Supporting Information

Iodine(III)-mediated oxidative intramolecular arene-alkene coupling exemplified in the synthesis of phenanthrenes

Christian Depken, Felix Krätzschmar and Alexander Breder*

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany.

Ι.	General Methods and materials	S2
II.	General Procedure A: Suzuki coupling reactions	S2
III.	General Procedure B: Synthesis of 1-(2-bromophenyl)cycloalkenes	S10
IV.	General Procedure C: Synthesis of Phenanthrenes	S11
V.	References	S17
VI.	Spectroscopic Data	S19

General Methods and materials: Chemicals were obtained from commercial sources and were used without further purification. Yields correspond to isolated compounds unless indicated otherwise. TLC: MACHEREY-NAGEL, TLC plates Alugram® Sil G/UV254. Visualization of the developed chromatogram was performed by fluorescence guenching at 254 nm and staining with agueous ceric ammonium molybdate, *p*-anisaldehyde, or potassium permanganate. Chromatography: separations were carried out on Merck Silica 60 (0.063-0.200 mm, 70-230 mesh ASTM) using forced flow. IR: Bruker FT-IR Alpha-spectrometer with ATR sampling module. High-resolution mass spectrometry (HR-MS): APEX IV 7T FTICR, BRUKER Daltonic. M.p.: BÜCHI 540 capillary melting point apparatus, values are uncorrected. NMR (¹H, ¹³C) spectra were recorded at 300, 400, and 500 MHz (¹H) as well as 101 and 126 MHz (¹³C), respectively, on VARIAN Unity-300, Bruker Avance III 400 and Varian Inova 500 instruments in CDCl₃ solutions, if not otherwise specified. Chemical shifts (δ) are given in ppm. Multiplicity: s = singlet. d = doublet. t = triplet. g = guartet. quint = quintet, sex = sextet, sept = septet, m = multiplet.

General procedure A: Suzuki coupling of boronic acid (-esters) with 1-bromo-2-iodobenzene¹

To a degassed solution of 1-bromo-2-iodobenzene, K_2CO_3 (3.00 eq.) and $Pd(PPh_3)_4$ (0.05 eq.) in PhMe/EtOH/H₂O (3:2:1, ~0.5 M) under an argon atmosphere is added the boronic acid or its pinacol ester (1.20 eq.) and the resulting mixture is stirred at 90 °C for 16 h. H₂O and DCM are added and the phases are separated. The aquaeous layer is extracted with DCM (3 x). The combined organic layers are washed with brine, dried over anhydrous Na₂SO₄, filtered and the solvent is removed under reduced pressure. The residue is purified on silica gel to yield the title compound.

(E)-1-Bromo-2-(4-methylstyryl)benzene

Following general procedure A: 1-bromo-2-iodobenzene (635 mg, 2.24 mmol, 1.00 eq.), Pd(PPh₃)₄ (130 mg, 112 μ mol, 0.05 eq.), K₂CO₃ (931 mg, 6.73 mmol, 3.00 eq.), (*E*)-(4-methylstyryl)boronic acid (400 mg, 2.47 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc, 25 mmol 56% vellow liquid

10:1; yield: 341 mg, 1.25 mmol, 56%, yellow liquid.

DC: $R_f = 0.56$ (pentane); **IR** (ATR): v = 3049, 2918, 1512, 1464, 1436, 1022, 960, 801, 746, 610, 500 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.67 (dd, ³J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.6 Hz, 1H), 7.58 (dd, ³J_{HH} = 8.0 Hz, ⁴J_{HH} = 1.3 Hz, 1H), 7.48-7.38 (m, 3H), 7.35-7.27 (m, 1H), 7.19 (d, ³J_{HH} = 7.9 Hz, 2H), 7.11 (ddd, ³J_{HH} = 7.9, 7.2 Hz, ⁴J_{HH} = 1.6 Hz, 1H), 7.02 (d, ³J_{HH} = 16.2 Hz, 1H), 2.38 (s, 3H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 138.11, 137.38, 134.34, 133.11, 131.45, 129.52, 128.64, 127.58, 126.83, 126.68, 126.55, 124.13, 21.53.; **HR-MS** (EI): [C₁₅H₁₃Br]⁺ ([M]⁺): calcd.: 272.0201, obs.: 272.0211.

(E)-1-Bromo-2-(3-methoxyprop-1-en-1-yl)benzene

Following general procedure A: 1-bromo-2-iodobenzene (641 mg, 2.27 mmol, 1.00 eq.), $Pd(PPh_3)_4$ (131 mg, 113 µmol, 0.05 eq.), K_2CO_3 (940 mg, 6.80 mmol, 3.00 eq.), (E)-(3-methoxyprop-1-en-1-yl)boronic acid (494 mg, 2.49 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with

pentane/EtOAc, $100:1 \rightarrow 30:1$; yield: 381 mg, 1.68 mmol, 74%, yellow liquid.

DC: $R_f = 0.16$ (pentane); **IR** (ATR): v = 2925, 2821, 1466, 1436, 1191, 1125, 1109, 1023, 963, 747 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.52 (ddd, ³J_{HH} = 9.3, 8.0 Hz, ${}^{4}J_{HH}$ = 1.5 Hz, 2H), 7.25 (td, ${}^{3}J_{HH}$ = 7.6 Hz, ${}^{4}J_{HH}$ = 1.2 Hz, 1H), 7.15-7.04 (m, 1H), 6.93 (d, ${}^{3}J_{HH} = = 15.6$ Hz, 1H), 6.20 (dt, ${}^{3}J_{HH} = 15.9$, 5.9 Hz, 1H), 4.11 (dd, ${}^{3}J_{HH} = 5.9$ Hz, ${}^{4}J_{HH} = 1.6$ Hz, 2H), 3.39 (s, 3H); 13 C-NMR (126 MHz, CDCl₃): δ (ppm) = 136.6, 132.9, 131.1, 129.0, 128.9, 127.5, 127.1, 123.6, 72.9, 58.1; **HR-MS** (EI): $[C_{10}H_{11}BrO]^+$ ($[M]^+$): calcd.: 255.9993, obs.: 225.9996.

(E)-1-Bromo-2-(2-cyclohexylvinyl)benzene

Following general procedure A: 1-bromo-2-iodobenzene (943 mg, 3.33 mmol, 1.00 eq.), Pd(PPh₃)₄ (193 mg, 167 µmol, 0.05 eq.), .Cv K₂CO₃ (1.38 g, 10.0 mmol, 3.00 eq.), (*E*)-(2-cyclohexylvinyl)boronic acid (565 mg, 3.67 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 9 mL); eluting with pentane; yield: 829 mg, 3.13 mmol, 94%, colorless liquid. The sample is an inseparable mixture with 8% 1-bromo-2-iodobenzene

DC: $R_f = 0.90$ (pentane); **IR** (ATR): v = 2922, 2850, 1466, 1448, 1023, 964, 746 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) = 7.49 (ddd, ³J_{HH} = 12.5, 7.9 Hz, ${}^{4}J_{HH}$ = 1.5 Hz, 2H), 7.30-7.17 (m, 1H), 7.03 (ddd, ${}^{3}J_{HH}$ = 8.0, 7.3 Hz, ${}^{4}J_{HH}$ = 1.7 Hz, 1H), 6.66 (dd, ${}^{3}J_{HH}$ = 15.9 Hz, ${}^{4}J_{HH}$ = 1.4 Hz, 1H), 6.10 (dd, ${}^{3}J_{HH}$ = 15.9, 7.0 Hz, 1H), 2.23-2.11 (m, 1H), 1.89-1.60 (m, 5H), 1.40-1.08 (m, 5H); ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 139.8, 137.7, 132.8, 128.0, 127.3, 126.7, 126.2, 123.3, 41.2, 32.8, 26.1, 26.0; **HR-MS** (EI): $[C_{14}H_{17}Br]^+$ ($[M]^+$): calcd.: 264.0514, obs.: 264.0521.

