hz), 4.80–4.75 (m, 2 H), 4.27 (dd, 1 H, J = 10.0 Hz, 4.4 Hz), 4.05 (t, 1 H, J = 9.2 Hz), 3.86–3.66 (m, 3 H), 3.42 (dd, 1 H, J = 10.0 Hz, 3.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 137.92, 137.32, 129.11, 128.48, 128.35, 128.29, 127.94, 127.84, 126.09, 101.50, 99.40, 82.83, 76.40, 75.07, 68.98, 63.22, 62.64; ESI-MS 423.3 [M+Na]⁺.

Compound **S8** (72 mg, 0.18 mmol) was dissolved in BH₃·THF (1 M, 1.8 mL, 1.8 mmol) under nitrogen and cooled to 0 °C. After 15 min, Bu₂B·OTf (1 M, 0.18 mL, 0.18 mmol) was added dropwise and stirring was continued at 0 °C for 2 h. The reaction mixture was quenched by the addition of Et₃N and the excess BH₃·THF was consumed by slowly adding methanol. The solvent was removed in vacuum, and was then co-evaporated with methanol twice to give a residue: ESI-MS m/z 425.2 [M+Na⁺].

The residue was dissolved in pyridine (1 mL) and water (0.25 mL), trimethylamine (0.04 mL) and propane-1,3-dithiol (0.08 mL) were added. TLC

analysis showed complete disappearance of the starting material. The mixture was concentrated in vacuum, and was then co-evaporated with toluene/ethanol (5 mL, v/v = 5/1) twice. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 20: 1 + 1% Et₃N) to give compound **14** (56 mg, 85%) as a light yellow solid: $[\alpha]_D^{24} = 3.8$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.18 (m, 10H), 4.97 (d, *J* = 11.3 Hz, 1H), 4.84 (d, *J* = 10.9 Hz, 1H), 4.71 (dd, *J* = 11.1, 6.1 Hz, 2H), 4.15 (d, *J* = 7.9 Hz, 1H), 3.88 (dd, *J* = 12.0, 2.1 Hz, 1H), 3.76 (dd, *J* = 12.0, 4.0 Hz, 1H), 3.66 (t, *J* = 9.3 Hz, 1H), 3.47 (t, *J* = 9.4 Hz, 1H), 3.42–3.33 (m, 1H), 2.80 (dd, *J* = 9.7, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.26, 137.89, 128.53, 128.49, 127.92, 127.89, 127.86, 127.82, 104.75, 84.57, 78.21, 75.60, 75.30, 74.82, 61.37, 56.94; ESI-MS *m*/*z* calcd for C₂₁H₂₄D₃NO₅Na [M+Na]⁺ 399.1970, found 399.1962.

Compound **S9** (72 mg, 0.18 mmol) was dissolved in BH₃·THF (1 M, 1.8 mL, 1.8 mmol) under nitrogen and cooled to 0 °C. After 15 min, Bu₂B·OTf (1 M, 0.18 mL, 0.18 mmol) was added dropwise and the stirring was continued at 0 °C for 2 h. The reaction mixture was quenched by the addition of Et₃N and the excess BH₃·THF was consumed by slowly adding methanol. The solvent was removed in vacuum with co-evaporation with methanol twice. ESI-MS m/z 425.2 [M+Na⁺].

The residue was dissolved in pyridine (1 mL) and water (0.25 mL), trimethylamine (0.04 mL) and propane-1,3-dithiol (0.08 mL) were added. TLC showed complete disappearance of the starting material. The mixture was concentrated in vacuum, and co-evaporated with toluene/ethanol (5 mL, v/v = 5/1) twice. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 20:1 + 1% Et₃N) to give compound **16** (60 mg, 89%) as a white solid: $[\alpha]_D^{25} = 122.2$ (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63–6.91 (m, 20H), 5.48 (d, *J* = 3.7 Hz, 1H), 4.94 (t, *J* = 11.2 Hz, 2H), 4.90–4.80 (m, 4H), 4.78 (dd, *J* = 7.1, 3.5 Hz, 2H), 4.67 (dd, *J* = 15.5, 9.3 Hz, 2H), 4.10–3.59 (m, 14H), 3.53 (t, *J* = 9.4 Hz, 1H), 3.45–3.18 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.57, 138.15, 128.66, 128.62, 128.01, 127.96, 100.50, 83.70, 78.72, 77.48, 77.16, 76.84, 75.69, 74.89, 71.61, 61.78, 56.07; ESI-MS *m/z* calcd for C₂₁H₂₄D₃NO₅Na [M+Na]⁺ 399.1970, found 399.1964.

Methyl 2-amino-2-deoxy-3,4-di-*O*-benzyl-α-D-glucopyranose (18)

Compound **S10** (200 mg, 0.50 mmol) was dissolved in BH₃·THF (1 M, 5.0 mL, 5.0 mmol) under nitrogen and cooled to 0 °C. After 15 min, Bu₂B·OTf (1 M, 0.50 mL, 0.50 mmol) was added dropwise and the stirring was continued at 0 °C for 2 h. The reaction mixture was quenched by addition of Et₃N and the excess BH₃·THF was consumed by slowly adding methanol. The solvent was removed in vacuum, and then co-evaporated with methanol twice. ESI-MS m/z 422.3 [M+Na⁺].

