Triphenylphosphine Promoted Regio and Stereoselective α-Halogenation of Ynamides

B. Prabagar, Sanatan Nayak, Rajendra K. Mallick, Rangu Prasad and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad-500046, INDIA

akhilchemistry12@gmail.com

SUPPORTING INFORMATION

Table of Contents	Page
General Experimental	S2
Materials	S 2
	50.007
Experimental Procedures, Spectral and Analytical data	\$3-\$27
X-ray Crstallographic data	S26-S27
References	S28
NMR Spectra	S29-S138

General Information: All the reactions were performed in an oven-dried Schlenk flask. Commercial grade solvents were distilled prior to use. Column chromatography was performed using 100–200 Mesh silica gel. Thin layer chromatography (TLC) was performed on silica gel GF254 plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm) and staining over I_2 chamber.

Proton, carbon, and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR, ¹⁹F NMR, and ³¹P NMR) were recorded based on the resonating frequencies as follows: (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) and (¹H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz; ³¹P NMR, 202 MHz) having the solvent resonance as internal standard (¹H NMR, CHCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm) and the data for ¹H, ¹³C NMR, ¹⁹F, ³¹P NMR were reported in terms of chemical shift (ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet; bs = broad singlet; d = doublet; bd = broad doublet, t = triplet; bt = broad triplet; q = quartet; m =multiplet), coupling constants, *J*, in (Hz), and integration. IR spectra were reported in cm⁻¹. HRMS were obtained in ESI-TOF analyzer. LC–MS spectra were obtained (EI positive/nagative mode) with an ionization voltage of 70 eV; data are reported in the form of m/z (intensity relative to base peak 100). Elemental (C, H, N) analysis was carried out using an EA 1112 analyzer. Melting points were determined by electrothermal heating and are uncorrected.

Materials: Unless otherwise noted, all the reagents were obtained commercially and used without purification. Dichloromethane (CH_2Cl_2) and carbon tetrachloride (CCl_4) used from bottle grade. Iodoform (CHI₃), tetrabromomethane (CBr₄), carbon tetrachloride (CCl₄), and triphenylphosphine (Ph₃P) are purchased and used as received.

Experimental Section

Following the known synthetic procedure, **1a–r** are prepared. Analytical and spectral data of **1a**, **1d**, **1h**, **1i**, **1o**, **1p** and **1r** are exactly matching with the reported values.^{1,2}

General Procedure for the Synthesis of 1 (GP 1):¹ To a mixture of 1" (2.0 mmol), CuSO₄·5H₂O (0.2 mmol), 1,10-phenanthroline (0.4 mmol) and K₃PO₄ (4.0 mmol) in dry toluene (8.0 mL) was added 1-bromo-2-arylacetylene (1'). The reaction mixture was heated at 70 °C under the nitrogen atmosphere. Progress of the reaction was monitored periodically by TLC. Upon completion, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified using column chromatography on silica gel to provide 1.

N-Methyl-N-(*m*-tolylethynyl)-N-4-methylbenzenesulfonamide (1b):

Pale yellow solid (460 mg, 77% yield); mp 85–88 °C; $R_f = 0.38$ (9:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃): δ 7.84 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.21–7.14 (m, 3H), 7.12–7.06 (m, 1H), 3.14 (s, 3H), 2.45 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 144.7, 137.9, 133.2, 131.9, 129.8, 128.7, 128.4, 128.1, 127.8, 122.4, 83.6, 69.1, 39.3, 21.6, 21.2; IR (Neat) v_{max} 2230, 1687, 1594, 1446, 1167, 1019, 865, 821, 783 cm⁻¹; MS (EI) m/z (%) 300 (M⁺ + 1, 100), 207 (13); Anal. Calcd. for C₁₇H₁₇NO₂S: C, 68.20; H, 5.72; N, 4.68; S, 10.71. Found: C, 68.35; H, 5.75; N, 4.61; S, 10.62.

N-Benzyl-N-((3,4-dimethylphenyl)ethynyl)-4-methylbenzenesulfonamide (1c):

Colorless solid (710 mg, 91% yield); mp 105–107 °C; $R_f = 0.4$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (bd, J = 7.6 Hz, 2H), 7.38–7.24 (m, 7H), 7.03 (s, 1H), 7.00 (s, 2H), 4.56 (s, 2H), 2.43 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 144.5, 136.6, 136.4, 134.7, 134.5, 132.4, 129.6, 129.4, 128.8, 128.76, 128.4, 128.2,

127.7, 119.9, 81.7, 71.3, 55.7, 21.6, 19.6, 19.5; IR (Neat)v_{max} 2219, 1594, 1452, 1358, 953, 915, 756, 591, 531; cm⁻¹; MS (EI) m/z (%) 390 (M⁺ + 1, 100); Anal. Calcd. for C₂₄H₂₃NO₂S: C, 78.81; H, 6.19; N, 3.59; O, 8.19; S, 8.21. Found: C, 74.15; H, 5.98; N, 3.65; S, 8.31.

N-Benzvl-N-((3-cvanophenvl)ethvnvl)-4-methvlbenzenesulfonamide (1e):

Colorless solid (672 mg, 87% yield); mp 147–148 °C; $R_f = 0.41$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H),

7.54–7.47 (m, 3H), 7.44–7.34 (m, 6H), 4.70 (s, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 134.8, 134.2, 133.7, 133.5, 131.8, 130.7, 129.4, 129.1, 128.9, 128.8, 128.0, 126.2, 117.9, 112.7, 89.3, 68.7, 55.8, 21; IR (Neat)v_{max} 2235, 1693, 1490, 1364, 1304, 1084, 958, 810, 706 cm⁻¹; MS (EI) m/z (%) 441 (M⁺ + 1, 100); Anal. Calcd. for C₂₃H₁₈N₂O₂S: C, 57.15; H, 3.88; N, 3.35; O, 7.25; S, 7.27. Found: C, 57.23; H, 3.82; N, 6.29; S, 7.32.

N-Benzyl-N-((3-formylphenyl)ethynyl)-4-methylbenzenesulfonamide (1f):

Pale yellow gummy liquid (638 mg, 82 % yield); $R_f = 0.62$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.86–7.80 (m, 1H), 7.73 (bs, 1H), 7.60–7.49 (m, 4H), 7.42–7.34 (m, 5H), 4.67 (s, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 145.7, 136.9, 136.4, 135.0, 134.3, 131.8, 130.7, 130.1, 129.3, 129.0, 128.8, 128.0, 123.5, 84.7, 70.4, 55.5, 21.6; IR (Neat)v_{max} 2235, 1594, 1495, 1260, 1172, 1090, 936, 816, 723, 597 cm⁻¹; MS (EI) m/z (%) 389 (M⁺ + 2, 100); Anal. Calcd. for C₂₃H₁₉NO₃S: C, 70.93; H, 4.92; N, 3.60; O, 12.32; S, 8.23. Found: C, 71.56; H, 4.61; N, 7.32; S, 8.38.

N-((4-Acetylphenyl)ethynyl)-N-benzyl-4-methylbenzenesulfonamide (1g):

Colorless solid (629 mg, 78% yield); mp 146–148 °C; $R_f = 0.51$ (4:1 hexane/EtOAc); [Silica, UV and I2]; ¹H NMR (400 MHz, CDCl3): δ 7.90 (d, J = 8.0 Hz, 4H), 7.52 (d, J = 12.8 Hz, 2H), 7.41–7.37 (m, 5H), 7.37–7.32 (m, 2H), 4.68 (s, 2H), 2.55 (s, 3H), 2.43 (s, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 197.5, 145.8, 135.8, 135.0, 134.2, 130.7, 130.6, 129.3, 129.0, 128.9, 128.9, 128.0, 127.3, 86.8, 71.5, 55.5, 27.1, 21.6; IR (Neat)v_{max} 1682, 1594, 1550, 1452, 1265, 1084, 761

cm⁻¹; MS (EI) m/z (%) 389 (M⁺ – 1, 100); Anal. Calcd. for C₂₄H₂₁NO₃S: C, 71.44; H, 5.25; N, 3.47; O, 11.90; S, 7.95. Found: C, 71.35; H, 5.28; N, 3.52; S, 7.89.

N-Benzyl-4-methyl-N-(naphthalen-1-ylethynyl)benzenesulfonamide (1j):

Colorless solid (667 mg, 81% yield); mp 112–114 °C; $R_f = 0.32$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.4 Hz, 2H), 7.83–7.69 (m, 3H), 7.47–7.42 (m, 2H), 7.41–7.36 (m, 3H), 7.36–7.28 (m, 6H), 4.67 (s, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 134.6, 134.4, 133.0, 132.9, 129.8, 129.2, 129.0, 128.6, 128.5, 128.4, 128.0, 127.9, 127.8, 126.5, 126.2, 126.1, 125.1, 120.5, 87.1, 69.9, 55.7, 21.6; IR (Neat)v_{max} 2224, 1649, 1594, 1539, 1495, 1446, 1260, 931, 843, 591 cm⁻¹; MS (EI) m/z (%) 412 (M⁺ + 1, 100); Anal. Calcd. for C₂₆H₂₁NO₂S: C, 75.88; H, 5.14; N, 3.40; O, 7.78; S, 7.79. Found: C, 75.73; H, 5.18; N, 3.46; S, 7.71.