2-Bromo-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: 1-bromo-2-iodobenzene (1.46 g. 5.16 mmol, 1.00 eq.), Pd(PPh₃)₄ (298 mg, 258 µmol, 0.05 eq.), K₂CO₃ (2.14 g, 15.5 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4.4.5.5-tetramethyl-1.3.2-dioxaborolane (1.50 a. 5.68 mmol. 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 12 mL); eluting with pentane/ EtOAc 15:1; yield: 987 mg, 3.74 mmol, 72%, light yellow solid.

DC: *R_f* = 0.21 (pentane/EtOAc 15:1); **Smp.**: 66 °C; **IR** (ATR): v = 2934, 2834, 1519, 1468, 1246, 1215, 1172, 1026, 755 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.70-7.64 (m, 1H), 7.37-7.32 (m, 2H), 7.19 (ddd, ${}^{3}J_{HH}$ = 8.0, 5.3, 3.8 Hz, 1H), 6.99-6.91 (m, 3H), 3.93 (s, 3H), 3.91 (s, 3H).; ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.5, 148.2, 142.3, 133.8, 133.1, 131.3, 128.5, 127.3, 122.8, 121.7, 112.8, 110.6, 55.9, 55.9; HR-**MS** (ESI): $[C_{14}H_{13}BrO_2Na]^+$ ($[M+Na]^+$): calcd.: 314.9981, obs.: 314.9991.

(E)-1-Bromo-2-(pent-1-en-1-yl)benzene

Following general procedure A: 1-bromo-2-iodobenzene (1.13 g. Br 3.99 mmol, 1.00 eq.), Pd(PPh₃)₄ (231 mg, 200 µmol, 0.05 eq.), K₂CO₃ (1.66 g, 12.0 mmol, 3.00 eq.), (*E*)-pent-1-en-1-ylboronic acid (500 mg, 4.39 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 12 mL); eluting with pentane; yield: 1.01 g, 3.20 mmol, 72%, colorless liquid. The sample contains 15 mol% of inseparable 1-bromo-2-iodobenzene.

DC: $R_f = 0.74$ (pentane); **IR** (ATR): v = 2958, 2928, 2871, 1464, 1435, 1022, 1002, 962, 744, 667 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) = 7.59-7.46 (m, 2H), 7.26 (tdd, ${}^{3}J_{HH} = 7.9$ Hz, ${}^{4}J_{HH} = 1.3$, 0.6 Hz, 1H), 7.07 (ddd, ${}^{3}J_{HH} = 7.7$, 7.2 Hz, ${}^{4}J_{HH} = 1.6$ Hz, 1H), 6.73 (dt, ${}^{3}J_{HH} = 15.7$ Hz, ${}^{3}J_{HH} = 1.5$ Hz, 1H), 6.19 (dt, ${}^{3}J_{HH} = 15.7$, 6.9 Hz, 1H), 2.26 (qd, ${}^{3}J_{HH} = 7.2$ Hz, ${}^{4}J_{HH} = 1.5$ Hz, 2H), 1.53 (h, ${}^{3}J_{HH} = 7.3$ Hz, 2H), 1.00 (t, ${}^{3}J_{HH} = 7.4$ Hz, 3H); 13 **C-NMR** (126 MHz, CDCl₃): δ (ppm) = 137.7, 134.0, 132.8, 128.8, 128.1, 127.3, 126.8, 123.1, 35.1, 22.4, 13.7; **HR-MS** (EI): $[C_{11}H_{13}Br]^{+}$ ([M]⁺): calcd.: 224.0201, obs.: 224.0194.

(E)-1-Bromo-4-methyl-2-(pent-1-en-1-yl)benzene

Following general procedure A: 4-bromo-3-iodotoluene (1.18 g, 3.99 mmol, 1.00 eq.), $Pd(PPh_3)_4$ (231 mg, 200 µmol, 0.05 eq.), K_2CO_3 (1.66 g, 12.0 mmol, 3.00 eq.), (*E*)-pent-1-en-1-ylboronic acid (500 mg, 4.39 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 12 mL); eluting with pentane; yield: 915 mg, 3.16 mmol, 79%, liquid. The sample contains 15 mol% of inseparable 4-bromo-2-

iodotoluene.

DC: $R_f = 0.74$ (pentane); **IR** (ATR): v = 2958, 2927, 1693, 1602, 1485, 1458, 1379, 1038, 964, 865, 824, 673 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.38 (d, ³J_{HH} = 8.0 Hz, 2H), 7.36 (dd, ⁴J_{HH} = 1.7, 0.8 Hz, 1H), 7.04 (ddd, ³J_{HH} = 8.0, ⁴J_{HH} = 1.1, 0.6 Hz, 1H), 6.67 (d, ³J_{HH} = 15.7 Hz, 1H), 6.12 (dt, ³J_{HH} = 15.7, 7.0 Hz, 1H), 2.30 (s, 3H), 2.22 (qd, ³J_{HH} = 7.3, ⁴J_{HH} = 1.6 Hz, 2H), 1.51 (h, ³J_{HH} = 7.3 Hz, 2H), 0.97 (t, ³J_{HH} = 7.3 Hz, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ (ppm) = 139.9, 138.2, 134.8, 133.1, 133.0, 128.5, 128.2, 126.4, 35.1, 22.4, 20.6, 13.7; **HR-MS** (EI): $[C_{12}H_{15}Br]^{+}$ ($[M]^{+}$): calcd.: 238.0357, obs.: 238.0357.

(E)-2-Bromo-4-fluoro-1-(pent-1-en-1-yl)benzene

Following general procedure A: 1-Bromo-4-fluoro-2iodobenzene (600 mg, 1.99 mmol, 1.00 eq.), Pd(PPh₃)₄ (115 mg, 100 μ mol, 0.05 eq.), K₂CO₃ (827 mg, 5.98 mmol, 3.00 eq.), (*E*)-pent-1-en-1-ylboronic acid (250 mg, 2.19 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 9 mL); eluting with pentane;

yield: 439 mg, 1.81 mmol, 91%, colorless liquid.

DC: $R_f = 0.99$ (pentane); **IR** (ATR): $v = \text{cm}^{-1}$; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.45 (dd, ³J_{HH} = 8.7 Hz, ³J_{HF} = 6.0 Hz, 1H), 7.27 (dd, ³J_{HF} = 8.3 Hz, ³J_{HH} = 2.6 Hz, 1H), 6.97 (dddd, ³J_{HH} = 8.0, 2.6 Hz, ³J_{HF} = 8.7 Hz, ⁴J_{HH} = 0.6 Hz, 1H), 6.63 (dd, ³J_{HH} = 15.7 Hz, ⁴J_{HH} = 0.5 Hz, 1H), 6.09 (dt, ³J_{HH} = 15.7, 6.9 Hz, 1H), 2.22 (qd, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.5 Hz, 2H), 1.52 (sex, ³J_{HH} = 7.3 Hz, 2H), 0.97 (t, ³J_{HH} = 7.3 Hz, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ (ppm) = 161.2 (d, ¹J_{CF} = 250.2 Hz), 134.1 (d, ⁴J_{CF} = 3.9 Hz), 133.9 (d, ⁵J_{CF} = 2.0 Hz), 127.7 , 127.6 (d, ³J_{CF} = 8.1 Hz), 122.8 (d, ³J_{CF} = 9.5 Hz), 119.7 (d, ²J_{CF} = 24.0 Hz), 114.7 (d, ²J_{CF} = 21.1 Hz), 35.1, 22.4, 13.7; ¹⁹**F-NMR** (283 MHz, CDCl₃) = -114.22 (ddd, ³J_{HF} = 8.1, 6.0 Hz). **HR-EI-MS**: [C₁₁H₁₂FBr]⁺ ([M]⁺): calcd.: 242.0106, obs.: 242.0101.