The residue was dissolved in pyridine (2 mL) and water (0.5 mL), trimethylamine (0.08 mL) and propane-1,3-dithiol (0.16 mL) were added. TLC analysis showed complete disappearance of the starting material. The mixture was concentrated in vacuum, and then co-evaporated with toluene/ethanol (5 mL, v/v = 5/1) twice. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 20:1 + 1% Et₃N) to give compound **18** (150 mg, 93%) as a white solid: $[\alpha]_D^{22} = 110.8$ (*c* 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.13 (m, 10H), 4.97 (d, *J* = 11.4 Hz, 1H), 4.85 (d, *J* = 11.0 Hz, 1H), 4.78–4.58 (m, 3H), 3.88–3.48 (m, 5H), 3.35 (s, 3H), 2.75 (dd, *J* = 9.4, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.60, 138.17, 128.66, 128.00, 100.67, 83.89, 78.73, 77.48, 77.16, 76.84, 75.71, 74.88, 71.63, 61.78, 56.14, 55.22; ESI-MS *m*/*z* calcd for C₂₁H₂₇NO₅Na [M+Na]⁺ 396.1782, found 396.1790.

d3-Methyl 2-N-sulfo-2-deoxy-3,4-di-O-benzyl-6-O-sulfo-β-D-glucopyranoside (15)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with SO_3 ·NEt₃ was applied to provide compound **15** (26 mg, 91%) as a white solid:

 $[\alpha]_D^{25} = -26.9 \ (c \ 0.2, MeOH);$ ¹H NMR (300 MHz, CD₃OD) δ 7.57–7.13 (m, 10H), 5.17 (d, J = 10.7 Hz, 1H), 4.83 (d, J = 10.7 Hz, 3H), 4.69 (d, J = 6.2 Hz, 1H), 4.36 (s, 2H), 4.00 (s, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 140.21, 139.66, 129.37, 129.21, 129.21, 129.18, 128.58, 128.43, 104.19, 82.82, 78.68, 75.31, 75.25, 74.64, 67.86, 60.56; ESI-MS *m*/*z* calcd for C₂₁H₂₂D₃NO₁₁S₂ [M-2H]²⁻ 267.1, found 267.0.

d3-Methyl 2-*N*-sulfo-2-deoxy-3,4-di-*O*-benzyl-6-*O*-sulfo-α-D-glucopyranoside (17)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with $SO_3 \cdot NEt_3$ was applied to provide compound **17** (35 mg, 90%) as a white solid: $[\alpha]_D^{25} = 37.8 (c \ 0.2, MeOH); {}^{1}H NMR (400 MHz, CD_3OD) \delta 7.42 (d, <math>J = 6.6 \text{ Hz}, 2\text{H}), 7.37-7.16 (m, 7\text{H}), 5.08 (dd, <math>J = 7.1, 3.4 \text{ Hz}, 2\text{H}), 4.80-4.66 (m, 3\text{H}), 4.27 (d, <math>J = 3.1 \text{ Hz}, 2\text{H}), 3.80 (dt, <math>J = 9.8, 3.0 \text{ Hz}, 1\text{H}), 3.71-3.52 (m, 2\text{H}), 3.47 (dd, <math>J = 10.1, 3.6 \text{ Hz}, 1\text{H}); {}^{13}C NMR (100 \text{ MHz}, CD_3OD) \delta 140.20, 139.70, 129.36, 129.21, 129.18, 129.14, 128.56, 128.42, 100.14, 81.93, 78.99, 76.20, 75.94, 70.55, 67.66, 59.50; ESI-MS <math>m/z$ calcd for $C_{21}H_{23}D_3NO_{11}S_2 [M-H]^- 535.1$, found 535.3; $C_{21}H_{22}D_3NO_{11}S_2 [M-2H]^2^- 267.1$, found 267.2.

Methyl 2-N-sulfo-2-deoxy-3,4-di-O-benzyl-6-O-sulfo-α-D-glucopyranose (19)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with $SO_3 \cdot NEt_3$ was applied to provide compound **19** (39 mg, 92%) as a white solid: ¹H NMR (400 MHz, CD₃OD) δ 7.46–7.38 (m, 2H), 7.34–7.18 (m, 8H), 5.12 – 4.99 (m, 2H), 4.81 – 4.67 (m, 3H), 4.27 (d, J = 3.2 Hz, 2H), 3.80 (dt, J = 9.8, 3.1 Hz, 1H), 3.61 (dt, J = 18.7, 9.0 Hz, 2H), 3.47 (dd, J = 10.1, 3.6 Hz, 1H), 3.43 (s, 3H); ¹³C NMR

(100 MHz, CD₃OD) δ 140.22, 139.71, 129.37, 129.23, 129.18, 129.14, 128.57, 128.42, 100.22, 81.95, 78.99, 76.22, 75.95, 70.56, 67.66, 59.51, 55.82; ESI-MS *m/z* calcd for C₂₁H₂₆NO₁₁S₂ [M-H]⁻ 532.1, found 532.3; C₂₁H₂₄NO₁₁S₂ [M-2H]²⁻ 265.6, found 265.7.

Methyl 2-amino-3-*O*-benzyl-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl α -D-glucopyranosiduronate) (20)

The general procedures for the deprotection of the ester and the reduction of the azide were applied to provide compound **20** (35 mg, 66%) as a light yellow solid: $[\alpha]_D^{22} = 169.9$ (*c* 1.0, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.43–7.28 (m, 5H), 5.28 (d, *J* = 3.6 Hz, 1H), 5.02 (d, *J* = 11.2 Hz, 1H), 4.74–4.71 (m, 2H), 4.2 (d, *J* = 11.2 Hz, 1H), 3.81–3.48 (m, 8H), 3.48–3.43 (m, 7H), 2.71 (dd, *J* = 4.0, 10.4 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 171.32, 140.29, 129.37, 129.19, 128.70, 101.68, 83.58, 80.31, 76.05, 74.59, 74.48, 72.67, 71.80, 71.75, 61.85, 56.27, 56.10, 53.21; ESI-MS *m/z* calcd for C₂₁H₃₁NO₁₁Na [M+Na]⁺496.1789, found 496.4791.