N-Methyl-N-(naphthalen-1-ylethynyl)-N-4-Methylbenzenesulfonamide (1k):

Colorless solid (509 mg, 76% yield); mp 119–121 °C; $R_f = 0.28$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.67(d, J = 8.0 Hz, 1H), 7.57–7.48 (m, 2H), 7.42 (bt, J = 7.2 Hz, 1H), 7.30 (bt, J

= 7.2 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 3.18 (s, 3H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 132.8, 132.80, 132.78, 130.5, 129.6, 129.2, 128.0, 127.9, 127.7, 127.4, 127.2, 126.4, 126.1, 125.7, 124.9, 120.0, 88.5, 67.2, 39.1, 21.2; IR (Neat)v_{max} 2230, 1594, 1550, 1364, 1260, 1167, 947, 800, 171 cm⁻¹; MS (EI) m/z (%) 336 (M⁺ + 1, 100); Anal. Calcd. for C₂₀H₁₇NO₂S: C, 71.62; H, 5.11; N, 4.18; O, 9.54; S, 9.56. Found: C, 71.56; H, 5.18; N, 4.23; S, 9.49.

N-Methyl-N-(phenanthren-9-ylethynyl)-N-4-Methylbenzenesulfonamide (11):

Pale yellow solid; (608 mg, 79% yield); mp 120–121 °C; $R_f = 0.29$ (9:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 8.68-8.59 (m, 2H), 8.35-8.30 (m, 1H), 7.93-7.85 (m, 3H), 7.82-7.52 (m, 1H), 7.71-7.53 (m, 4H), 7.34 (d, J = 8.0 Hz, 2H), 3.28 (s, 3H), 2.42 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.9, 133.3, 131.2, 131.1, 130.7, 130.0, 130.0, 129.9, 128.3, 127.8, 127.2, 127.17, 127.03, 126.9, 126.8, 122.7, 122.6, 119.1, 88.2, 67.7, 39.4, 21.6; IR (Neat) v_{max} 2926, 1600, 1523, 1446, 1167, 1084, 931, 860, 745 cm⁻¹; MS (EI) m/z (%) 386 (M⁺ + 1, 100); Anal. Calcd. for C₂₄H₁₉NO₂S: C, 74.78; H, 4.97; N, 3.63; O, 8.30; S, 8.32 Found: C, 74.65; H, 4.91; N, 3.72; S, 8.38.

N-((3-Fluorophenyl)ethynyl)-N,4-dimethylbenzenesulfonamide (1m):

Pale yellow semi solid; (533 mg, 88% yield); $R_f = 0.36$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.45-7.38 (m, 1H), 7.24-7.18(m, 3H), 3.15 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 245 Hz, 1C), 145.8, 132.7, 131.2 (d, J = 9.0 Hz, 1C), 130.7, 128.1, 127.62, 127.60, 124.4 (d, J = 10.0 Hz, 1C), 117.8 (d, , J = 23.0 Hz, 1C), 117.8 (d, J = 21 Hz, 1C), 58.7, 68.1, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –112.6; IR (Neat) v_{max} 12241, 1698, 1490, 1347, 1161, 1024, 767, 673 cm⁻¹; MS (EI) m/z (%) 304 (M⁺ + 1, 100); Anal. Calcd. for C₁₆H₁₄FNO₂S: C, 63.35; H, 4.65; F, 6.26; N, 4.62; O, 10.55; S, 10.57. Found: C, 63.41; H, 4.58; N, 4.56; S, 10.45.

N-((4-Fluorophenyl)ethynyl)-N,4-dimethylbenzenesulfonamide (1n):

Brownish gummy solid; (394 mg, 65% yield); $R_f = 0.35$ (9:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.46-7.40 (m, 2H), 7.22 (t, J)

= 9.2 Hz, 2H), 3.13 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (d, J = 247 Hz, 1C), 145.7, 134.0, 133.9, 132.7, 130.7, 128.1, 118.7, 118.7, 116.4 (d, J = 22 Hz, 1C), 84.3, 67.9, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2; IR (Neat) v_{max} 2230, 1698, 1600, 1358, 1161, 1084, 959 cm⁻¹; MS (EI) m/z (%) 304 (M⁺ + 1, 100); Anal. Calcd. for C₁₆H₁₄FNO₂S: C, 63.35; H, 4.65; F, 6.26; N, 4.62; O, 10.55; S, 10.57. Found: C, 63.26; H, 4.69; N, 4.58; S, 10.45.

N-Benzyl-N-((5-bromopyridin-2-yl)ethynyl)-4-methylbenzenesulfonamide (1q):

Colorless solid; (573 mg, 65% yield); mp 126–127 °C; $R_f = 0.2$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.39-7.25 (m, 7H),

7.08 (d, J = 8.4 Hz, 1H), 4.61 (s, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 144.9, 141.7, 138.6, 134.6, 134.1, 129.8, 128.7, 128.6, 128.4, 127.7, 127.3, 119.0, 84.4, 71.0, 55.6, 29.7, 21.6; IR (Neat) v_{max} 2230, 1594, 1161, 1134, 1041, 827, 778, 657 cm⁻¹; MS (EI) m/z (%) 304 (M⁺ + 1, 100); Anal. Calcd. for C₂₁H₁₇BrN₂O₂S: C, 71.48; H, 4.69; N, 7.25; O, 8.28; S, 8.30. Found: C, 70.85; H, 4.88; N, 3.56; S, 8.31.

General Procedure for the Chlorination of 1; Synthesis of 2 (GP 2):

To a solution of corresponding ynamide **1** (0.5 mmol), PPh₃ (0.6 mmol), and CCl₄ (1.0 mmol) in CH₂Cl₂ (2.0 mL for 0.5 mmol) in a Schlenk tube was added H₂O (0.75 mmol). The resulting mixture was stirred at room temperature (25 °C). Progress of the reaction was monitored periodically by TLC. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography on silica gel to provide **2**.

(E)-N-Benzyl-N-(1-chloro-2-phenylvinyl)-4-methylbenzenesulfonamide (2a):

Colorless solid; (*E*/*Z* = 99:1; 195 mg, 98% yield); mp = 168–169 °C; R_f = 0.65 (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.38–7.30 (m, 4H), 7.24–7.19 (m, 5H), 7.18–7.08 (m, 3H),

6.61 (s, 1H), 4.80 (bd, J = 9.6 Hz, 1H), 4.05 (bd, J = 10 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 135.0, 134.9, 133.4, 132.9, 129.8, 129.6, 128.9, 128.8, 128.5, 128.3, 128.2, 128.1, 127.5, 52.4, 21.7; IR (Neat) v_{max} 1595, 1348, 1238, 1167, 1085, 937, 816, 740 cm⁻¹; HRMS (ESI) for C₂₂H₂₀ClNNaO₂S (M+Na)⁺: calcd 420.0801, found 420.0805.

(*E*)-N-(1-Chloro-2-*m*-tolylvinyl)-N,4-dimethylbenzenesulfonamide (2b):

Colorless solid; (E/Z = 86:14; 164 mg, 97% yield); mp = 170–172 °C; R_f = 0.65 (4:1 hexane/EtOAc), [Silica, UV and I₂]. Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 1H),

7.35–7.25 (m, 4H), 7.12 (d, J = 8.0 Hz, 1H), 6.62 (s, 1H), 3.02 (s, 3H), 2.43 (s, 3H), 2.34 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 138.1, 134.4, 133.0, 132.5, 129.63, 129.57, 129.5, 128.8, 128.6, 128.3, 125.7, 35.7, 21.6, 21.4 ppm; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 8.0 Hz,), 6.9 (s), 3.07 (s), 2.44 (s), 2.36 (s) ppm; IR (Neat) v_{max} 2356,

2338, 1631, 1356, 1163, 1087, 739 cm⁻¹; HRMS (ESI) for $C_{17}H_{22}ClN_2O_2S$ (M+NH₄)⁺: calcd 353.1091, found 353.1091.

(*E*)-N-Benzyl-N-(1-chloro-2-(3,4-dimethylphenyl)vinyl)-4-methylbenzenesulfonamide (2c):

Colorless solid; (E/Z = 96:4; 183 mg, 86% yield); mp = 180–181 °C; $R_f = 0.64$ (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.0 Hz, 2H), 7.36–7.23 (m, 4H), 7.17–7.08 (m, 4H),

7.01 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.54 (s, 1H), 4.78 (bd, J = 12.4 Hz, 1H), 4.07 (bd, J = 12.8 Hz, 1H), 2.41 (s, 3H), 2.17 (s, 3H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 137.2, 135.9, 135.1, 134.8, 133.6, 130.4, 129.7, 129.5, 129.3, 128.7, 128.1, 126.3, 126.2, 52.2, 21.5, 19.5; IR (Neat) v_{max} 1596, 1453, 1359, 1161, 1087, 1020, 852, 731 cm⁻¹; HRMS (ESI) for C₂₄H₂₄ClNO₂SNa (M+Na)⁺: calcd 448.1114, found 448.1112.