3',4'-Dimethoxy-2-vinyl-1,1'-biphenyl

Following general procedure A: 2-bromo-3',4'-dimethoxy-1,1'-biphenyl (400 mg, 1.36 mmol, 1.00 eq.), Pd(PPh₃)₄ (79 mg, 68.0 μ mol, 0.05 eq.), K₂CO₃ (566 mg, 4.09 mmol, 3.00 eq.), vinylboronicacid pinacolester (243 mg, 1.58 μ mol, 1.16 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc 15:1; yield: 116 mg, 483 μ mol, 35%, colorless oil.

DC: $R_f = 0.51$ (Hexane/EtOAc 5:1); **IR** (ATR): $v = \text{ cm}^{-1}$; ¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 7.67-7.60 (m, 1H), 7.37-7.28 (m, 3H), 6.95-6.86 (m, 3H), 6.75 (dd, ³J_{HH} = 17.5, 11.0 Hz, 1H), 5.69 (dd, ³J_{HH} = 17.5, ⁴J_{HH} = 1.4 Hz, 1H), 5.19 (dd, ³J_{HH} = 11.0 Hz, ⁴J_{HH} = 1.3 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 148.4, 148.2, 140.6, 136.1, 135.8, 133.5, 130.0, 127.6, 127.2, 125.8, 122.0, 114.4, 113.2, 110.8, 55.9, 55.9; **HR-MS** (ESI): [C₁₆H₁₇O₂]⁺ ([M+H]⁺): calcd.: 241.1223, obs.: 241.1217.

(E)-2-(5-Chloropent-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: 2-bromo-3',4'-dimethoxy-1,1'biphenyl (100 mg, 341 μ mol, 1.00 eq.), Pd(PPh₃)₄ (20 mg, 17.1 μ mol, 0.05 eq.), K₂CO₃ (141 mg, 1.02 mmol, 3.00 eq.), (*E*)-5-chloro-1-pentene-1-yl)boronic acid (87 mg, 375 μ mol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3.5 mL); eluting with pentane/EtOAc 15:1; yield: 44 mg, 139 mmol, 41%, colorless liquid.

DC: $R_f = 0.10$ (Hexane/EtOAc 15:1); **IR** (ATR): v = 2934, 2835, 1519, 1477, 1464, 1440, 1246, 1218, 1172, 1140, 1028, 756 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.58-7.52 (m, 1H), 7.32-7.27 (m, 3H), 6.93 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 6.90-6.86 (m, 2H), 6.45 (d, ${}^{3}J_{HH} = 15.8$ Hz, 1H), 6.09 (dt, ${}^{3}J_{HH} = 15.8$, 7.0 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.55 (t, ${}^{3}J_{HH} = 6.6$ Hz, 2H), 2.30 (qd, ${}^{3}J_{HH} = 7.1$, ${}^{4}J_{HH} = 1.5$ Hz, 2H), 1.90 (dq, ${}^{3}J_{HH} = 8.0$, 6.7 Hz, 2H); 13 C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.3, 148.1, 140.1, 135.6, 133.7, 130.3, 130.1, 129.4, 127.2, 127.0, 125.9, 122.0, 113.1, 110.8, 55.9, 55.9, 44.3, 32.1, 30.2; HR-MS (EI): [C₁₉H₂₁O₂CI]⁺ ([M]⁺): calcd.: 316.1230, obs.: 316.1225.

(E)-3',4'-Dimethoxy-2-(4-methoxystyryl)-1,1'-biphenyl

Following general procedure A: 2-bromo-3',4'-dimethoxy-1,1'-biphenyl (400 mg, 1.36 mmol, 1.00 eq.), Pd(PPh₃)₄ (79 mg, 68.0 µmol, 0.05 eq.), K₂CO₃ (566 mg, 4.09 mmol, 3.00 eq.), ((*E*)-(3-methoxy-1-propen-1-yl)boronic acid (317 mg, 1.77 mmol, 1.30 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc $15:1\rightarrow 5:1$; yield: 369 mg, 1.06 mmol, 78%, light yellow solid.

DC: $R_f = 0.24$ (Hexane/EtOAc 5:1); **mp.:** 91°C; **IR** (ATR): v = 2932, 2834, 1605, 1509, 1462, 1440, 1247, 1219, 1173, 1140, 1028, 819, 755 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.80-7.65 (m, 1H), 7.41-7.28 (m, 5H), 7.00 (d, J = 1.8 Hz, 2H), 6.95 (s, 3H), 6.92-6.80 (m, 2H), 3.95 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 159.1, 148.3, 148.0, 140.5, 135.7, 133.6, 130.4, 130.0, 128.7, 127.6, 127.2, 127.0, 125.8, 125.6, 122.1, 114.0, 113.2, 110.8, 56.9, 55.9, 55.3; **HR-MS** (EI): $[C_{23}H_{22}O_3]^+$ ([M]⁺): calcd.: 346.1569, obs.: 346.1570.

(E)-2-(Hex-3-en-3-yl)-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: 2-bromo-3',4'-dimethoxy-1,1'biphenyl (400 mg, 1.36 mmol, 1.00 eq.), $Pd(PPh_3)_4$ (79 mg, 68.0 µmol, 0.05 eq.), K_2CO_3 (566 mg, 4.09 mmol, 3.00 eq.), (*Z*)-2-(Hex-3-en-3-yl)benzo[d][1,3,2]dioxaborole (358 mg, 1.77 mmol, 1.30 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc 30:1; yield: 295 mg, 996 µmol, 73%, colorless oil. Reaction time = 64 h.

DC: $R_f = 0.32$ (Hex/EtOAc 15:1); **IR** (ATR): v = 2962, 1519, 1464, 1406, 1324, 1245, 1213, 1172, 1140, 1030, 859, 810, 757 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.29-7.22 (m, 3H), 7.20-7.17 (m, 1H), 7.00 (d, ${}^{3}J_{HH} = 2.0$ Hz, 1H), 6.96 (dd, ${}^{3}J_{HH} = 8.2$, 2.0 Hz, 1H), 6.85 (d, ${}^{3}J_{HH} = 8.2$ Hz, 1H), 5.42 (t, ${}^{3}J_{HH} = 7.3$ Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 2.10 (dq, ${}^{3}J_{HH} = 7.5$ Hz, 2H), 1.87 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H), 0.99 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H), 0.69 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H); 13 C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.1, 147.8, 143.2, 142.9, 139.3, 135.0, 132.0, 130.6, 129.7, 126.7, 126.7, 121.1, 112.5, 110.7, 55.8, 55.7, 23.7, 21.4, 14.3, 13.1; HR-MS (ESI): [C₂₀H₂₄O₂Na]⁺ ([M+Na]⁺): calcd.: 319.1669, obs.: 319.1672.