Methyl

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with $SO_3 \cdot NEt_3$ was applied to provide compound **21** (20 mg, 98%) as a white solid: $[\alpha]_D^{28} = 12.3$ (*c* 0.6 H₂O); ¹H NMR (400 MHz, D₂O) δ 7.68–7.27 (m, 5H), 5.42 (d, J = 3.5 Hz, 1H), 5.22 (d, J = 3.1 Hz, 1H), 4.51 (d, J = 7.9 Hz, 1H), 4.46 (dd, J = 8.7, 3.2 Hz, 1H), 4.40–4.28 (m, 3H), 4.23 (dd, J = 10.9, 4.7 Hz, 1H), 4.19–4.11 (m, 1H), 3.89–3.80 (m, 5H), 3.55 (d, J = 4.7 Hz, 3H), 3.40 (dd, J = 10.7, 3.5 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 170.33, 137.77, 129.13, 128.38, 128.03, 98.90, 97.17, 77.41, 77.15, 76.14, 75.15, 74.97, 73.79, 71.68, 69.49, 66.58, 57.44, 56.12, 55.46, 53.50; ESI-MS *m*/*z* calcd for C₂₁H₂₉NO₂₆S₅ [M-2H]²⁻435.5, found 435.8.

4-Methoxyphenyl 2-amino-2-deoxy- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -(methyl α -L-iduropyranosiduronate) (22)

The general procedures for the deprotection of ester and the reduction of azide were applied to provide compound **22** (68 mg, 55%) as a light yellow solid: $[\alpha]_D^{24}$ = +5.8 (*c* 0.4, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.56–7.17 (m, 5H), 7.03 (d, *J* = 9.0 Hz, 2H), 6.84 (d, *J* = 9.0 Hz, 2H), 5.47 (d, *J* = 2.3 Hz, 1H), 5.02 (d, *J* = 3.4 Hz, 1H), 4.73 (d, *J* = 11.6 Hz, 1H), 4.22 (brs, 1H), 4.10–3.90 (m, 2H), 3.90–3.62 (m, 8H), 3.49–3.37 (m, 2H), 2.60 (dd, *J* = 10.0, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 171.48, 156.59, 152.23, 139.58, 129.43, 128.87, 128.80, 118.95, 115.59, 101.76, 99.13, 75.77, 75.15, 74.64, 73.39, 73.34, 71.53, 69.95, 69.03, 62.41, 57.04, 56.02, 52.93; ESI-MS *m/z* calcd for C₂₇H₃₅NO₁₂Na [M+Na]⁺ 588.2052, found 588.2047.

4-Methoxyphenyl 2-*N*-sulfo-3,4,6-tri-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)- (methyl 2-*O*-sulfo- α -L-iduropyranosiduronate) (23)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with $SO_3 \cdot NEt_3$ was applied to provide compound **23** (20 mg, 94%) as a white solid: $[\alpha]_D^{28} = 21.4$ (*c* 0.2 H₂O); ¹H NMR (400 MHz, D₂O) δ 7.49–7.26 (m, 5H), 7.07–6.99 (m, 2H), 6.93–6.85 (m, 2H), 5.67 (d, J = 2.4 Hz, 1H), 5.30 (d, J = 3.2 Hz, 1H), 5.01 (d, J = 2.6 Hz, 1H), 4.80 (dd, J = 26.5, 11.2 Hz, 2H), 4.54 (dd, J = 4.5, 2.6 Hz, 1H), 4.32–4.23 (m, 5H), 4.16 (dd, J = 11.0, 5.6 Hz, 1H), 3.96–3.84 (m, 1H), 3.74 (d, J =17.0 Hz, 6H), 3.42 (dd, J = 10.6, 3.2 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 173.08,

157.52, 152.50, 139.80, 131.37, 131.00, 121.78, 117.75, 101.48, 99.79, 77.87, 77.69, 77.00, 76.64, 75.56, 75.48, 72.41, 71.31, 69.50, 59.30, 58.48, 55.87; ESI-MS m/z calcd for C₂₇H₃₃NO₂₇S₅ [M-2H]²⁻ 481.5, found 481.7; C₂₇H₃₂NO₂₇S₅Na [M+Na-2H]²⁻ 492.5, found 492.7.