(*E*)-Ethyl 4-(2-(N-benzyl-4-methylphenylsulfonamido)-2-chlorovinyl)benzoate (2d):

Colorless solid; (*E*/*Z* = 98:2; 107 mg, 73% yield); mp = 138–140 °C; R_f = 0.34 (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.89–7.82 (m, 4H), 7.35 (d, *J* = 8.4 Hz, 4H), 7.24–7.19 (m, 2H), 7.18–7.10 (m, 3H), 6.64 (s, 1H), 4.81 (bd, *J* = 12.8 Hz, 1H), 4.36 (q, *J* = 6.8 Hz, 2H),

4.03 (bd, J = 12.8 Hz, 1H), 2.46 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 144.7, 137.2, 134.7, 134.0, 133.2, 130.0, 129.8, 129.7, 129.5, 129.2, 128.9, 128.5, 128.4, 128.3, 60.9, 52.4, 21.6, 14.3; IR (Neat) v_{max} 1704, 1605, 1353, 1266, 1162, 773 cm⁻¹; HRMS (ESI) for C₂₅H₂₄ClNNaO₄S (M+Na)⁺: calcd 492.1012, found 492.1009.

(E)-N-Benzyl-N-(1-chloro-2-(3-cyanophenyl)vinyl)-4-methylbenzenesulfonamide (2e):

Pale yellow solid; (E/Z = 100:0; 101 mg, 92% yield); mp = 168–170 °C; R_f = 0.44 (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.44 (dt, J =

7.6, 1.2 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.25–7.15 (m, 6H), 6.60 (s, 1H), 4.81 (bd, J = 12.4 Hz, 1H), 4.02 (bd, J = 12.8 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.9, 134.6, 134.1, 133.1, 132.7, 132.6, 131.7, 131.5, 130.1, 129.8, 129.7, 128.9, 128.7, 128.6, 128.5, 118.3, 112.2, 52.2, 21.6; IR (Neat) v_{max} 2219, 1595, 1359, 1233, 1162, 1014,

904, 789, 663 cm⁻¹; HRMS (ESI) for $C_{23}H_{19}ClN_2NaO_2S$ (M+Na)⁺: calcd 445.0753, found 445.0757.

(*E*)-N-Benzyl-N-(1-chloro-2-(3-formylphenyl)vinyl)-4-methylbenzenesulfonamide (2f):

Colorless solid; (*E*/*Z* = 100:0; 90 mg, 82% yield); mp = 185–186 °C; R_f = 0.37 (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 9.84 (s, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.63 (bs, 1H), 7.60 (br d, *J* = 7.6 Hz, 1H), 7.38–7.32 (m, 3H), 7.25–7.21

(m, 2H), 7.17–7.09 (m, 3H), 6.68 (s, 1H), 4.82 (bd, J = 12.4 Hz, 1H), 4.04 (bd, J = 12.8 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 192.0, 144.8, 136.1, 134.7, 134.3, 133.8, 133.6, 133.3, 130.7, 129.8, 129.7, 129.2, 128.8, 128.5, 128.3, 52.3, 21.6; IR (Neat) v_{max} 2920, 1638, 1348, 1156, 1025, 904 cm⁻¹; HRMS (ESI) for C₂₃H₂₄ClN₂O₃S (M+NH₄)⁺: calcd 443.1196, found 443.1194.

(*E*)-N-(2-(4-Acetylphenyl)-1-chlorovinyl)-N-benzyl-4-methylbenzenesulfonamide (2g):

Colorless solid; (*E*/*Z* = 94:6; 80 mg, 73% yield); mp = 132–134 °C; R_f = 0.37 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.42–7.33 (m, 4H), 7.27–7.21 (m, 2H), 7.20–7.09 (m, 3H), 6.64 (s, 1H), 4.82 (bd, *J*

= 12.8 Hz, 1H), 4.03 (bd, J = 12.8 Hz, 1H), 2.57 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 197.5, 144.8, 137.4, 136.5, 134.7, 133.9, 133.2, 129.8, 129.72, 129.67, 128.8, 128.7, 128.5, 128.3, 128.0, 52.4, 26.6, 21.6; IR (Neat) v_{max} 1671, 1266, 1162, 1085, 707 cm⁻¹; HRMS (ESI) for C₂₄H₂₂ClNNaO₃S (M+Na)⁺: calcd 462.0907, found 462.0909.

(*E*)-N-(1-Chloro-2-phenylvinyl)-N,4-dimethylbenzenesulfonamide (2h):

Colorless solid; (*E*/*Z* = 100:0; 151 mg, 93% yield); mp = 201–202 °C; R_f = 0.55 (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 7.2 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.45–7.28 (m, 5H), 6.68 (s, 1H), 3.06 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 134.2,

133.1, 132.4, 129.8, 129.5, 128.9, 128.82, 128.77, 128.69, 35.7, 21.7; IR (Neat) v_{max} 1638, 1591, 1360, 1167, 1085, 960 cm⁻¹; HRMS (ESI) for C₁₆H₂₀ClN₂O₂S (M+NH₄)⁺: calcd 339.0934, found 339.0937.

(E)-N-(1-Chloro-2-(2-methoxyphenyl)vinyl)-N,4-dimethylbenzenesulfonamide (2i):

Colorless solid; (E/Z = 99:1; 118 mg, 67% yield); mp = 130–132 °C; $R_f = 0.59$ (4:1 hexane/EtOAc), [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃): δ 7.86 (dd, J = 8.0, 1.6 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.32–7.24 (m, 3H), 7.04 (s, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H),

3.00 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 144.2, 134.3, 129.9, 129.5, 129.4, 128.7, 128.6, 126.5, 122.0, 120.7, 110.6, 55.5, 35.8, 21.6; IR (Neat) v_{max} 1593, 1492, 1349, 1250, 1159, 962, 763, cm⁻¹; HRMS (ESI) for C₁₇H₂₂ClN₂O₃S (M+NH₄)⁺: calcd 369.1040, found 369.1040.

(*E*)-N-Benzyl-N-(1-chloro-2-(naphthalen-1-yl)vinyl)-4-methylbenzenesulfonamide (2j):

Colorless solid; (*E*/*Z* = 100:0; 202 mg, 90% yield); mp = 193–195 °C; R_f = 0.57 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, *J* = 6.5 Hz, 2H), 7.73 (dd, *J* = 8.0, 4.5 Hz, 2H), 7.46 (d, *J* = 7.0 Hz, 1H), 7.42–7.36 (m, 2H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.31–7.27 (m, 1H), 7.25

(bs, 1H), 7.23 (bs, 2H), 6.92– 6.87 (m, 2H), 6.86–6.76 (m, 3H), 4.56 (bs, 1H), 4.05 (bs, 1H), 2.40 (s, 3H); 13 C NMR (125.7 MHz, CDCl₃) δ 144.4, 134.9, 133.1, 133.03, 132.97, 131.2, 129.8, 129.4, 129.3, 129.2, 128.8, 128.6, 128.1, 127.84, 127.81, 126.6, 125.9, 125.5, 125.2, 123.9, 52.3, 21.6; IR (Neat) ν_{max} 1580, 1345, 1086, 919, 873, 798, 776, 704 cm⁻¹; HRMS (ESI) for C₂₆H₂₂ClNNaO₂S (M+Na)⁺: calcd 470.0957, found 470.0958.

(E)-N-(1-Chloro-2-(naphthalen-1-yl)vinyl)-N,4-dimethylbenzenesulfonamide (2k):

Colorless solid; (E/Z = 100:0; 175 mg, 94% yield); mp = 201–203 °C; $R_f = 0.55$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.91–7.86 (m, 1H), 7.85–7.81 (m, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.0 Hz, 1H), 7.53 (bd, J = 7.0 Hz, 2H), 7.50–7.46 (m, 2H), 7.44 (t, J = 7.8

Hz, 1H), 7.27 (s, 1H), 7.06 (d, J = 8.0 Hz, 2H), 2.99 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 134.3, 133.4, 131.9, 131.2, 130.2, 130.1, 129.2, 128.8, 128.5, 128.3, 126.4, 126.3, 125.9, 125.4, 123.8, 36.2, 21.5; IR (Neat) v_{max} 1644, 1594, 1085, 924, 891, 779, 705 cm⁻¹; HRMS (ESI) for C₂₀H₁₈ClNO₂SNa (M+Na)⁺: calcd 394.0644, found 394.0643.

(E)-N-(1-Chloro-2-(phenanthren-9-yl)vinyl)-N,4-dimethylbenzenesulfonamide (2l):

Yellow gummy liquid; (E/Z = 94:6; 177 mg, 84% yield); mp = 223–226 °C; $R_f = 0.65$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCI₃): δ 8.67 (d, J = 7.6 Hz, 1H), 8.63 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 8.0, 0.8 Hz, 1H), 7.88–7.79 (m, 2H), 7.71–7.55 (m, 4H), 7.44 (d, J =

8.4 Hz, 2H), 7.25 (bs, 1H), 6.84 (d, J = 8.0 Hz, 2H), 3.04 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 134.7, 132.5, 131.2, 130.28, 130.26, 130.23, 130.17, 129.1, 129.0, 128.8, 128.0, 127.6, 127.1, 126.8, 126.74, 126.66, 124.7, 122.9, 122.5, 122.3, 36.4, 21.4; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.23 (s), 3.17 (s), 2.40 (s); ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 128.21, 31.5, 22.6; IR (Neat) ν_{max} 2360, 1637, 1353, 1164, 1087, 964 cm⁻¹; HRMS (ESI) for C₂₄H₂₄ClN₂O₂S (M+NH₄)⁺: calcd 439.1247, found 439.1247.