(*E*)-*tert*-butyl((4-(3',4'-dimethoxy-[1,1'-biphenyl]-2-yl)but-3-en-1-yl)oxy)dimethyl-silane

Following general procedure A: 2-bromo-3',4'dimethoxy-1,1'-biphenyl (400 mg, 1.36 mmol, 1.00 eq.), $Pd(PPh_3)_4$ (79 mg, 68.0 µmol, 0.05 eq.), K_2CO_3 (566 mg, 4.09 mmol, 3.00 eq.), (*E*)-tertbutyldimethyl ((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl)oxy)silane (556 mg, 1.77 mmol, 1.30 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL);

eluting with pentane/EtOAc 30:1; yield: 432 mg, 1.08 mmol, 79%, colorless oil. Reaction time = 64 h

DC: $R_f = 0.36$ (Hex/EtOAc 15:1); **IR** (ATR): v = 2930, 2856, 1519, 1463, 1406, 1247, 1218, 1172, 1140, 1097, 1030, 835, 775, 755 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) = 7.55 (d, ³J_{HH} = 7.2 Hz, 1H), 7.31-7.22 (m, 3H), 6.90 (d, ³J_{HH} = 8.1 Hz, 1H), 6.88 (d, ⁴J_{HH} = 1.8 Hz, 1H), 6.89-6.84 (m, 1H), 6.44 (d, ³J_{HH} = 15.9 Hz, 1H), 6.14 (dt, ³J_{HH} = 15.8, 7.0 Hz, 1H), 3.92 (s, 3H), 3.86 (s, 3H), 3.66 (t, ³J_{HH} = 6.8 Hz, 2H), 2.34 (dq, ³J_{HH} = 6.9, 1.5 Hz, 2H), 0.87 (s, 9H), 0.03 (s, 6H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 148.3, 148.0, 140.1, 135.8, 133.8, 130.7, 130.0, 127.8, 127.2, 126.9, 125.8, 122.0, 113.2, 110.7, 63.1, 55.9, 55.8, 36.8, 25.9, 18.3, -5.3; ²⁹**Si-NMR** (99.4 MHz, CDCl₃) = 19.02; **HR-MS** (ESI): $[C_{24}H_{34}O_3SiNa]^+$ ([M+Na]⁺): calcd.: 421.2169, obs.: 421.2162.

(E)-2-(Hex-3-en-3-yl)-3',4'-dimethoxy-1,1'-biphenyl

2-Bromo-3',4'-dimethoxy-1,1'-biphenyl (200 mg, 682 µmol, 1.00 eq.), Pd(PPh₃)₄ (39 mg, 31.1 µmol, 0.05 eq.), K₂CO₃ (283 mg, 2.05 mmol, 3.00 eq.), (*E*)-styrylboronic acid (111 mg, 750 µmol, 1.30 eq.), PhMe/EtOH/H₂O (3:2:1, 5.25 mL); eluting with Pentane/EtOAc 30:1; yield: 112 mg, 354 µmol, 52 %, colorless oil. Reaction time = 24 h

DC: $R_f = (\text{Hex/EtOAc 15:1})$; **IR** (ATR): v = 2933, 2832, 1518, 1462, 1440, 1246, 1218, 1171, 1139, 1026, 966, 857, 812, 758, 692, 599 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.75 (m, 1H), 7.42 – 7.20 (m, 8H), 7.16 (d, ${}^{3}J_{HH} = 16.4$ Hz, 1H), 7.02 (d, ${}^{3}J_{HH} = 16.3$ Hz, 1H), 6.94 (m, 3H), 3.94 (s, 3H), 3.83 (s, 3H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 148.3, 148.1, 140.8, 137.5, 135.4, 133.5, 130.0, 129.1, 128.6, 127.9, 127.4, 127.4, 127.3, 126.4, 125.8, 122.1, 113.2, 110.9, 56.0, 55.9; **HR-MS** (EI): $[C_{22}H_{20}O_{2}]^{+}$ ([M]⁺): calcd.:316.1463, obs.: 316.1460.

(E)-3',4'-Dimethoxy-2-(4-methylstyryl)-1,1'-biphenyl

Following general procedure A: (E)-1-bromo-2-(4methylstyryl)benzene (341 mg, 1.25 mmol, 1.00 eq.). Pd(PPh₃)₄ (72 mg, 62.4 µmol, 0.05 eg.), K₂CO₃ (518 mg, 3.74 mmol. 3.00 eq.). 2-(3,4-dimethoxyphenyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (363 mg. 1.37 mmol. 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3.0 mL); eluting with pentane/EtOAc $30:1 \rightarrow 15:1$; yield: 284 mg, 859 µmol, 69%, vellow oil.

DC: $R_f = 0.29$ (pentane/EtOAc 15:1); **IR** (ATR): $v = 2932, 2833, 1511, 1462, 1439, 1245, 1218, 1171, 1026, 967, 806, 754, 731 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): <math>\delta$ (ppm) = 7.79-7.71 (m, 1H), 7.42-7.27 (m, 4H), 7.20-7.03 (m, 3H), 7.02-6.91 (m, 3H), 3.96 (s, 3H), 3.85 (s, 3H), 2.35 (s, 3H); ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.3, 148.0, 140.6, 137.2, 135.5, 134.7, 133.6, 130.0, 129.2, 129.1, 127.2, 127.2, 126.9, 126.3, 125.7, 122.1, 113.2, 110.8, 55.9, 55.9, 21.3; **HR-MS** (EI): $[C_{23}H_{22}O_2]^+$ ([M]⁺): calcd.: 330.1620, obs.: 330.1621.

(E)-3',4'-Dimethoxy-2-(3-methoxyprop-1-en-1-yl)-1,1'-biphenyl

Following general procedure A: (*E*)-1-bromo-2-(3-methoxyprop-1-en-1-yl)benzene (369 mg, 1.62 mmol, 1.00 eq.), Pd(PPh₃)₄ (94 mg, 81.2 µmol, 0.05 eq.), K₂CO₃ (673 mg, 4.87 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (472 mg, 1.79 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3.0 mL); eluting with pentane/EtOAc $30:1 \rightarrow 10:1$; yield: 282 mg, 992 µmol, 61%, yellow oil.

DC: $R_f = 0.24$ (pentane/EtOAc 15:1); **IR** (ATR): v = 2931, 2832, 1518, 1440, 1406, 1324, 1244, 1216, 1138, 1025, 969, 754 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 7.61-7.57 (m, 1H), 7.34-7.26 (m, 3H), 6.90 (t, ³J_{HH} = 8.1 Hz, 1H), 6.88-6.85 (m, 2H), 6.61 (d, ³J_{HH} = 15.9 Hz, 1H), 6.20 (dt, ³J_{HH} = 15.9, 6.2 Hz, 1H), 3.99 (dd, ³J_{HH} = 6.3 Hz, ⁴J_{HH} = 1.4 Hz, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 3.31 (s, 3H).; ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.3, 148.1, 140.6, 134.8, 133.5, 132.0, 130.1, 127.5, 127.3, 126.7, 126.2, 122.0, 113.2, 110.7, 73.3, 57.9, 55.9, 55.9; HR-MS (ESI): [C₁₈H₂₀O₃Na]⁺ ([M+Na]⁺): calcd.: 307.1306, obs.: 307.1305.

(E)-2-(2-Cyclohexylvinyl)-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: (*E*)-1-bromo-2-(2-cyclohexylvinyl)benzene (339 mg, 1.28 mmol, 1.00 eq.), Pd(PPh₃)₄ (74 mg, 64.0 μ mol, 0.05 eq.), K₂CO₃ (532 mg, 3.85 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (373 mg, 1.41 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3.0 mL); eluting with pentane/EtOAc 15:1; yield: 252 mg, 781 μ mol, 61%, colorless oil.

DC: R_f = (pentane/EtOAc 15:1); **IR** (ATR): v = 2923, 2849, 1519, 1463, 1441, 1246, 1217, 1172, 1139, 1028, 968, 755 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.60-7.53 (m, 1H), 7.35-7.22 (m, 3H), 6.98-6.87 (m, 3H), 6.36 (dd, ³*J*_{HH} = 16.0 Hz, ⁴*J*_{HH} = 0.9 Hz, 1H), 6.09 (dd, ³*J*_{HH} = 15.9, 6.9 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 2.05 (q, ³*J*_{HH} = 3.3 Hz, 1H), 1.77-1.60 (m, 5H), 1.34-1.21 (m, 2H), 1.21-1.06 (m, 3H).; ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.1, 147.9, 140.0, 137.5, 136.2, 133.9, 130.0, 127.2, 126.7, 126.5, 125.9, 121.9, 113.3, 110.7, 55.9, 55.8, 41.2, 33.0, 26.1, 26.0; **HR-MS** (ESI): [C₂₂H₂₇O₂]⁺ ([M+H]⁺): calcd.: 323.2006, obs.: 323.2006.