Methyl (methyl

3,4-di-*O*-benzyl- α -L-iduropyranosyluronate)-(1 \rightarrow 4)-(2-amino-3-*O*-benzyl-2-deox y- α -D-glucopyranosyl)-(1 \rightarrow 4)-(methyl

3-*O*-benzyl- α -L-iduropyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-benzyl-2-deoxy- α -D -glucopyranoside (24)

The general procedures for the deprotection of ester and the reduction of azide were applied to provide compound **24** (109 mg, 80%) as a light yellow solid: $[\alpha]_D^{22}$ = 37.9 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.00 (m, 25H), 5.27 (d, *J* = 6.1 Hz, 2H), 4.99–4.80 (m, 4H), 4.74 (d, *J* = 9.6 Hz, 1H), 4.72–4.66 (m, 2H), 4.66–4.35 (m, 7H), 4.18 (s, 1H), 3.99 (t, *J* = 9.5 Hz, 1H), 3.93 (s, 1H), 3.89–3.71 (m, 7H), 3.71–3.59 (m, 3H), 3.53–3.28 (m, 10H), 2.87–2.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.09, 169.83, 138.69, 138.53, 137.58, 136.77, 128.61, 128.47, 128.45, 128.28, 128.18, 128.05, 128.02, 127.93, 127.85, 127.77, 127.41, 127.30, 127.04, 101.34, 100.98, 100.44, 96.97, 82.00, 81.76, 775.74, 75.32, 74.79, 74.74, 74.69, 74.08, 72.91, 72.78, 72.59, 72.13, 71.88, 71.25, 69.79, 69.23, 68.66, 68.22, 61.14, 61.04, 55.89, 55.22, 55.13, 51.85; ESI-MS *m*/*z* calcd for C₆₂H₇₆N₂O₂₁Na [M+Na]⁺ 1207.4833, found 1207.4867.

Methyl (methyl 3,4-di-*O*-benzyl-2-*O*-sulfo- α -L-iduropyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-

O-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl-2-*O*-sulfo- α -L-iduropyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6 -*O*-sulfo-2-deoxy- α -D-glucopyranoside (25)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with SO_3 ·NEt₃ was applied to provide compound **25** (43 mg, 96%) as a white solid: $[\alpha]_D^{25} = 10.1$ (*c* 0.8, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.79–6.94 (m, 25H), 5.46 (s, 1H), 5.40 (s, 1H), 5.33 (brs, J = 8.4 Hz, 1H), 5.14–5.05 (m, 2H), 5.02 (s, 1H), 4.93 (d, J = 9.8 Hz, 2H), 4.84–4.75 (m, 2H), 4.67 (t, J = 4.7 Hz, 2H), 4.63–4.45 (m, 5H), 4.39–4.11 (m, 7H), 4.05 (s, 1H), 3.94 (t, J = 9.2 Hz, 2H), 3.83 (dd, J = 22.2, 9.8 Hz, 2H), 3.56–3.36 (m, 11H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 172.49, 172.06, 139.91, 139.51, 139.49, 138.86, 138.20, 130.15, 130.07, 129.97, 129.90, 129.72, 129.67, 129.32, 129.26, 129.04, 128.89, 128.84, 128.71, 128.24, 128.01, 100.79, 100.08, 99.17, 98.43, 79.92, 79.06, 76.88, 76.58, 76.08, 73.83, 73.64, 72.95, 72.34, 72.10, 71.48, 71.37, 71.12, 70.76, 70.63, 68.33, 68.23, 67.59, 67.43, 59.95, 59.87, 55.91, 53.02, 52.41, 49.85; ESI-MS *m*/*z* calcd for C₆₂H₇₃N₂O₃₉S₆ [M-3H]^{3-553.7}, found 554.1.

Methyl (methyl

3,4-di-*O*-benzyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-amino-3-*O*-benzyl-2-deoxy - α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl

2,3-di-*O*-benzyl-β-D-glucopyranosyluronate)-(1→4)-2-amino-3-*O*-benzyl-2-deoxy -*α*-D-glucopyranoside (26)

The general procedures for the deprotection of the ester and the reduction of the azide were applied to provide compound **26** (6 mg, 65%) as a light yellow solid: $[\alpha]_D^{27} = 9.3$ (*c* 0.4, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.12 (m, 30H), 5.26 (d, *J* = 3.7 Hz, 1H), 5.14 (d, *J* = 11.2 Hz, 1H), 5.02 (d, *J* = 11.1 Hz, 1H), 4.96–4.67 (m, 7H), 4.56 (ddd, *J* = 25.6, 17.3, 9.3 Hz, 4H), 4.13 (t, *J* = 8.7 Hz, 1H), 4.04–3.64 (m, 9H), 3.64–3.39 (m, 13H), 3.35 (s, 3H), 2.78 (d, *J* = 6.2 Hz, 4H), 2.69 (td, *J* = 10.4, 3.8 Hz, 2H); ESI-MS *m/z* calcd for C₆₉H₈₂N₂O₂₁Na [M+Na]⁺ 1297.5302, found 1297.5306.

Methyl (methyl

3,4-di-*O*-benzyl-2-*O*-sulfo- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 2,3-di-*O*-benzyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranoside (27)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with SO_3 ·NEt₃ was applied to provide compound **27** (6 mg, 95%) as a white solid: $[\alpha]_D^{25} = 26.4$ (c 19.8, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.56–7.02 (m, 30H),

5.43 (d, J = 3.3 Hz, 1H), 5.20 (d, J = 10.6 Hz, 1H), 5.11–5.00 (m, 4H), 4.84–4.59 (m, 10H), 4.49 (t, J = 8.4 Hz, 2H), 4.40 (d, J = 8.4 Hz, 1H), 4.23–4.00 (m, 6H), 3.98–3.79 (m, 7H), 3.68 (s, 3H), 3.64–3.44 (m, 8H), 3.42–3.37 (m, 5H); ¹³C NMR (100 MHz, CD₃OD) δ 171.15, 170.70, 140.34, 140.10, 140.04, 139.93, 139.73, 139.53, 130.02, 129.99, 129.88, 129.79, 129.24, 129.20, 129.14, 129.10, 128.98, 128.69, 128.47, 128.44, 128.35, 128.07, 103.36, 102.31, 100.78, 99.92, 84.07, 82.45, 80.90, 80.37, 80.22, 79.00, 78.71, 77.89, 77.19, 76.38, 76.06, 75.85, 75.57, 75.38, 75.19, 75.11, 71.79, 70.46, 66.82, 59.17, 58.50, 55.87, 53.81, 52.75; ESI-MS *m/z* calcd for C₆₉H₇₉N₂O₃₆S₅ [M-3H]³⁻557.1, found 557.6.