(*E*)-N-(1-Chloro-2-(3-fluorophenyl)vinyl)-N,4-dimethylbenzenesulfonamide (2m):

Yellow semi solid; (*E*/*Z* = 79:21; 160 mg, 94% yield); mp = 188–190 °C R_f = 0.52 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.39–7.28 (m, 6H), 6.62 (s, 1H), 3.03 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8 (d, *J* =

244.0 Hz, 1C), 144.6, 135.1, 134.1, 131.2, 130.1, 129.6, 129.3, 128.2, 124.6 (d, J = 3.0 Hz, 1C), 115.8 (d, J = 21.2 Hz, 1C), 115.3 (d, J = 23.2 Hz, 1C), 35.7, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.5; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.05–6.98 (m), 6.90 (s), 3.07 (s), 2.45 (s); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, J = 247 Hz, 1C), 144.4, 135.1, 134.4, 131.1, 130.0, 129.7, 129.3, 128.2, 125.6 (d, J = 2.0 Hz, 1C), 115.9 (d, J = 21 Hz, 1C), 115.7 (d, J = 19 Hz, 1C), 35.9; IR (Neat) v_{max} 1448, 1352, 1162, 994, 810, 784, 723, 706 cm⁻¹; HRMS (ESI) for C₁₆H₁₉ClFN₂O₂S (M+NH₄)⁺: calcd 357.0840, found 357.0841.

(*E*)-N-(1-Chloro-2-(4-fluorophenyl)vinyl)-N,4-dimethylbenzenesulfonamide (2n):

Pale yellow solid, (E/Z = 78:22; 155 mg, 91% yield); mp = 170–172 °C $R_f = 0.53$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.5 Hz, 2H), 7.55–7.50 (m, 2H), 7.25 (t, J = 6.4 Hz, 2H), 7.19 (s, 1H), 7.0–6.95 (m, 2H), 6.54 (s, 1H), 2.95 (s, 2H), 2.37

(s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 163.7 (d, J = 249.1 Hz, 1C), 144.6, 134.1, 131.2, 130.6

(d, J = 8.8 Hz, 1C), 129.6, 128.8, 128.3, 115.72 (d, J = 21.4 Hz, 1C), 35.7, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.5 (s); Minor rotamer (selected signals): ¹H NMR (500 MHz, CDCl₃): δ 7.68 (d), 6.54 (s), 2.38 (s), 3.0 (s), ¹³C NMR (125.8 MHz, CDCl₃) δ 131.3 (d, J = 7.5 Hz, 1C), 129.7, 129.4, 129.31, 129.28, 115.3 (d, J = 21.4 Hz, 1C); IR (Neat) v_{max} 1502, 1349, 1081, 963, 818, 710 cm⁻¹; HRMS (ESI) for C₁₆H₁₉ClFN₂O₂S (M+NH₄)⁺: calcd 357.0840, found 357.0840.

(*E*)-*tert*-Butyl 1-chloro-2-phenylvinyl(phenyl)carbamate (20):

Colorless solid; (*E*/Z = 99:1; 213 mg, 97% yield); mp = 182–184 °C; R_f = 0.65 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.37 (m, 4H), 7.36–7.30 (m, 4H), 7.30–7.27 (m, 1H), 7.25–7.17 (m, 1H), 6.68 (s, 1H), 1.34 (s, 9H), ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 138.9,

133.8, 130.3, 128.90, 128.86, 128.7, 128.5, 127.6, 126.3, 124.4, 82.6, 27.9; IR (Neat) v_{max} 3057, 2980, 2926, 1725, 1638, 1599, 1490, 1451, 1391, 1369, 1287, 1237, 1150, 1002, 892, 843 cm⁻¹; HRMS (ESI) for C₁₉H₂₀ClNNaO₂ (M+Na)⁺: calcd 352.1080, found 352.1080.

(*E*)-N-Benzyl-N-(1-chloropent-1-enyl)-4-methylbenzenesulfonamide (2p):

Colorless solid; (*E*/Z = 99:1; 213 mg, 93% yield); mp = 168–170 °C; R_f = 0.35 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.77 (m, 2H), 7.40–7.26 (m, 7H), 5.74–5.65 (m, 1H), 4.80 (d, *J* = 13.2

Hz, 1H), 3.92 (d, J = 13.2 Hz, 1H), 2.45 (s, 3H), 2.08–1.72 (m, 2H), 1.17–0.97 (m, 1H), 0.81–0.67 (m, 1H), 0.67–0.61 (m, 3H), ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 137.8, 135.6, 134.5, 129.6, 128.41, 128.37, 128.2, 125.3, 51.4, 31.3, 21.7, 21.5, 13.5; IR (Neat) v_{max} 1596, 1356, 1261, 1167, 1040, 904, 784, 752, cm⁻¹; HRMS (ESI) for C₁₉H₂₂ClNNaO₂S (M+Na)⁺: calcd 386.0957, found 386.0953.

(E)-N-Benzyl-N-(2-(5-bromopyridin-2-yl)-1-chlorovinyl)-4-ethylbenzenesulfonamide (2q):

Brownish gummy liquid; (E/Z = 94:6; 213 mg, 77% yield); $R_f = 0.51$ (30% hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (500 MHz, CDCl₃): δ 8.45 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.64–7.61 (m, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.28–7.23 (m, 2H), 7.22–7.13 (m, 3H), 6.76 (s, 1H), 4.85

(bs, 1H), 4.06 (bs, 1H), 2.47 (s, 3H), 13 C NMR (101 MHz, CDCl₃) δ 150.5, 149.98, 144.9, 138.5,

134.7, 132.3, 131.5, 129.8, 129.7, 128.8, 128.6, 128.4, 124.3, 119.8, 52.6, 21.7; Minor rotamer (selected signals): 7.80 (d, J = 8.5 Hz), 7.65 (bd, J = 2.0 Hz), 7.60 (bd, J = 8.5 Hz), 6.72 (s), 2.46 (s); ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 129.8, 128.8, 128.6, 128.1; IR (Neat) v_{max} 1640, 1548, 1494, 1306, 1287, 1088, 1023, 879, 740 cm⁻¹; HRMS (ESI) for C₂₁H₁₈BrClN₂NaO₂S (M+Na)⁺: calcd 498.9859, found 498.9866.

(*E*)-N-Benzyl-N-(1-chloro-2-(thiophen-2-yl)vinyl)-4-methylbenzenesulfonamide (2r):

Brownish solid; (*E*/*Z* = 95:5; 174 mg, 86% yield); mp = 178–180 °C; R_f = 0.57 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 4H), 7.25 (bd, *J* = 4.8 Hz, 1H), 7.16 (bd, *J* = 5.6 Hz, 3H), 6.99 (d, *J* = 3.2 Hz, 1H), 6.85 (t, *J* = 4 Hz, 1H), 6.77 (s,

1H), 4.89 (d, J = 12.8 Hz, 1H), 3.97 (d, J = 12.4 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 135.5, 134.6, 133.0, 130.2, 129.9, 129.6, 129.1, 128.7, 128.4, 128.0, 127.8, 125.9, 124.7, 52.4, 21.7; IR (Neat) v_{max} 1594, 1086, 858, 808, 772, 715, 703 cm⁻¹; HRMS (ESI) for C₂₀H₁₉ClNO₂S₂ (M+H)⁺: calcd 404.0546, found 404.0546.

General Procedure for the Bromination of 1; Synthesis of 3 (GP 3):

$$R^{1} \xrightarrow{\text{EWG}} N$$

$$R^{2} \xrightarrow{\text{EWG}} H_{2} O (1.5 \text{ equiv}) \xrightarrow{\text{EWG}} R^{1} \xrightarrow{\text{EWG}} R^{1}$$

$$R^{1} \xrightarrow{\text{EWG}} R^{2} \xrightarrow{\text{EWG}} R^{2}$$

$$R^{1} \xrightarrow{\text{EWG}} R^{2}$$

To a solution of corresponding ynamide **1** (0.5 mmol), PPh₃ (0.6 mmol), and CBr₄ (0.6 mmol) in CH₂Cl₂ (2.0 mL for 0.5 mmol) in a Schlenk tube was added H₂O (0.75 mmol). The resulting homogeneous mixture was stirred at room temperature (25 °C). Progress of the reaction was monitored periodically by TLC. The reaction mixture became heterogeneous after stirring for 5 h. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography on silica gel to provide **3**.

(*E*)-N-Benzyl-N-(1-bromo-2-phenylvinyl)-4-methylbenzenesulfonamide (3a):

Colorless solid; (*E*/Z= 98:2; 213 mg, 96% yield); mp = 168–170 °C; R_f = 0.65 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Mixture of rotamers; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.38 (bd, *J* = 8.0 Hz, 3H), 7.34 (bd, *J* = 6.4 Hz, 2H), 7.28 (bd, *J* = 5.2 Hz, 2H), 7.23 (bt, *J* = 7.6 Hz, 2H), 7.18–7.11

(m, 3H), 6.85 (s, 1H), 4.86 (d, J = 13.2 Hz, 1H), 3.97 (d, J = 12.8 Hz, 1H), 2.5 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 139.8, 134.3, 133.6, 133.2, 129.9, 129.6, 129.2, 128.7, 128.6, 128.4, 128.2, 128.1, 119.7, 53.4, 21.7; IR (Neat) v_{max} 1349, 1164, 1155, 1087, 1012, 866, 820, 747 cm⁻¹; HRMS (ESI) for C₂₂H₂₄BrN₂O₂S (M+NH₄)⁺: calcd 459.0742, found 459.0738.