(E)-3',4'-Dimethoxy-2-(pent-1-en-1-yl)-1,1'-biphenyl

Following general procedure A: (*E*)-1-bromo-2-(pent-1-en-1-yl)benzene (338 mg, 1.50 mmol, 1.00 eq.), Pd(PPh₃)₄ (87 mg, 75.0 µmol, 0.05 eq.), K_2CO_3 (622 mg, 4.50 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (435 mg, 1.65 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc 15:1; yield: 227 mg, 803 µmol, 54%, colorless liquid.

DC: $R_f = 0.29$ (Hex:EtOAc 15:1); **IR** (ATR): v = 2959, 2931, 2834, 1519, 1477, 1463, 1440, 1246, 1217, 1172, 1139, 1028, 969, 755 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) =7.57 (d, ³J_{HH} = 7.6 Hz, 1H), 7.34-7.22 (m, 3H), 6.97-6.85 (m, 3H), 6.39 (d, ³J_{HH} = 15.8 Hz, 1H), 6.15 (dt, ³J_{HH} = 15.7, 6.9 Hz, 1H), 3.94 (s, 3H), 3.87 (s, 3H), 2.12 (qd, ³J_{HH} = 7.1, ⁴J_{HH} = 1.5 Hz, 2H), 1.44 (h, ³J_{HH} = 7.3 Hz, 2H), 0.92 (t, ³J_{HH} = 7.4 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 148.2, 148.0, 139.9, 136.0, 133.9, 131.7, 130.0, 129.1, 127.2, 126.7, 125.9, 121.9, 113.2, 110.7, 55.9 55.8, 35.2, 22.6, 13.7; HR-MS (EI): [C₁₉H₂₂O₂]⁺ ([M]⁺): calcd.: 282.1620, obs.: 282.1633.

(E)-3',4'-Dimethoxy-4-methyl-2-(pent-1-en-1-yl)-1,1'-biphenyl

Following general procedure A: (*E*)-4-bromo-3-(pent-1-en-1-yl)toluene (359 mg, 1.50 mmol, 1.00 eq.), Pd(PPh₃)₄ (87 mg, 75.0 μ mol, 0.05 eq.), K₂CO₃ (622 mg, 4.50 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (435 mg, 1.65 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 6 mL); eluting with pentane/EtOAc 30:1; yield: 192 mg, 648 μ mol, 43%, colorless liquid.

DC: $R_f = 0.22$ (Hex:EtOAc 15:1); **IR** (ATR): v = 2956, 2931, 2870, 2834, 1518, 1463, 1248, 1225, 1167, 1139, 1029, 970, 808, 763 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) = 7.47 (d, ³J_{HH} = 7.9 Hz, 1H), 7.11 (d, ³J_{HH} = 7.9 Hz, 1H), 7.09 (s, 1H), 6.95-6.86 (m, 3H), 6.35 (d, ³J_{HH} = 15.8 Hz, 1H), 6.10 (dt, ³J_{HH} = 15.7, 6.9 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 2.36 (s, 3H), 2.10 (qd, ³J_{HH} = 7.1, ⁴J_{HH} = 1.5 Hz, 2H), 1.44 (h, ³J_{HH} = 7.3 Hz, 2H), 0.91 (t, ³J_{HH} = 7.4 Hz, 3H); ¹³**C-NMR** (126 MHz, 146)

CDCl₃): δ (ppm) = 148.2, 147.9, 139.8, 136.4, 134.0, 133.2, 130.8, 130.6, 128.8, 128.0, 125.8, 121.9, 113.2, 110.7, 55.9, 55.8, 35.2, 22.6, 21.1, 13.7.; **HR-MS** (EI): $[C_{20}H_{24}O_2]^+$ ([M]⁺): calcd.: 296.1776, obs.: 296.1784.

(E)-5-Fluoro-3',4'-dimethoxy-2-(pent-1-en-1-yl)-1,1'-biphenyl

Following general procedure A: (E)-2-bromo-4-fluoro-1-(pent-1-en-1-yl)benzene (429 mg, 1.76 mmol, 1.00 eq.), Pd(PPh₃)₄ (102 mg, 88.2 µmol, 0.05 eq.), K₂CO₃ (732 mg, 5.29 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaboro-lane (513 mg, 1.94 mmol, 1.10 eq.), PhMe/EtOH/ H₂O (3:2:1, 9 mL); eluting with pentane/EtOAc 30:1; yield: 380 mg, 1.27 mmol, 72%, colorless oil.

DC: $R_f = 0.38$ (Hex:EtOAc 15:1); **IR** (ATR): v = 2957, 1605, 1573, 1518, 1483, 1464, 1324, 1248, 1228, 1164, 1140, 1029, 970, 859, 810, 764 cm⁻¹; ¹**H-NMR** (300 MHz, CDCI₃): δ (ppm) = 7.57-7.45 (m, 1H), 7.03-6.86 (m, 5H), 6.32 (dt, ³*J*_{HH} = 15.7 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H), 6.07 (dt, ³*J*_{HH} = 15.7, 6.9 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 2.16-2.04 (m, 2H), 1.44 (h, ³*J*_{HH} = 7.3 Hz, 2H), 0.92 (t, ³*J*_{HH} = 7.3 Hz, 3H).; ¹³**C-NMR** (101 MHz, CDCI₃): δ (ppm) = 161.53 (d, ¹*J*_{CF} = 245.9 Hz), 148.36 , 141.61 (d, ³*J*_{CF} = 7.6 Hz), 132.80 (d, ⁵*J*_{CF} = 1.9 Hz), 132.27 (d, ⁴*J*_{CF} = 3.2 Hz), 131.42 (d, J = 1.8 Hz), 128.19 , 127.60 (d, ³*J*_{CF} = 8.2 Hz), 121.87 , 116.36 (d, ²*J*_{CF} = 21.3 Hz), 114.05 (d, ²*J*_{CF} = 21.1 Hz), 113.01 , 110.82 , 55.89, 55.9, 35.13 , 22.57 , 13.71 . ¹⁹**F-NMR** (282 MHz, CDCI₃) δ -116.30--116.45 (m); **HR-MS** (ESI): $[C_{19}H_{21}O_2FNa]^+$ ([M+Na]⁺): calcd.: 323.1418, obs.: 323.1421.

2-(Cyclopent-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

(1-Bromo-2-(cyclopent-1-en-1-yl)benzene (102 mg, 457 μ mol, 1.00 eq.), Pd(PPh₃)₄ (26 mg, 23.0 μ mol, 0.05 eq.), K₂CO₃ (190 mg, 1.37 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (133 mg, 503 μ mol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3.5 mL); eluting with pentane/EtOAc 15:1; yield: 90 mg, 321 μ mol, 70%, colorless oil.

DC: $R_f = 0.39$ (pentane/EtOAc 15:1); **IR** (ATR): v = 2949, 2836, 1519, 1463, 1439, 1406, 1246, 1213, 1171, 1139, 1028, 756 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) = 7.35-7.26 (m, 4H), 6.96-6.86 (m, 3H), 5.67 (p, ³J_{HH} = 2.3 Hz, 1H), 3.92 (s, 3H), 3.84 (s, 3H), 2.41-2.32 (m, 2H), 2.19-2.11 (m, 2H), 1.79 (p, ³J_{HH} = 7.4 Hz, 2H).; ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 148.2, 147.9, 144.7, 139.9, 137.6, 135.1, 130.0, 129.7, 129.0, 126.9, 126.8, 121.0, 112.4, 110.7, 55.8, 55.8, 35.5, 33.2, 24.3; **HR-MS** (ESI): $[C_{19}H_{21}O_2]^{+}$ ([M+H]⁺): calcd.: 281.1536, obs.: 281.1537.