Methyl (methyl

3,4-di-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-(methyl 3-*O*-benzyl-2-*O*-benzoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-2-*N*-sulfo-3-*O*-benzyl-6-*O*-sulfo-2-deoxy- α -D-glucopyranoside (3)

The general procedure for the microwave-assisted simultaneous O,N-sulfonation with SO_3 ·NEt₃ was applied to provide compound **3** (50 mg, 92%) as a white solid: $[\alpha]_D^{25} = 23.9$ (*c* 2.4, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.29–8.20 (m, 2H), 8.17–8.06 (m, 2H), 7.71–6.96 (m, 30H), 5.55 (d, J = 3.3 Hz, 1H), 5.29–5.22 (m, 2H), 5.21–5.15 (m, 1H), 5.07 (d, J = 8.1 Hz, 1H), 4.97 (d, J = 3.5 Hz, 1H), 4.94 (dd, J = 11.2, 2.3 Hz, 2H), 4.86 (d, J = 10.6 Hz, 1H), 4.80–4.70 (m, 4H), 4.61 (dd, J = 13.6, 11.0 Hz, 3H), 4.50–4.39 (m, 2H), 4.33 (dd, J = 10.9, 2.3 Hz, 1H), 4.22 (d, J = 9.8 Hz, 1H), 4.10 (tt, J = 9.8, 6.5 Hz, 4H), 4.01 (d, J = 9.6 Hz, 1H), 3.98–3.93 (m, 1H), 3.93–3.80 (m, 3H), 3.56 (s, 3H), 3.50–3.41 (m, 3H), 3.39 (dd, J = 10.6, 3.4 Hz, 1H), 3.31 (d, J = 1.8 Hz, 3H), 3.22 (s, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 170.59, 170.11, 166.75, 166.63, 139.88, 139.84, 139.42, 139.14, 139.08, 134.76, 134.57, 131.16, 131.10, 130.71, 130.58, 130.00, 129.95, 129.84, 129.75, 129.55, 129.25, 129.14, 129.12, 128.94, 128.90, 128.73, 128.67, 128.60, 128.37, 128.33, 128.29, 101.63, 101.55, 99.88, 99.23, 83.73, 82.54, 81.22, 78.81, 77.93, 77.58, 77.48, 76.70, 76.01, 75.77, 75.69, 75.53, 75.47, 75.27, 74.98, 71.38, 70.29, 66.16, 65.75, 58.66, 58.27, 55.75, 53.14, 52.91; ESI-MS *m*/*z* calcd for C₇₆H₈₁N₂O₃₅S₄ [M-3H]³⁻ 569.8, found 570.3; *m*/*z* calcd for C₇₆H₈₂N₂O₃₅S₄ [M-2H]²⁻ 855.2, found 855.7.

General procedure for full deprotection of the corresponding per-O,N-sulfonated substrates. Method A (28-30). Palladium hydroxide on carbon (Degussa type, 20%, 1.5~2.0 times the weight of the starting material) was added to a solution of the starting material in CH₃OH and H₂O (1 mL for 10~20 mg, v/v = 1/1). The mixture was placed under 10 atm atmosphere of hydrogen for 3 d at 30 °C. The mixture was filtered and concentrated. The residue was diluted with H₂O and immediately passed through a column of Dowex 50WX4 Na⁺ resin using H₂O as eluent. The appropriate fraction was freeze dried to provide the final product as a white solid.

d3-Methyl 2-deoxy-2-*N*-sulfo-6-*O*-sulfo-β-D-glucopyranoside (28)

Method A was applied to provide compound **28** (15 mg, 99%) as a white solid: ¹H NMR (400 MHz, D₂O) δ 8.45 (s, 1H), 4.48 (d, J = 8.4 Hz, 1H), 4.35 (dd, J = 11.1, 2.0 Hz, 1H), 4.23 (dd, J = 11.2, 5.2 Hz, 1H), 3.73–3.59 (m, 2H), 3.57–3.44 (m, 1H), 3.02 (dd, J = 10.0, 8.4 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 102.43, 74.45, 73.36, 69.46, 66.95, 59.77; ESI-MS *m*/*z* calcd for C₇H₁₀D₃NO₁₁S₂ [M-2H]²⁻ 177.0, found 176.8.

d3-Methyl 2-deoxy-2-N-sulfo-6-O-sulfo-a-D-glucopyranoside (29)

Method A was applied to provide compound **29** (21 mg, 99%) as a white solid: ¹H NMR (400 MHz, D₂O) δ 4.98 (d, J = 3.5 Hz, 1H), 4.28 (dd, J = 11.2, 2.0 Hz, 1H), 4.21 (dd, J = 11.2, 5.0 Hz, 1H), 3.88–3.78 (m, 1H), 3.52 (dt, J = 18.9, 9.2 Hz, 2H), 3.22 (dd, J = 10.1, 3.6 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 98.35, 71.12, 69.54, 69.33, 67.00, 57.43; ESI-MS *m*/*z* calcd for C₇H₁₀D₃NO₁₁S₂ [M-2H]²⁻ 177.0, found 176.8.