(*E*)-N-Benzyl-N-(1-bromo-2-(3,4-dimethylphenyl)viny)-4-methylbenzenesulfonamide (3b):

Colorless solid; (*E*/Z= 88:12; 221 mg, 94% yield); mp = 205–208 °C; R_f = 0.65 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.4 Hz, 2H), 7.38–7.27 (m, 4H), 7.21–7.11 (m, 3H), 7.07 (d, J = 7.6 Hz, 1H), 7.00 (s, 1H), 6.93 (d, J = 7.6

Hz, 1H), 6.76 (s, 1H), 4.82 (d, J = 13.2 Hz, 1H), 4.00 (d, J = 13.2 Hz, 1H), 2.43 (s, 3H), 2.19 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 139.7, 137.5, 136.0, 134.7, 133.6, 131.3, 130.0, 129.8, 129.6, 129.4, 129.1, 128.32, 128.28, 126.3, 118.7, 53.3, 21.7, 19.7, 19.6; Minor rotamer (selected signals): 7.64 (d, J = 8.0 Hz), 7.24 (d, J = 9.6 Hz), 5.06 (s), 3.76 (s), 2.40 (s), 2.20 (s); ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 128.7, 128.5, 128.1, 127.7; IR (Neat) 1363, 1109, 1020, 906, 813, 767, 720 cm⁻¹; HRMS (ESI) for C₂₄H₂₄BrNNaO₂S (M+Na)⁺: calcd 492.0609, found 492.0599.

(*E*)-N-(1-Bromo-2-(naphthalen-1-yl)vinyl)-N,4-dimethylbenzenesulfonamide (3c):

Colorless solid; (*E*/Z = 96:4; 183 mg, 88% yield); mp = 168–171 °C; R_f = 0.5 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Mixture of rotamers: ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.69 (m, 4H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.46–7.39 (m, 5H), 7.35 (bt, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 2.87

(s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 135.1, 133.8, 133.4, 131.02, 130.97, 129.2, 128.8, 128.5, 128.4, 126.3, 126.1, 125.9, 125.4, 123.8, 123.3, 37.0, 21.5; IR (Neat)*v*_{max}

1593, 1400, 1132, 1021, 893, 927, 775, 704 cm⁻¹; HRMS (ESI) for C₂₀H₁₈BrNO₂SNa (M+Na)⁺: calcd 438.0139, found 438.0139.

(*E*)-N-(1-Bromo-2-(phenanthren-9-yl)vinyl)-N,4-dimethylbenzenesulfonamide (3d):

Yellow gummy liquid; (E/Z = 98:2; 203 mg, 87% yield); $R_f = 0.53$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 8.67 (bd, J = 8.0 Hz, 1H), 8.62 (bd, J = 8.0 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.87–7.77 (m, 2H), 7.71–7.54 (m, 4H), 7.52–7.39 (m, 3H),

6.83 (d, J = 8.0 Hz, 2H), 3.00 (s, 3H), 2.16 (s, 3H); ¹³C NMR (400 MHz, CDCl₃) δ 143.9, 135.2, 134.4, 131.2, 130.3, 130.2, 129.9, 129.6, 129.1, 129.0, 128.1, 127.3, 127.1, 126.8, 126.73, 126.67, 124.7, 123.7, 122.9, 122.3, 37.2, 21.4; Minor rotamer (selected signals): 7.30 (d, J = 8.0 Hz), 3.13 (s), 2.40 (s); IR (Neat) v_{max} 1451, 1163, 826, 768, 715, 704 cm⁻¹; HRMS (ESI) for C₂₄H₂₄BrN₂O₂S(M+NH₄)⁺: calcd 483.0742, found 483.0745.

(*E*)-N-Benzyl-N-(1-bromo-2-(5-bromopyridin-2-yl)vinyl)-4-ethylbenzenesulfonamide (3e):

Pale yellow liquid; (E/Z = 99:1; 201 mg, 77% yield); $R_f = 0.50$ (2.3:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 8.42 (bd, J = 2.0 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.64–7.56 (m, 2H), 7.36 (d, J = 8.12 Hz, 2H), 7.33–7.28 (m, 2H), 7.23–7.14 (m, 3H), 7.0 (s, 1H), 4.88 (d,

J = 13.2 Hz,1H), 3.97 (d, J = 13.2 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 150.0, 145.1, 139.3, 138.6, 134.2, 133.2, 129.83, 129.76, 129.1, 128.6, 128.4, 124.2, 123.7, 119.8, 53.6, 21.8; IR (Neat) v_{max} 1349, 1166, 1091, 812, 738, 700, 658, 638 cm⁻¹; HRMS (ESI) for C₂₁H₁₉Br₂N₂O₂S (M+H)⁺: calcd 520.9534, found 520.9537.

(E)-N-Benzyl-N-(1-bromo-2-(thiophen-2-yl)vinyl)-4-methylbenzenesulfonamide (3f)

Brown solid; (*E*/Z = 96:4; 213 mg, 83% yield,); mp = 156–158 °C; $R_f = 0.57$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃): δ 7.90 (d, J = 8.0 Hz, 2H), 7.44–7.34 (m, 4H), 7.28–7.23 (m, 1H), 7.21–7.12 (m, 3H), 6.99 (bd, J = 3.6 Hz, 1H), 6.97 (s, 1H), 6.84 (t, J = 4.4 Hz, 1H), 4.92 (d, J

= 12.8 Hz, 1H), 3.87 (d, J = 12.8 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 136.2, 134.1, 133.1, 132.9, 130.3, 130.1, 129.6, 129.4, 128.4, 128.0, 127.8, 125.9, 116.6, 53.4,

21.7; IR (Neat) v_{max} 1455, 1362, 1166, 1021, 742, 703, 671, 609 cm⁻¹; HRMS (ESI) for $C_{20}H_{19}BrNO_2S_2$ (M+H)⁺: calcd 448.0041, found 448.0040.

Colorless solid; $(E/Z = 99:1; 201 \text{ mg}, 85\% \text{ yield}); \text{mp} = 76-78 \text{ }^\circ\text{C}; R_f = 0.35$

(E)-N-Benzyl-N-(1-bromopent-1-enyl)-4-methylbenzenesulfonamide (3g):

н Br TsŃ. Bn 3g

(4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.4 Hz, 2H), 7.42-7.25 (m, 7H), 5.91 (dd, J = 9.2, 6.0 Hz, 1H), 4.82 (d, J = 9.2, 6.0 Hz, 1H)J = 13.2 Hz, 1H), 3.84 (d, J = 13.6 Hz, 1H), 2.46 (s, 3H), 2.06–1.88 (m, 1H), 1.87–1.73 (m, 1H), 1.13–0.98 (m, 1H), 0.81–0.68 (m, 1H), 0.63 (br t, J = 7.2, Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 142.8, 135.2, 134.4, 129.7, 129.6, 128.6, 128.4, 128.3, 116.5, 52.2, 32.5, 21.7, 21.3, 13.5; IR (Neat)v_{max} 1596, 1494, 1356, 1209, 1167, 1027, 747, 699 cm⁻¹; HRMS (ESI) for $C_{19}H_{26}BrN_2O_2S$ (M+NH₄)⁺: calcd 425.0898, found 425.0898.

General Procedure for the Iodination of 1; Synthesis of 4 (GP 4):

To a solution of corresponding ynamide 1 (0.5 mmol), PPh₃ (0.6 mmol), and CHI₃ (0.6 mmol) in CH₂Cl₂ (2.0 mL for 0.5 mmol) in a Schlenk tube was added H₂O (0.75 mmol). The resulting homogeneous mixture was stirred at room temperature (25 °C). Progress of the reaction was monitored periodically by TLC. The reaction mixture became heterogeneous after stirring for 5 h. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography on silica gel to provide 4.

(E)-N-Benzyl-N-(1-Iodo-2-phenylvinyl)-4-methylbenzenesulfonamide (4a):

Reddish-orange solid; (E/Z = 99:1; 235 mg, 96% yield); mp = 212–114 °C; $R_f =$ 0.65 (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.29 (bd, J = 7.6 Hz, 4H), 7.24–7.09 (m, 7H), 4.86 (d, J = 13.2 Hz, 1H), 3.62 (d, J = 13.2 Hz, 1H), 2.47 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 144.9, 134.9, 133.3, 132.98, 130.0, 129.63, 129.58,

128.8, 128.7, 128.4, 128.2, 128.0, 98.0, 55.2, 21.8; IR (Neat) v_{max} 1594, 1349, 1155, 1021, 910, 860, 761 cm⁻¹; HRMS (ESI) forC₂₂H₂₀INNaO₂S (M+Na)⁺: calcd 512.0157, found 512.0158.

(*E*)-N-Benzyl-N-(1-iodo-2-(3,4-dimethylphenyl)vinyl)-4-methylbenzenesulfonamide (4b):

Colorless solid; (E/Z = 91:9; 164 mg, 84% yield); mp = 186–189 °C; $R_f = 0.64$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.4 Hz, 2H), 7.41–7.31 (m, 5H), 7.21–7.13 (m, 3H), 7.09–7.03 (m, 2H), 6.99 (s, 1H), 6.91 (d, J = 7.6 Hz,

1H), 4.85 (d, J = 13.2 Hz, 1H), 3.67 (d, J = 13.2 Hz, 1H), 2.45 (s, 3H), 2.16 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 144.7, 137.6, 135.9, 133.8, 133.3, 132.6, 130.1, 129.9, 129.6, 129.5, 129.3, 128.33, 128.27, 126.4, 96.9, 55.1, 21.7, 19.7, 19.6; Minor rotamer (selected signals) ¹H NMR (400 MHz, CDCl₃): δ 7.24 (s), 2.20 (d, J = 3.2 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 129.4, 128.7, 128.5; IR (Neat) v_{max} 1598, 1401, 1022, 812, 743, 715 cm⁻¹; HRMS (ESI) for C₂₄H₂₅INO₂S (M+H)⁺: calcd 518.0651, found 518.0649.