(E)-2-(Cyclooct-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: (1-bromo-2-(cyclooct-1-en-1-yl) benzene (300 mg, 1.13 mmol, 1.00 eq.), Pd(PPh₃)₄ (65 mg, 56.6 μ mol, 0.05 eq.), K₂CO₃ (469 mg, 3.39 mmol, 3.00 eq.), 2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (327 mg, 1.24 mmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 3 mL); eluting with pentane/EtOAc 30:1; yield: 221 mg, 685 μ mol, 61%, colorless oil.

DC: $R_f = 0.24$ (pentane/EtOAc 30:1); **IR** (ATR): v = 2922, 2849, 1519, 1465, 1439, 1248, 1214, 1172, 1141, 1029, 757 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ (ppm) =7.34-

7.17 (m, 4H), 7.09 (d, ${}^{3}J_{HH}$ = 2.0 Hz, 1H), 7.01 (dd, ${}^{3}J_{HH}$ = 8.2, 2.0 Hz, 1H), 6.88 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 1H), 5.77 (t, ${}^{3}J_{HH}$ = 8.2 Hz, 1H), 3.92 (s, 3H), 3.84 (s, 3H), 2.22 (td, ${}^{3}J_{HH}$ = 8.0, 4.7 Hz, 2H), 2.03-1.91 (m, 2H), 1.64-1.40 (m, 6H), 1.31-1.21 (m, 2H); 1³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 148.1, 147.8, 143.4, 143.3, 138.8, 134.8, 130.2, 129.9, 129.6, 126.8, 126.6, 121.0, 112.6, 110.8, 55.9, 55.8, 30.1, 30.0, 28.3, 27.0, 26.7, 26.5.; **HR-MS** (ESI): $[C_{22}H_{27}O_{2}]^{+}$ ([M+H]⁺): calcd.: 323.2006, obs.: 323.2005.

2-(Cyclohept-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

Following general procedure A: (1-bromo-2-(cyclohept-1-en-1-yl))benzene (222 mg, 884 µmol, 1.00 eq.), Pd(PPh₃)₄ (51 mg, 44.0 µmol, 0.05 eq.), K₂CO₃ (366 mg, 2.65 mmol, 3.00 eq.), 2-(3,4dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (257 mg, 957 µmol, 1.10 eq.), PhMe/EtOH/H₂O (3:2:1, 7 mL); eluting with pentane/EtOAc 30:1; yield: 183 mg, 593 µmol, 67%, colorless oil. Reaction time = 20 h.

DC: $R_f = 0.59$ (pentane/EtOAc 15:1); **IR** (ATR): v = 2920, 2846, 1519, 1475, 1439, 1247, 1214, 1172, 1029, 756 cm⁻¹; ¹**H-NMR** $(500 MHz, CDCl₃): <math>\delta$ (ppm) = 7.30-7.21 (m, 4H), 7.00 (d, ³J_{HH} = 2.0 Hz, 1H), 6.97 (dd, ³J_{HH} = 8.2, 2.0 Hz, 1H), 6.89 (d, ³J_{HH} = 8.2 Hz, 1H), 5.93 (t, ³J_{HH} = 6.5 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 2.26-2.17 (m, 2H), 1.99 (m, 2H), 1.69-1.62 (m, 2H), 1.54-1.47 (m, 2H), 1.31-1.23 (m, 2H).; ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 148.2, 147.8, 147.0, 145.3, 138.9, 135.1, 131.8, 129.8, 129.5, 126.8, 126.7, 121.3, 112.7, 110.7, 55.8, 55.7, 34.8, 32.5, 29.2, 26.9, 26.5; **HR-MS** (EI): [C₂₁H₂₄O₂]⁺ ([M]⁺): calcd.: 308.1776, obs.: 308.1773.

General procedure B:² **synthesis of 1-(2-bromophenyl)cycloalkenes:** Under an argon atmosphere 1-bromo-2-iodobenzene (616 µL, 1.35 g, 4.80 mmol, 1.00 equiv) in dry THF (20 mL) was cooled to -40 °C and treated with isopropylmagnesium chloride (2 M in THF, 2 mL, 4 mmol, 0.8 equiv) and stirred at -20 °C for 1.5 h. Then the mixture is cooled to -40 °C, the ketone (9.8 mmol) was added, and the reaction was slowly warmed to room temperature over 16 h. Then water was added, the phases were separated, the aqueous phase was extracted with DCM (3 x 20 mL), the combined organic phases were dried over Na₂SO₄, and the solution was concentrated to dryness. The alcohol was obtained by passing it through a short plug of silica (pentane-) pentane : EtOAc) and directly used without further purification. The alcohol was dissolved in toluene (20 mL), treated with *p*-toluenesulfonic acid (4.80 mmol) and stirred at 110 °C for 16 h. Water was added, the phases were separated and the aqueous phase was extracted with DCM (3 x 20 mL). The combined organic phases were washed with sat. aq. NaHCO₃-soln. (2 x 20 mL), dried over Na₂SO₄ and concentrated. Column chromatography (SiO₂, pentane) provided the 1-(2-bromophenyl)cycloalkenes as colorless liquids.

1-(2-Bromophenyl)cyclohept-1-ene

Cyclohepatone (1.13 mL, 1.08 g, 9.60 mmol, 2.00 equiv); Yield: 230 mg, 916 µmol, 19%

DC: $R_f = 0.90$ (pentane); **IR** (ATR): v = 2918, 2848, 1464, 1433, 1023, 853, 750, cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 7.52 (dd, ³J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.2 Hz, 1H), 7.22 (ddd, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.3 Hz, 1H), 7.15 (dd, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 2.0 Hz, 1H), 7.06 (ddd, ³J_{HH} = 7.9, 7.3 Hz, ⁴J_{HH} = 2.0 Hz, 1H), 5.81 (t, ³J_{HH} = 6.5 Hz, 1H), 2.52-2.43 (m, 2H), 2.38-2.21 (m, 2H), 1.89-1.76 (m, 2H), 1.65 (m, 4H); ¹³C-NMR (76 MHz, CDCl₃): δ (ppm) = 147.24, 145.71, 132.54,

132.44, 130.23, 127.70, 127.03, 122.17, 34.51, 32.44, 28.97, 27.00, 26.91; **HR-MS** (EI): $[C_{13}H_{15}Br]^{+}$ ([M]⁺): calcd.: 250.0357, obs.: 250.0366.

1-Bromo-2-(cyclopent-1-en-1-yl)benzene

Cyclopentanone (850 μL, 808 mg, 9.60 mmol, 2.00 equiv) Yield: 104 mg, 466 μmol, 10%

DC: $R_f = 0.90$ (pentane); **IR** (ATR): v = 2927, 2845, 1697, 1467, 1433, 1023, 750 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.61-7.51 (m, 1H), 7.27-7.21 (m, 2H), 7.08 (ddd, ${}^{3}J_{\text{HH}} = 7.9$, 5.8, 3.3 Hz, 1H), 5.97 (p, ${}^{3}J_{\text{HH}} = 2.2$ Hz, 1H), 2.79-2.69 (m, 2H), 2.58-2.49 (m, 2H), 2.09-1.96 (m, 2H).; 13 **C-NMR** (126 MHz, CDCl₃): δ (ppm) = 142.9, 139.6, 133.0, 131.0, 129.8, 127.9, 126.9, 122.1, 36.2, 33.5, 23.9; **HR-MS** (EI): [C₁₁H₁₁Br]⁺ ([M]⁺): calcd.: 222.0044, obs.: 222.0039.