Methyl 2-deoxy-2-N-sulfo-6-O-sulfo-a-D-glucopyranose (30)

Method A was applied to provide compound **30** (23 mg, 99%) as a white solid: ¹H NMR (400 MHz, D₂O) δ 5.03 (d, J = 3.6 Hz, 1H), 4.33 (dd, J = 11.2, 2.1 Hz, 1H), 4.26 (dd, J = 11.2, 5.1 Hz, 1H), 3.88 (ddd, J = 9.7, 4.9, 2.0 Hz, 1H), 3.64–3.48 (m, 2H), 3.43 (s, 3H), 3.28 (dd, J = 10.1, 3.6 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 98.50, 71.26, 69.62, 69.45, 67.09, 57.56, 55.42; ESI-MS *m/z* calcd for C₇H₁₃NO₁₁S₂ [M-H]⁻ 352.0, found 351.9; [M-2H]²⁻ 175.5, found 175.3.

General procedure for full deprotection of the corresponding per-O,N-sulfonated substrates. Method B (31-34). A premixed solution of 30% solution of H_2O_2 in water (100 equiv per CO₂Me) and 1 M LiOH (50 equiv per CO₂Me) was added to a solution of the starting material in THF (0.02 M) at 0 °C. The mixture was stirred at 0 °C for 24 h. The mixture was then brought to pH = 8~8.5 by addition of acidic resin, and was then filtered. The filtrate was concentrated *in vacuum* (bath temperature 20~30 °C). The residue was dissolved in CH₂Cl₂/MeOH (v/v = 1/1). The resulting solution was layered on the top of a Sephadex LH-20 chromatography column and was then eluted

with $CH_2Cl_2/MeOH$ (v/v = 1/1). The appropriate fraction was concentrated *in vacuum* to provide the product.

Palladium hydroxide on carbon (Degussa type, 20%, 1.5~2.0 times the weight of the starting material) was added to a solution of the starting material in CH₃OH and pH = 7 Buffer H₂O (1 mL for 10~20 mg, v/v = 1/1). The mixture was placed under an atmosphere of hydrogen for 24 h. The mixture was filtered and concentrated. The residue was diluted with H₂O. The solution was layered on the top of a Sephadex G-10 column that was eluted with H₂O. The fractions containing product were concentrated *in vacuum*. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using H₂O as eluent. The appropriate fraction was freeze dried to provide the final product as a white solid.

4-Methoxyphenyl 2-*N*-sulfo-4-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)-2-*O*-sulfo- α -L-iduropyranosiduronate (31)

Method B was applied to provide compound **31** (7 mg, 95%) as a white solid: ¹H NMR (400 MHz, D₂O) δ 7.63–6.91 (m, 20H), 5.48 (d, J = 3.7 Hz, 1H), 4.94 (t, J = 11.2 Hz, 2H), 4.90–4.80 (m, 4H), 4.78 (dd, J = 7.1, 3.5 Hz, 2H), 4.67 (dd, J = 15.5, 9.3 Hz, 2H), 4.10–3.59 (m, 14H), 3.53 (t, J = 9.4 Hz, 1H), 3.45–3.18 (m, 6H); ¹³C NMR (100 MHz, D₂O) δ 174.53, 154.90, 150.37, 129.27, 125.44, 119.68, 115.18, 99.21, 97.03, 77.18, 76.10, 75.61, 70.26, 69.62, 69.07, 68.51, 60.22, 57.96, 55.92; ESI-MS *m/z* calcd for C₁₉H₂₅NO₂₁S₃ [M-2H]²⁻ 349.5, found 349.6.

Methyl 2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2-*O*-sulfo- β -D-glucopyanosyluronate- $(1\rightarrow 4)$ -2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glu copyranoside (32)

Method B was applied to provide compound **32** (11 mg, 94%) as a white solid: $[\alpha]_D^{28} = 23.9 (c \ 0.3, H_2O)$; ¹H NMR (400 MHz, D₂O) δ 5.69 (d, 1 H, J = 2.4 Hz), 5.07 (d, 1 H, J = 2.8 Hz), 4.62 (d, 1 H, J = 10.0 Hz), 4.40 (d, 1 H, J = 10.4 Hz), 4.29 (d, 1 H, J = 11.2 Hz), 4.23–4.15 (m, 2 H), 4.04–3.60 (m, 9 H), 3.46 (s, 3 H), 3.33-3.27 (m, 2 H); ¹³C NMR (100 MHz, D₂O) δ 100.07, 98.31, 97.82, 79.93, 77.91, 76.47, 75.05, 71.30, 69.95, 69.48, 69.08, 68.10, 66.39, 65.97, 57.94, 57.26, 55.51; ESI-MS *m/z* calcd for C₁₉H₃₁N₂O₃₀S₅ [M-3H]³⁻ 309.0, found 309.2; *m/z* calcd for C₁₉H₃₂N₂O₃₀ S₅ [M-2H]²⁻ 464.0, found 464.2.