(E)-N-(1-Iodo-2-(2-methoxyphenyl)vinyl)-N,4-dimethylbenzenesulfonamide (4c):

Colorless solid; (*E*/*Z* = 76:24; 133 mg, 60% yield); mp = 163–165 °C; R_f = 0.48 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCI₃): δ 7.86 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.51 (s, 1H), 7.29–7.23 (m, 3H), 6.93 (t, *J* = 5.2 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H),

3.80 (s, 3H), 2.80 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 144.4, 139.7, 130.1, 129.5, 129.3, 129.2, 128.7, 123.9, 120.7, 110.6, 97.7, 55.5, 38.3, 21.6; Minor rotamer (selected signals): 7.85 (d, *J* = 1.6 Hz), 7.77 (d, *J* = 8.0 Hz), 7.62 (d, *J* = 8.0 Hz), 7.57 (d, *J* = 7.6 Hz), 7.38–7.32 (m), 7.30 (d, *J* = 1.6 Hz), 6.85 (d, *J* = 8.4 Hz), 3.83 (s), 2.89 (s), 2.45 (s), ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 144.3, 133.9, 133.0, 130.4, 130.1, 128.7, 127.6, 127.6, 124.9, 121.0, 119.9, 110.5, 101.4, 38.8; IR (Neat) v_{max} 1437, 1342, 1135, 1086, 892, 751, 705 cm⁻¹; HRMS (ESI) for C₁₇H₁₈INNaO₃S (M+Na)⁺: calcd 465.9950, found 465.9951.

(E)-Ethyl 4-(2-(N,4-dimethylphenylsulfonamido)-2-iodovinyl)benzoate (4d)

Colorless solid (E/Z = 99:1; 133 mg, 94% yield); mp = 176–179 °C; $R_f = 0.38$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz,

CDCl₃): δ 7.88–7.79 (m, 4H), 7.36 (d, J = 8.4 Hz, 2H), 7.33–7.28 (m, 4H), 7.21–7.13 (m, 4H), 4.88 (d, J = 13.2 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.62 (d, J = 13.2, 1H), 2.47 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 147.2, 145.1, 139.0, 133.2, 132.8, 130.1, 129.98, 129.7, 129.5, 129.3, 128.6, 128.5, 128.4, 100.6, 61.0, 55.3, 21.8, 14.3; IR (Neat) v_{max} 1496, 1456, 1309, 1125, 907, 750, 685 cm⁻¹; HRMS (ESI) for C₂₅H₂₄INNaO₄S (M+Na)⁺: calcd 584.0368, found 584.0374.

(E)-N-Benzyl-N-(1-iodo-2-(naphthalen-1-yl)vinyl)-4-methylbenzenesulfonamide (4e):

Pale yellow solid; (E/Z = 92.8; 229 mg, 89% yield); mp = 193–195 °C; $R_f = 0.58$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Mixture of rotamers; ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.71 (m, 5H), 7.46–7.35 (m, 2H), 7.33–7.23 (m, 5H), 7.04–6.96 (m, 2H), 6.91–6.79 (m, 3H), 4.66 (d, J = 12.8 Hz, 1H), 3.65

(d, J = 13.6 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 144.6, 133.7, 132.9, 132.6, 132.0, 130.7, 129.6, 129.4, 129.4, 128.6, 128.0, 127.9, 126. 2, 125.9, 125.5, 125.2, 123.9, 99.1, 54.6, 21.7 IR (Neat) v_{max} 1595, 1345, 1163, 1087, 920, 870, 812, 658 cm⁻¹; HRMS (ESI) for C₂₆H₂₂INO₂SNa (M+Na)⁺: calcd 562.0314, found 562.0305.

(E)-N-(1-Iodo-2-(phenanthren-9-yl)vinyl)-N,4-dimethylbenzenesulfonamide(4f):

Yellow semisolid; (E/Z = 84:16; 251 mg, 98% yield); $R_f = 0.53$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 8.68 (dd, J = 8.4, 1.2 Hz, 1H), 8.63 (d, J = 8.4 Hz, 1H), 7.93–7.87 (m, 1H), 7.84–7.78 (m, 2H), 7.75 (bd, J = 0.8 Hz, 1H),

7.73–7.56 (m, 4H), 7.40 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 2.86 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 134.0, 131.2, 131.0, 130.3, 130.2, 129.7, 129.65, 129.1, 129.0, 128.8, 128.3, 127.2, 127.17, 126.8, 126.7, 126.69, 124.7, 122.9, 122.4, 100.3, 38.8, 21.4; Minor rotamer (selected signals): 8.73–8.70 (m), 8.17–8.13 (m), 7.33 (d, J = 8.0 Hz), 3.0 (s), 2.42 (s); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 140.0, 128.0, 127.1, 126.9, 125.5, 122.9, 122.6, 38.9, 21.51; IR (Neat) v_{max} 1449, 1351, 1160, 941, 891, 745, 713 cm⁻¹; HRMS (ESI) for C₂₄H₂₄IN₂O₂S (M+NH₄)⁺: calcd 531.0603, found 531.0603.

(*E*)-N-Benzyl-N-(1-iodo-2-(5-bromopyridin-2-yl)vinyl)-4-methylbenzenesulfonamide (4g):

pale yellow liquid; (E/Z = 99:1; 211 mg, 78% yield); $R_f = 0.5$ (2.3:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃): δ 8.43 (s, 1H), 7.86 (bd, J = 8.0 Hz, 2H), 7.74–7.60 (m, 2H), 7.36 (bd, J = 8.0 Hz, 2H), 7.24–7.13 (m, 3H), 6.76 (s, 1H), 4.86 (br s,

1H), 4.08 (br s, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 150.0, 144.9, 138.5, 134.7, 134.6, 133.3, 131.6, 129.7, 128.8, 128.5, 128.4, 124.3, 119.8, 52.6, 21.7; IR (Neat) v_{max} 1456, 1093, 812, 741, 702, 661, 613 cm⁻¹; HRMS (ESI) for C₂₁H₁₉BrIN₂O2S (M+H)⁺: calcd 568.9395, found 568.9393.

General Procedure for the Suzuki Reaction of 4a; Synthesis of (Z)-N-Benzyl-N-(1,2diphenylvinyl)-4-methylbenzenesulfon amide 5 (GP 5):³

A mixture of α-iodoenamide **4a** (245 mg, 0.5 mmol), phenylboronic acid (74 mg, 0.6 mmol), Pd[(P(*o*-Tol)₃]₂ (15 mg, 10 mol %), and Na'OBu (96 mg, 1.0 mmol) was dissolved in EtOH/H₂O (5:1; 3.0 mL. The resulting solution was stirred at room temperature for 3 h. Progress of the reaction was monitored by TLC. Upon completion, EtOH was removed under vacuum. The reaction mixture was diluted with EtOAc and washed with water and brine. The organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography to afford **5**. colorless gummy liquid; (*E*/Z = 81:19; 216 mg, 98% yield); *R_f*= 0.65 (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.35–7.28 (m, 3H), 7.28–7.24 (m, 3H), 7.20–7.15 (m, 3H), 7.14–7.08 (m, 2H), 7.08–7.03 (m, 2H), 6.85 (bd, *J* = 0.8 Hz, 1H), 6.84–6.79 (m, 3H), 6.56 (s, 1H), 4.51 (s, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 137.5, 137.3, 136.5, 136.3, 135.9, 135.6, 135.3, 130.6, 130.0, 129.7, 129.3, 129.0, 128.4, 128.3, 128.0, 127.9, 127.7, 52.2, 21.7; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz), 7.48 (d, *J* = 14.4 Hz), 7.24–7.20 (m), 4.64 (s), 2.41 (s); ¹³C NMR (101 MHz, CDCl₃): δ 128.7, 128.6, 128.4,

127.6, 127.2, 127.0, 126.9, 126.5, 115.3, 112.1, 49.5; IR (Neat) v_{max} 1643, 1489, 1260, 1057, 942, 810 cm⁻¹; HRMS (ESI) for C₂₈H₂₆NO₂S (M+H)⁺: calcd 440.1684, found 440.1687.

General Procedure for the Sonagashira Reaction of 4; Synthesis of 6 (GP 6):⁴

To a solution of α -iodoenamide **4** (245 mg, 0.5 mmol) in toluene/diisopropylamine (2:1; 3.0 mL) was added Pd(PPh₃)₄ (58 mg, 10 mol %). After 2 h, CuI (41 mg, 7 mol %) and phenylacetylene (66 µL, 0.6 mmol) were added to the reaction mixture and stirred for 6 h at room temperature. Upon completion, the crude reaction mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified using column chromatography on silica gel to provide **6**.