(E)-1-(2-Bromophenyl)cyclooct-1-ene

Br

Cycloctanone (1.21 g, 9.60 mmol, 2.00 equiv) Yield: 72 mg, 272 µmol, 6%

DC: $R_f = 0.90$ (pentane); **IR** (ATR): v = 2920, 2849, 1465, 1446, 1022, 751 cm⁻¹; ¹**H-NMR** $(300 MHz, CDCl₃): <math>\delta$ (ppm) = 7.54 (dd, ³J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.3 Hz, 1H), 7.24 (ddd, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.3 Hz, 1H), 7.15 (dd, ³J_{HH} = 7.6, 2.0 Hz, 1H), 7.08 (ddd, ³J_{HH} = 7.6, 1.9 Hz, 1H), 5.60 (t, ³J_{HH} = 8.2 Hz, 1H), 2.61-2.49 (m, 2H), 2.36-2.23 (m, 2H), 1.68-1.56 (m, 6H), 1.54-1.43 (m, 2H); ¹³**C-NMR** (76 MHz, CDCl₃): δ (ppm) = 145.5, 141.7, 132.6, 130.6, 130.1, 127.9, 126.9, 122.5, 30.0, 29.8, 28.1, 26.7, 26.6, 26.5; **HR-MS** (EI): $[C_{14}H_{17}Br]^+$ ($[M]^+$): calcd.: 264.0514, obs.: 264.0511.

General Procedure C: Synthesis of Phenanthrenes 2: To a solution of the alkene (1.0 equiv) in MeNO₂ (0.3 M) with activated molecular sieves (4 Å, powder, spatula tip) was added a solution of PIFA (1.3 equiv) in MeNO₂ (0.19 M) at 10 °C *via* syringe pump (0.25 ml/h). The reaction was stirred for a total of 16 h. Sat. aq. Na₂S₂O₃ solution was added and the reaction was extracted with DCM (3×20 mL). The combined organic layers were dried over Na₂SO₄. Column chromatography furnished the cyclization products **2**.

6,7-Dimethoxy-1,2,3,4-tetrahydrotriphenylene (2a)

Phenanthrene **2a** was synthesized following the general procedure C using the corresponding alkene (100 mg, 340 μ mol, 1.00 equiv) and PIFA (175 mg, 442 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a brown solid (77 mg, 265 μ mol, 78%).

R_f = 0.42 (pentane/EtOAc 20:1); **IR** (ATR): v (cm⁻¹) = 2927, 2832, 1612, 1524, 1503, 1460, 1434, 1397, 1253, 1205, 1164, 1135, 1046, 1022, 844, 824, 766, 749, 718, 629, 605; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.55 (m, 1H), 8.12-7.98 (m, 2H), 7.64-7.47 (m, 2H), 7.39 (s, 1H), 4.12 (s, 3H), 4.06 (s, 3H), 3.24-3.02 (m, *J* = 14.9 Hz, 4H), 2.01 (t, *J* = 3.0 Hz, 4H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.1, 148.3, 131.2, 129.5, 128.7, 128.7, 127.0, 125.5, 125.1, 123.8, 123.4, 122.2, 103.9, 103.6, 55.9, 55.8, 27.2, 26.7, 23.0; **HR-EI-MS**: $[C_{20}H_{20}O_2]^+$ ([M]⁺): calcd.: 292.1462, obs.: 292.1468; **Mp**. = 155 °C.

5,6-Dimethoxy-2,3-dihydro-1H-cyclopenta[l]phenanthrene (2b)

Phenanthrene **2b** was synthesized following the general procedure C using the corresponding alkene (90 mg, 321 μ mol, 1.00 equiv) and PIFA (166 mg, 444 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (68 mg, 244 μ mol, 76%).

R_f = 0.45 (pentane/EtOAc 20:1); **IR** (ATR): v (cm⁻¹) = 2960, 2904, 2848, 1507, 1473, 1461, 1449, 1434, 1416, 1400, 1252, 1207, 1191, 1163, 1039, 1021, 844, 783, 772, 745, 619, 424; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.55 (d, ³J_{HH} = 9.5 Hz, 1H), 8.06 (s, 1H), 7.86 (m, 1H), 7.65-7.51 (m, 2H), 7.19 (s, 1H), 4.12 (s, 3H), 4.06 (s, 3H), 3.34 (m, 4H), 2.37 (m, 2H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 149.3, 148.4, 136.8, 135.8, 129.6, 129.3, 125.6, 125.1, 124.5, 122.6, 105.1, 104.1, 56.0, 55.9, 32.5, 32.1, 23.5; **HR-ESI-MS**: calc. (C₁₉H₁₈O₂Na, [M+Na]⁺): 301.1199; obs.: 301.1206, **Mp** = 175 °C (degr.).

2,3-Dimethoxy-10,11,12,13-tetrahydro-9*H*-cyclohepta[l]phenanthrene (2c)

Phenanthrene **2c** was synthesized following the general procedure C using the corresponding alkene (100 mg, 342 μ mol, 1.00 equiv) and PIFA PIFA (153 mg, 357 μ mol, 1.10 equiv). Column chromatography (SiO₂, Pentane/EtOAc 20:1) delivered the product as a yellow resin (73 mg, 243 μ mol, 73%).

R_f = 0.40 (pentane/EtOAc 20:1); **IR** (ATR): v (cm⁻¹) = 2911, 2847, 1617, 1527, 1507, 1460, 1432, 1394, 1256, 1226, 1205, 1172, 1130, 1040, 1024, 845, 821, 756, 737, 719, 601, 445; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.60 (m, 1H), 8.23 (m, 1H), 8.11 (s, 1H), 7.65-7.54 (m, 3H), 4.15 (s, 3H), 4.10 (s, 3H), 3.45-3.29 (m, 4H), 1.94 (m 2H), 1.86-1.71 (m, 4H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.3, 148.3, 136.1, 135.1, 130.3, 129.0, 126.1, 125.6, 124.9, 124.3, 124.0, 122.6, 104.5, 103.8, 55.9, 55.9, 31.3, 28.5, 27.9, 26.2, 26.2; **HR-ESI-MS**: calc. $(C_{21}H_{22}O_2Na, [M+Na]^+)$: 329.1512; obs.: 329.1512, **Mp** = 145 °C.

2,3-Dimethoxy-9,10,11,12,13,14-hexahydrocycloocta[l]phen-anthrene (2d)

Phenanthrene **2d** was synthesized following the general procedure C using the corresponding alkene (100 mg, 326 μ mol, 1.00 equiv) and PIFA (169 mg, 424 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a white solid (80 mg, 252 μ mol, 77%).

R_f = 0.39 (pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2912, 2843, 1529, 1507, 1464, 1433, 1397, 1257, 1211, 1193, 1168, 1129, 1046, 1027, 926, 913, 845, 822, 793, 755, 721, 661, 644, 600, 401; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.58 (m, 1H), 8.14 (m, 1H), 8.07 (s, 1H), 7.56 (m, 2H), 7.49 (s, 1H), 4.12 (s, 3H), 4.06 (s, 3H), 3.56-3.16 (m, 4H), 1.99-1.77 (m, 4H), 1.48-1.35 (m, 4H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.2, 148.3, 133.3, 132.5, 130.2, 129.3, 125.9, 125.6, 125.0, 124.7, 124.5, 122.5, 105.1, 103.8, 55.9, 55.9, 30.6, 30.2, 27.7, 27.3, 26.9, 26.7; **HR-ESI-MS**: calc. ($C_{22}H_{24}O_2Na$, [M+Na]⁺): 343.1669; obs.: 343.1668; **Mp**. = 150 °C.

2,3-Dimethoxy-10-phenylphenanthrene (2e)

Phenanthrene **2e** was synthesized following the general procedure C using the corresponding alkene (100 mg, 316 μ mol, 1.00 equiv) and PIFA (158 mg, 411 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (42 mg, 133 μ mol, 42%).