Methyl

2-*O*-sulfo- α -L-iduropyanosyluronate- $(1\rightarrow 4)$ -2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2-*O*-sulfo- α -L-iduropyanosyluronate- $(1\rightarrow 4)$ -2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glucopyranoside (33)

Method B was applied to provide compound **33** (20 mg, 91%) as a white solid: $[\alpha]_D^{28} = 13.8 (c \ 0.8, H_2O)$; ¹H NMR (400 MHz, D₂O) δ 5.44 (d, J = 3.5 Hz, 1H), 5.23 (d, J = 3.2 Hz, 1H), 5.19 (s, 1H), 5.04 (d, J = 3.6 Hz, 1H), 4.87 (d, J = 2.3 Hz, 1H), 4.41–4.24 (m, 7H), 4.20 (dd, J = 6.3, 3.8 Hz, 1H), 4.13 (d, J = 3.7 Hz, 2H), 4.07 (d, J = 9.7 Hz, 1H), 4.03–3.95 (m, 2H), 3.83–3.62 (m, 4H), 3.44 (s, 3H), 3.29 (dt, J = 10.2, 3.7 Hz, 2H); ¹³C NMR (100 MHz, D₂O) δ 176.38, 174.53, 99.47, 99.19, 98.32, 96.51, 77.09, 76.48, 76.04, 74.16, 69.98, 69.72, 69.21, 68.98, 68.62, 67.00, 58.08, 57.80, 55.50; ESI-MS *m*/*z* calcd for C₂₅H₄₂N₂O₃₉S₆ [M-3H]³⁻ 394.3, found 394.6.

Methyl

2-*O*-sulfo- β -D-glucopyranosyluronate-(1 \rightarrow 4)-2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyanosyluronate-(1 \rightarrow 4)-2-*N*-sulfo-6-*O*-sulfo-2-d eoxy- α -D-glucopyranoside (34)

Method B was applied to provide compound **34** (16 mg, 88%) as a white solid: $[\alpha]_D^{28} = 21.4 (c \ 0.2, \ H_2O)$; ¹H NMR (400 MHz, D₂O) δ 5.52 (d, 1 H, $J = 3.6 \ Hz$), 5.05 (d, 1 H, $J = 3.2 \ Hz$), 4.79 (d, 1 H), 4.60 (d, 1 H, $J = 8.0 \ Hz$), 4.56 (d, 1 H, $J = 10.8 \ Hz$), 4.42 (d, 1 H, $J = 10.8 \ Hz$), 4.33 (dd, 1 H, $J = 11.2 \ Hz$, 3.6 Hz), 4.20 (d, 1 H, $J = 10.8 \ Hz$), 4.12 (t, 1 H, $J = 8.8 \ Hz$), 4.03–4.01 (m, 2 H), 3.88–3.68 (m, 9 H), 3.60 (t, 1 H, $J = 9.6 \ Hz$), 3.44 (s, 3 H), 3.42–3.31 (m, 3 H); ¹³C NMR (100 MHz, D₂O) δ 181.53, 175.60, 102.23, 100.81, 99.84, 98.21, 79.70, 78.81, 78.67, 77.58, 76.63, 75.74, 75.68, 74.48, 72.96, 71.74, 69.70, 69.36, 69.01, 68.25, 66.62, 65.87, 57.86, 57.24, 55.50; ESI-MS *m/z* calcd for C₂₅H₃₉N₂O₃₆S₅ [M-3H⁺]³⁻ 367.7, found 367.5.

General procedure for full deprotection of the corresponding per-O,N-sulfonated substrates. Method C (35). A premixed solution of 30% solution of H_2O_2 in water (100 equiv per CO₂Me) and 1 M LiOH (50 equiv per CO₂Me) were added to a solution of the starting material in THF (0.02 M). The mixture was stirred at rt for 24 h. A solution of KOH (3 M) was added until pH = ~14. The mixture was left stirring for 24 h at room temperature. The mixture was then brought to pH = 8~8.5 by

addition of acidic resin, and was then filtered. The filtrate was concentrated *in vacuum* (bath temperature 20~30 °C). The residue was dissolved in CH₂Cl₂/MeOH (v/v = 1/1). The resulting solution was layered on the top of a Sephadex LH-20 chromatography column and was then eluted with CH₂Cl₂/MeOH (v/v = 1/1). The appropriate fraction was concentrated *in vacuum* to provide the pure product.

Palladium hydroxide on carbon (Degussa type, 20%, 1.5~2.0 times the weight of the starting material) was added to a solution of the starting material in CH₃OH and pH = 7 Buffer H₂O (1 mL for 10~20 mg, v/v = 1/1). The mixture was placed under an atmosphere of hydrogen for 24 h. The mixture was filtered and concentrated. The residue was diluted with H₂O. The solution was layered on the top of a Sephadex G-10 column that was eluted with H₂O. The fractions containing product were concentrated *in vacuum*. The residue was immediately passed through a column of Dowex 50WX4 Na⁺ resin using H₂O as eluent. The appropriate fraction was freeze dried to provide the final product as a white solid.

Methyl β -D-glucopyranosyluronate- $(1\rightarrow 4)$ -2-*N*-sulfo-6-*O*-sulfo-2-deoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-glucopyanosyluronate- $(1\rightarrow 4)$ -2-*N*-sulfo-6-*O*-sulfo-2-d eoxy- α -D-glucopyranoside (35)

Method B was applied to provide compound **35** (36 mg, 92%) as a white solid: $[\alpha]_D^{28} = 21.0 (c \ 0.1, \ H_2O)$; ¹H NMR (400 MHz, D₂O) δ 5.66 (d, $J = 3.5 \ Hz$, 1H), 5.05 (d, $J = 3.5 \ Hz$, 2H), 4.60 (d, $J = 7.8 \ Hz$, 3H), 4.48 (d, $J = 10.0 \ Hz$, 1H), 4.41 (d, $J = 10.0 \ Hz$, 1H), 4.33 (dd, J = 11.1, 4.9 Hz, 1H), 4.19 (d, $J = 10.8 \ Hz$, 1H), 4.03 (d, $J = 9.7 \ Hz$, 2H), 3.91–3.63 (m, 9H), 3.60–3.25 (m, 10H); ¹³C NMR (100 MHz, D₂O) δ 175.73, 174.87, 101.90, 101.71, 98.14, 97.03, 78.14, 76.86, 76.25, 76.19, 75.99, 75.65, 74.98, 72.86, 72.80, 71.79, 69.53, 69.34, 68.55, 68.08, 66.30, 65.70, 57.45, 57.13, 55.45; ESI-MS *m*/*z* calcd for C₂₅H₃₉N₂O₃₃S₄Na [M+Na-3H]²⁻ 523.1, found 523.6.