Synthesis of (Z)-N-Benzyl-N-(1,2-diphenylvinyl)-4-methylbenzenesulfonamide (6a):

Brown gummy liquid; (*E*/*Z* = 67:33; 223 mg, 96% yield); $R_{f.} = 0.65$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer (*E*): ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 6.8 Hz, 2H), 7.41–7.27 (m, 10H), 7.34–7.28 (m, 2H), 7.19–7.13 (m, 3H), 6.99 (s, 1H), 4.69 (s, 2H), 2.40

(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 141.5, 135.9, 134.1, 131.4, 130.2, 129.7, 129.6, 129.2, 129.0, 128.8, 128.5, 128.3, 128.2, 127.8, 122.1, 117.0, 96.7, 84.0, 52.01, 21.5; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz), 7.71 (bt, *J* = 1.6 Hz), 7.43 (d, *J* = 7.2 Hz), 7.34–7.28 (m), 7.13–7.08 (m), 6.84 (s,), 2.39 (s) ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 140.9, 135.6, 135.0, 134.4, 133.9, 129.2, 129.1, 129.0, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 122.2, 118.3, 91.3, 86.0, 53.4; IR (Neat) ν_{max} 2356, 1594, 1089, 925, 816, 755 cm⁻¹; HRMS (ESI) for C₃₀H₂₅NO₂S (M+Na)⁺: calcd 486.1504, found 486.1505.

General Procedure for the Sequential Iodination and Alkynylation of 1; Synthesis of 6 (GP 7):⁵

To a solution of corresponding ynamide **1** (0.5 mmol), PPh₃ (0.6 mmol, 1.2 equiv), and CHI₃ (0.6 mmol, 1.2 equiv) in CH₂Cl₂ (2.0 mL) in a Schlenk tube was added H₂O (0.75 mmol, 1.5 equiv). The homogeneous solution was stirred at 25 °C for 5 h. The reaction mixture turned to heterogeneous. Solvent CH₂Cl₂ was then completely evaporated. To this reaction mixture, Pd(PPh₃)₄ (10 mol %), toluene/diisopropylamine (2:1; 2.0 mL) was added. After 2 h, CuI (7 mol %) and alkyne (0.6 mmol) were added to the reaction mixture and stirred for 6 h at room temperature. Upon completion, the crude reaction mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified using column chromatography on silica gel to provide **6**.

(Z)-Ethyl-4-(2-(N-benzyl-4-methylphenylsulfonamido)-4-phenylbut-1-en-3-ynyl)benzoate (6b)

Colorless gummy liquid; (E/Z = 63:37; 164 mg, 61% yield); $R_f = 0.40$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer (E): ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.32–7.27 (m, 8H), 7.17–7.08 (m, 4H), 6.96

(s, 1H), 4.64 (s, 2H), 4.43–4.32 (m, 2H), 2.35 (s, 3H), 1.44–1.33 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 143.9, 140.0, 138.4, 135.7, 134.2, 131.5, 129.8, 129.7, 129.5, 129.5, 128.9, 128.7, 128.5, 128.3, 128.3, 128.1, 121.7, 119.2, 97.6, 83.6, 61.0, 52.2, 21.5, 14.3; Minor rotamer (selected signals): 7.92 (d, *J* = 8.8 Hz, 1.4 Hz), 7.85 (d, *J* = 8.0 Hz), (d, *J* = 8.4 Hz), 7.41–7.32 (m), 7.24–7.20 (m), 7.08–7.03 (m), 6.80 (s), 4.43–4.32 (m), 2.33 (s), 1.44–1.33 (m); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 144.1, 139.6, 138.2, 125.5, 134.8, 131.5, 130.5, 130.3, 129.6, 129.3, 129.0, 128.9, 128.5, 128.2, 127.8, 121.9, 120.4, 92.4, 85.6, 61.1, 53.4, 14.4; IR (Neat) v_{max} 2975,

1715, 1605, 1436, 1277, 1101, 1085 cm⁻¹; HRMS (ESI) for $C_{33}H_{29}NO_4S$ (M+Na)⁺: calcd 558.1715, found 558.1716.

(Z)-N-Benzyl-N-(1-(3-cyanophenyl)-4-phenylbut-1-en-3-yn-2-yl)-4- methylbenzene sulfo namide (6c):

Colorless gummy liquid; (E/Z = 53:47; 159 mg, 65% yield) was obtained in as; $R_{f.} = 0.65$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer ¹H NMR (400 MHz, CDCl₃): δ 8.17 (s, 1H), 7.87 (t, J = 6.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.54 (bs, 1H), 7.39–7.23 (m, 9H),

7.22–7.17 (m, 1H), 7.13–7.04 (m, 2H), 6.74 (s, 1H), 4.63 (s, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 138.3, 135.3, 134.1, 133.6, 132.9, 131.9, 131.6, 131.5, 129.8, 129.7, 129.6, 129.0, 128.6, 128.4, 128.3, 128.1, 127.2, 120.9, 118.6, 112.2, 92.6, 85.0, 53.3, 21.5; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.0, J = 1.6 Hz), 7.47 (d, J = 7.6 Hz), 7.42 (d, J = 8.0), 7.39–7.23 (m), 7.22–7.17 (m), 7.13–7.04 (m), 6.88 (s), 4.40 (bs), 4.12 (d, J = 6 Hz), 2.37 (s), ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 138.3, 136.9, 136.3, 135.5, 135.1, 134.7, 131.8, 129.2, 129.0, 128.6, 127.9, 121.7, 121.3, 119.6, 112.6, 98.2, 83.1, 52.1, 47.3, IR (Neat) ν_{max} 2230, 2192, 1162, 1090, 1052, 1030, 663 cm⁻¹; HRMS (ESI) for C₃₁H₂₄N₂NaO₂S (M+Na)⁺: calcd 511.1456, found 511.1456.

(Z)-N-Benzyl-N-(4-cyclopropyl-1-phenylbut-1-en-3-yn-2-yl)-4-methylbenzene sulfonamide (6d)

Colorless gummy liquid; (E/Z = 86:14; 145 mg, 68% yield); $R_f = 0.45$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.4 Hz, 2H), 7.67–7.60 (m, 2H), 7.37–7.28 (m, 5H), 7.26–7.18 (m, 5H), 6.80 (s, 1H), 4.5 (s, 2H), 2.45 (s, 3H), 1.24–1.16 (m,

1H), 0.79–0.73 (m, 2H), 0.45–0.40 (m, 2H), ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 140.0, 136.1, 136.0, 134.3, 129.3, 128.9, 128.83, 128.75, 128.6, 128.4, 128.1, 127.6, 117.3, 101.6, 70.4, 51.7, 21.6, 8.6, 0.13; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 8.4 Hz), 7.56–7.7.50 (m), 7.15–7.09 (m), 7.02–6.95 (m), 6.6 (s), 3.87 (s), 3.87 (s), 1.31–1.24 (m), 1.15–1.08 (m), 0.73–0.69 (m), 0.40–0.38 (m); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 139.6, 136.6, 134.6, 134.1, 129.8, 129.7, 129.6, 129.2, 128.5, 128.1, 127.98, 127.95, 127.75,

72.4, 53.0, 21.6, 8.5, -0.20; IR (Neat) v_{max} 2197, 1704, 1452, 1085, 1030, 942 cm⁻¹; HRMS (ESI) for C₂₇H₂₅NNaO₂S (M+Na)⁺: calcd 450.1504, found 450.1506.

Gram Scale Synthesis of 2a:

$$\begin{array}{ccc} & & & & CCl_4 \left(2 \text{ equiv}\right) & & H \\ Ph & & & & PPh_3 \left(1.2 \text{ equiv}\right) \\ & & & Ts & & H_2O \left(1.5 \text{ equiv}\right) & & & H^{-1}Cl \\ & & & & H_2O \left(1.5 \text{ equiv}\right) & & & H^{-1}Cl \\ & & & & H_2O \left(1.5 \text{ equiv}\right) & & & H^{-1}Cl \\ & & & & H_2O \left(1.5 \text{ equiv}\right) & & & H^{-1}Cl \\ & & & & H^{-1}Cl & & H^{-1}Cl \\ & & &$$

Following the general procedure (GP-2), a mixture of **1a** (1.0 g, 2.8 mmol), PPh₃ (871 mg, 3.3 mmol), and CCl₄ (0.5 mL, 5.5 mmol) in CH₂Cl₂ (6.0 mL) and H₂O (75 μ L, 4 mmol) was taken in a Schlenk tube. The resulting mixture was stirred at room temperature (25 °C) for 3 h. The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography on silica gel to provide **2a** (959 mg) in 87 % yield.

Gram Scale Synthesis of 4a:

Following the general procedure (GP-4), a mixture of **1a** (1.0 g, 2.8 mmol), PPh₃ (871 mg, 3.3 mmol), and CHI₃ (1.3 g, 3.3 mmol) in CH₂Cl₂ (6.0 mL) and H₂O (75 μ L, 4 mmol) was taken in a Schlenk tube. The resulting mixture was stirred at room temperature (25 °C) for 5 h. The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified through column chromatography on silica gel to provide **4a** (1.1 g) in 82 % yield.