4-Methoxyphenyl

2-*N*-acetyl-3,6-di-*O*-benzyl-4-*O*-sulfo-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)- (methyl 3-*O*-benzyl-2-*O*-sulfo- β -D-glucopyranosiduronate) (36)

General Procedure for the microwave-assisted simultaneous O-sulfonation and N-acetylation. Sulfur trioxide pyridine complex (3 equiv per OH) was added to a solution of the starting material in pyridine (1.0 mL for 30 mg starting material). The mixture was stirred at room temperature for 5 min, then subjected to microwave radiation for 15 min at a fix temperature of 100 °C (average power of 18 W). Acetic anhydride (2 equiv per NH₂) was added, the mixture was then subjected to microwave radiation for another 15 min at a fix temperature of 50 °C. After the addition of CH₃OH (0.5 mL) and trimethylamine (1 mL), stirring was continued for 15 min. The mixture was concentrated in vacuum. The residue was applied to a small RP-18 silica gel column, which was eluted with a stepwise gradient of H₂O and CH₃OH (from v/v = 1/0, to 1/9, to 1/2). The fractions containing the product were concentrated in vacuum to provide the product as sodium salt.

The general procedure for the microwave-assisted simultaneous O-sulfonation and N-acetylation was applied to provide compound **36** (7 mg, 90%) as a white solid: $[\alpha]_D^{27} = 14.4$ (*c* 0.7, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.55 (d, J = 9.6 Hz, 1H), 7.43–7.14 (m, 14H), 7.04 (d, J = 9.1 Hz, 2H), 6.86 (d, J = 9.1 Hz, 2H), 5.82 (s, 1H), 5.12 (d, J = 10.7 Hz, 1H), 5.00 (s, 2H), 4.81 (d, J = 11.9 Hz, 2H), 4.72–4.51 (m, 5H), 4.39 (t, J = 9.3 Hz, 1H), 4.26 (s, 2H), 4.21–4.12 (m, 1H), 4.05 (d, J = 9.2 Hz, 1H), 3.77 (d, J = 10.0 Hz, 7H), 3.71–3.62 (m, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 174.01, 171.27, 156.72, 151.79, 140.20, 139.90, 139.07, 129.62, 129.38, 129.24, 129.06, 128.92, 128.77, 128.43, 128.37, 119.11, 115.68, 99.76, 96.03, 80.55, 78.38, 76.49, 74.35, 72.88, 72.42, 71.45, 71.00, 70.87, 70.55, 68.43, 56.04, 53.62, 53.14, 23.36; ESI-MS *m/z* calcd for C₄₃H₄₇NO₁₉S₂ [M-2H]²⁻472.6, found 473.6.

4-Methoxyphenyl 2-*N*-acetyl-4-*O*-sulfo-2-deoxy- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -2-*O*-sulfo- α -L-iduropyranosiduronate (37)

Method B was applied to provide compound **37** (5 mg, 92%) as a white solid: ¹H NMR (400 MHz, D₂O) δ 7.17 (d, J = 9.1 Hz, 2H), 7.00 (d, J = 9.1 Hz, 2H), 5.70 (s, 1H), 5.18 (d, J = 3.5 Hz, 1H), 4.49 (s, 1H), 4.39 (s, 1H), 4.26 (t, J = 9.3 Hz, 1H), 4.16–4.04 (m, 2H), 3.97–3.77 (m, 7H), 2.08 (s, 3H); ¹³C NMR (100 MHz, D₂O) δ 174.66, 154.74, 149.96, 119.49, 114.96, 98.72, 93.32, 76.73, 73.43, 70.68, 70.17, 69.71, 67.50, 63.63, 59.99, 55.66, 52.98, 22.11; ESI-MS *m/z* calcd for C₂₁H₂₇NO₁₉S₂ [M-2H]²⁻ 330.5, found 330.8.

References for known compounds:

Compounds 1, S5, S10, S13, S14: P. Xu, W. Xu, Y. Dai, Y. Yang and B. Yu, Org. Chem. Front., 2014, 1, 405-414.

Compounds **S11**, **S12**: J. Li, Y. Dai, W. Li, S. Laval, P. Xu, and B. Yu, *Asian J. Org. Chem.*, **2015**, 4, 756-762.

Compound S1: M. Martin-Lomas, N. Khiar, S. Garcia, J. Koessler, P. M. Nieto, T. W. Rademacher, *Chem. Eur. J.*, 2000, 6, 3608-3621.

Compound S7: P. Traar, F. Belaj, K. A. Francesconi, Aust. J. Chem., 2004, 57, 1051-1053.

xp13-66H

230

2008112xp14-11H

100 f1 (ppm)

2011年11月

8.0

8.5

xp15-12C

230