Synthesis of 2-chloro-1-phenyl-1H-indole 7:6

A solution of enamide **2o** (165 mg, 0.5 mmol) and [bis(trifluoroacetoxy)iodo]benzene (259 mg, 0.6 mmol) in CH₂Cl₂ (2.0 mL) was heated in a Schlenk tube at 80 °C for 12 h. Upon completion, the crude mixture filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified using column chromatography on silica gel to provide **7.** brown solid; (74 mg, 65% yield); mp = 210–212 °C; $R_{f.} = 0.43$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 7.6 Hz, 2H), 7.61–7.53 (m, 2H), 7.53–7.44 (m, 5H), 7.40 (t, J = 7.2 Hz, 1H), ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 134.5, 132.0, 129.5, 129.2, 128.8, 128.7, 127.3, 126.3, 124.6, 120.0, 111.3; IR (Neat) v_{max} 1644, 1594, 1356, 1155, 1085, 958, 924, 891, 844, 824, 799, 779, 730, 705 cm⁻¹; HRMS (ESI) for C₁₄H₁₁ClN (M+H)⁺: calcd 228.0580, found 228.0576.

Chlorination of 1a in D₂O:

The ynamide **1a** (181 mg, 0.5 mmol), PPh₃ (158 mg, 0.6 mmol), and CCl₄ (97µL, 1 mmol) were dissolved with CH₂Cl₂ (2.0 mL) in a Schlenk tube followed by the addition of D₂O (14 µL, 0.8 mmol). The reaction mixture was stirred at room temperature (25 °C). After stirring for 2 h, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under the reduced pressure. The crude residue was purified using column chromatography on silica gel to provide **2a-D** and **2a** (80:20; 192 mg) in 96 % yield as colorless solid. Analytical data is exactly matching with the values mentioned above for **2a**.

Ratio of **2a-D** and **2a** is determined based on the integration of the respective CH₃-proton of N-Ts of **2a-D** ($\delta = 2.46$, s, 3H) and alkenyl proton of **2a** ($\delta = 6.60$, s, 0.19H).

4-(N-Benzyl-4-methylphenylsulfonamido)-1-phenylbut-3-yn-2-yl acetate (8):⁷

Colorless thick liquid; (192 mg, 86% yield); $R_{f} = 0.40$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 6.4 Hz, 2H), 7.36–7.21 (m, 10H), 7.13 (dd, J = 5.6, 2.8 Hz, 2H), 5.60 (t, J = 5.2 Hz, 1H),

4.52 (d, J = 11.2 Hz, 1H), 4.39 (d, J = 11.2 Hz, 1H), 3.04–2.90 (m, 2H), 2.45 (s, 3H), 2.01 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.5, 135.9, 134.4, 129.6, 128.8, 128.7, 128.5, 128.3, 127.8, 127.2, 126.8, 80.1, 69.3, 65.1, 55.4, 40.9, 21.6, 20.9; IR (Neat)v_{max} 2252, 1456, 1367, 1309, 1234, 1090 cm⁻¹; HRMS (ESI) for C₂₆H₂₅NNaO₄S (M+Na)⁺: calcd 470.1402, found 470.1402.

(Z)-N-Benzyl-2-iodo-4-phenyl-N-tosylbut-2-enamide (9):⁷

Brown gummy liquid (E/Z = 88:12; 114 mg, 96 % yield); $R_f = 0.52$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; Major rotamer: ¹H NMR (400 MHz, CDCl₃): δ 7.52 (bd, J = 8.4 Hz, 2H), 7.40–7.25 (m, 8H), 7.22 (d, J = 8.0 Hz,

2H), 7.11-7.04 (m, 2H), 6.51 (d, J = 14.8 Hz, 1H), 5.11 (s, 2H), 3.48 (br d, J = 6.0 Hz, 2H), 2.43(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 149.1, 144.6, 137.3, 136.9, 136.8, 129.6, 128.9, 128.7, 128.6, 128.0, 127.72, 127.66, 126.7, 122.5, 49.3, 38.7, 21.6; Minor rotamer (selected signals): ¹H NMR (400 MHz, CDCl₃): δ 7.4–7.28 (m, 3H), 6.17 (d, J = 10.8 Hz), 4.91 (s), 2.47 (s); ¹³C NMR (101 MHz, CDCl₃) δ 129.2, 128.5, 127.0, IR (Neat) v_{max} 1677, 1353, 975, 915, 811 cm^{-1} ; HRMS (ESI) for C₂₄H₂₃INO₃S (M+H)⁺: calcd 532.0443, found 532.0449.

(E)-4-(N-Benzyl-4-methylphenylsulfonamido)-4-chloro-1-phenylbut-3-en-2-yl acetate (10)

Colorless solid; (E/Z = 91:09; 103 mg, 95% yield); $R_{f.} = 0.45$ (4:1 hexane/EtOAc); [Silica, UV and I2]; Major rotamer: ¹H NMR (500 MHz, DMSO): δ 7.87 (d, J = 8.5 Hz, 2H), 7.45–7.15 (m, 12H), 6.84 (bs, 1H), 5.74 (bs, 1H), 4.85 (bs, 1H), 4.03 (bs, 1H), 3.26 (bs, 1H), 2.95 (bs, 1H), 2.50 (s, 3H), 1.76 (bs, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 144.7, 136.5, 134.8, 133.6, 133.2, 130.0, 129.8, 128.6, 128.2, 126.6, 122.1, 70.8, 52.0, 39.4, 21.7, 21.0; Minor rotamer (selected signals): ¹H NMR (500 MHz, DMSO): δ 7.52 (d, J = 8.0 Hz), 7.10–7.06 (m), 2.42 (s), 1.94 (br s); ¹³C NMR (101 MHz, CDCl₃) δ 133.2, 127.7, 69.5, IR (Neat) v_{max} 1732, 1496, 1458, 1359, 1090, 745 cm⁻¹: HRMS (ESI) for C₂₆H₂₆ClNNaO₄S (M+Na)⁺: calcd 506.1169, found 506.1169.

X-ray crystallography:

X-ray reflections for 2a were collected on an Oxford Xcalibur Gemini Eos CCD diffractometer using Mo-K α , radiation. Data reduction was performed using CrysAlisPro (version 1.171.33.55).⁸ OLEX2-1.0 and SHELX-TL 97 programme were used to solve and refine the data.⁹ All non-hydrogen atoms were refined anisotropically, and C–H hydrogens were fixed.

Figure 1. Molecular structures of compounds **2a**; thermal ellipsoids are set at 30% probability. Oxygen (red), nitrogen (blue), and sulphur (yellow).

Table 1. Crystallographic Data for Compound 2a

Compound	2a
formula	C ₂₂ H ₂₀ ClNO ₂ S
Mw	397.90
crystal system	Monoclinic
space group	I a
T [K]	293 K
a [Å]	11.4861(4)
b [Å]	14.0594(4)
c [Å]	13.4860(4)
α [°]	90
β [°]	111.393(4)
γ [°]	90
V [Å ³]	2027.77(12)

Z	4
$\rho_{calcd} [\mathrm{g}\mathrm{cm}^{-3}]$	1.303
μ [mm ⁻¹]	2.758
total reflns	3990
unique reflns	2273
observed	2237
$R_1[I>2\sigma(I)]$	0.0530
wR2 [all]	0.1455
GOF	1.075
Diffractometer	Xcalibur Gemini Eos CCD

References:

- (1) (a) Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Org. Lett. 2004, 6, 1151;
- (b) X. Zhang, Y. Zhang, J. Huang, R. P. Hsung, K. C. M. Kurtz, J. Oppenheimer, M. E. Petersen,I. K. Sagamanova, L. Shen, M. R. Tracey, *J. Org. Chem.* 2006, **71**, 4170.
- (2) (a) A. H. Sato, K. Ohashi, T. Iwasawa, Tetrahedron Lett. 2013, 54, 1309; (b) M. R. Tracey,
- Y. Zhang, M. O. Frederick, A. M. Jason, R. P. Hsung, Org. Lett. 2004, 6, 2209; (c) W. D.
- Mackay, M. Fistikci, R. M. Carris, J. S. Johnson, Org. Lett. 2014, 16, 1626; (d) T. Okitsu, K.
- Nakata, K. Nishigaki, N. Michioka, M. Karatani, A. Wada, J. Org. Chem. 2014, 79, 5914; (e) H.
- Huang, G. He, G. Zhu, X. Zhu, S. Qiu, H. Zhu, J. Org. Chem. 2015, 80, 3480; (f) S. J.
- Mansfield, C. D. Campbell, M. W. Jones, and E. A. Anderson, Chem. Comm., 2015, 51, 3316.
- (3) G.-P. Lu, K. R. Voigtritter, C. Cai, B. H. Lipshutz, J. Org. Chem., 2012, 77, 3700.
- (4) K. Sonagashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 16, 4467.
- (5) G. Liu, W. Kong, J. Che, G. Zhu, Adv. Synth. Catal., 2014, 356, 3314.
- (6) Y. Du, R. Liu, G. Linn, K. Zhao, Org. Lett., 2006, 8, 5919.
- (7) S. Kramer, S. D. Friis, Z. Xin, Y. Odabachian, T. Skrydstrup, Org. Lett. 2011, 13, 1750.
- (8) O. V. Dolomanov, A. J. Blake, N. R. Champness, M. Schroder, J. Appl. Cryst. 2003, 36, 1283
- (9) (a) SMART (version 5.625), SHELX-TL (version 6.12), Bruker AXS Inc.Madison, WI, 2000; (b)
- G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997.

٠.

.

S42 ·

S49 —

- -

-\$50

7-

S54

-- --

÷

S92

<u>S106</u>

S115

_

2

Contraction of the local division of the loc

A CONTRACTOR OF A CONTRACTOR OF

2

•

i

İ

---- S135