R_f = 0.34 (Pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2933, 1524, 1499, 1463, 1435, 1259, 1205, 1151, 1024, 857, 760, 700, 585, 571; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.55 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 1H), 8.08 (s, 1H), 7.86 (dd, ${}^{3}J_{HH}$ = 7.9 Hz, ${}^{4}J_{HH}$ = 1.4 Hz, 1H), 7.65-7.41 (m, 8H), 7.33 (m, 1H), 4.13 (s, 3H), 3.82 (s, 3H); 1³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.2, 149.1, 141.1, 138.0, 131.1, 129.8, 129.4, 128.8, 128.4, 127.4, 126.2, 126.1, 125.9, 125.9, 122.0, 107.1, 103.5, 56.0, 55.7; **HR-EI-MS**: calc. (C₂₂H₁₈O₂, [M]⁺): 314.1307; obs.: 314.1304,

2,3-Dimethoxy-10-(p-tolyl)phenanthrene (2f)

Phenanthrene **2f** was synthesized following the general procedure C using the corresponding alkene (100 mg, $302 \mu mol$, 1.00 equiv) and PIFA (169 mg, $393 \mu mol$, 1.30 equiv). Column chromatography (SiO₂, Pentane/ EtOAc 20:1) delivered the product as a yellow resin (43 mg, 130 μ mol, 43%, ratio of 3-methoxy- vs. 1-methoxy-isomer = 92:8).

R_f = 0.48 (pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2933, 1797, 1617, 1526, 1502, 1464, 1436, 1252, 1208, 1151, 1126, 1041, 1023, 908, 836, 820, 760, 726, 689, 646, 607, 580, 544, 515; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.61 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 1H), 8.05 (s, 1H), 7.94(m, 1H), 7.68-7.56 (m, 2H), 7.47 (m, 4H), 7.37-7.29 (m, 3H), 4.15 (s, 3H), 4.05 (s, 3H), 2.48 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.3, 136.8, 130.4, 130.0, 129.0, 127.0, 126.8, 126.6, 126.0, 125.4, 122.4, 108.3, 103.2, 56.0, 55.9, 21.3; **HR-ESI-MS**: calc. (C₂₃H₂₀O₂, [M]⁺): 328.1463; obs.: 328.1455,

2,3-Dimethoxy-10-(4-methoxyphenyl)phenanthrene (2g)

The reaction was carried out in DCM instead of MeNO₂. Phenanthrene **2g** was synthesized following the general procedure C using the corresponding alkene (100 mg, 289 μ mol, 1.00 equiv) and PIFA (144 mg, 375 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 15:1) delivered the product as a yellow resin (44 mg, 127 μ mol, 44%).

R_f = 0.34 (pentane/EtOAc 15:1); **IR**: v (cm⁻¹) = 2933, 1502, 1463, 1436, 1287, 1242, 1210, 1160, 1026, 907, 836, 792, 726, 608, 553; ¹**H-NMR** δ (400 MHz, CDCl₃) = 8.59 (dd, ${}^{3}J_{HH}$ = 8.3 Hz, ${}^{4}J_{HH}$ = 0.5 Hz, 1H), 8.02 (s, 1H), 7.92 (dd, ${}^{3}J_{HH}$ = 8.3 Hz, ${}^{4}J_{HH}$ = 1.0 Hz, 1H), 7.60 (m, 1H), 7.56 (s, 1H), 7.50-7.40 (m, 3H), 7.22 (s, 1H), 7.08-6.98 (m, 2H), 4.12 (s, 3H), 4.02 (s, 3H), 3.89 (s, 3H); 13 **C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.5, 149.4, 147.3, 133.6, 132.3, 131.2, 131.0, 130.1, 128.0, 126.9, 126.7, 126.3, 125.6, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 125.1, 122.7, 121.6, 113.7, 111.3, 107.9, 102.9, 70.6, 56.5, 125.1, 12

56.0, 56.0, 55.9, 55.4, 55.3, 55.1; **HR-ESI-MS**: calc. $(C_{23}H_{21}O_3, [M+H]^+)$: 345,1485; obs.: 345,1483,

tert-Dutyl(2-(6,7-dimethoxyphenanthren-9-yl)ethoxy)dimethylsilane (2h)

Phenanthrene **2h** was synthesized following the general procedure C using the corresponding alkene (100 mg, 250 μ mol, 1.00 equiv) and PIFA (130 mg, 326 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a yellow resin (66 mg, 166 μ mol, 66%).

R_f = 0.39 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2952, 2929, 2856, 1526, 1502, 1472, 1435, 1389, 1269, 1230, 1210, 1166, 1093, 1040, 1026, 878, 835, 806, 776, 745; ¹**H-NMR** δ (300 MHz, CDCI₃) = 8.50 (d, ³*J*_{*HH*} = 8.1 Hz, 1H), 8.06 (s, 1H), 7.81 (m, 1H), 7.62-7.47 (m, 3H), 7.46 (s, 1H), 4.13 (s, 3H), 4.07 (s, 3H), 4.03 (t, ³*J*_{*HH*} = 7.4 Hz, 2H), 3.33 (t, ³*J*_{*HH*} = 7.5 Hz, 2H), 0.89 (s, 9H), 0.00 (s, 6H); ¹³**C-NMR** (76 MHz, CDCI₃): δ (ppm) = 149.2, 148.9, 132.4, 131.3, 129.2, 128.2, 126.5, 125.8, 125.7, 125.6, 125.4, 122.0, 104.7, 103.8, 63.6, 56.0, 37.2, 26.0, 18.4, -5.3; **HR-ESI-MS**: calc. (C₂₄H₃₃O₃, [M+H]⁺): 397.2193; obs.: 397.2176,

10-(3-Chloropropyl)-2,3-dimethoxyphenanthrene (2i)

Phenanthrene **2i** was synthesized following the general procedure C using the corresponding alkene (100 mg, 315 μ mol, 1.00 equiv) and PIFA (157 mg, 410 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (64 mg, 202 μ mol, 64%).

R_f = 0.34 (pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2934, 1527, 1502, 1462, 1435, 1389, 1266, 1230, 1209, 1166, 1038, 1023, 909, 850, 804, 778,727, 646, 570; ¹**H-NMR** δ (400 MHz, CDCl₃) = 8.50 (dd, ³*J*_{HH} = 8.2 Hz, ⁴*J*_{HH} = 0.5 Hz, 1H), 8.05 (s, 1H), 7.81 (dd, ³*J*_{HH} = 7.8, ⁴*J*_{HH} = 1.4 Hz, 1H), 7.61-7.49 (m, 3H), 7.46 (s, 1H), 4.12 (s, 3H), 4.07 (s, 3H), 3.67 (t, ³*J*_{HH} = 6.1 Hz, 2H), 3.32-3.18 (m, 2H), 2.35-2.23 (m, 2H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.3, 149.0, 134.1, 131.2, 129.2, 128.2, 126.0, 125.8, 125.7, 125.5, 125.0, 122.0, 104.7, 103.9, 77.3, 77.0, 76.7, 56.0, 55.9, 44.9, 32.8, 30.5; **HR-ESI-MS**: calc. (C₁₉H₁₉O₂CINa, [M+Na]⁺): 337.0966; obs.: 337.0954,

2,3-Dimethoxy-10-(methoxymethyl)phenanthrene (2j)

Phenanthrene **2j** was synthesized following the general procedure C using the corresponding alkene (100 mg, $352 \mu mol$, 1.00 equiv) and PIFA (182 mg, 457 μmol , 1.30 equiv). Column chromatography (SiO₂, Pentane/EtOAc 15:1) delivered the product as a yellow resin (55 mg, 193 μmol , 55%).

R_f = 0.38 (pentane/EtOAc 15:1); **IR**: v (cm⁻¹) = 2992, 2931, 2833, 1615, 1503, 1464, 1435, 1390, 1377, 1267, 1231, 1207, 1168, 1115, 1094, 1037, 1021, 957, 882, 853, 842, 803, 775, 743, 569, 544, 467; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.52 (d, ³*J*_{HH} = 8.1 Hz, 1H), 8.04 (s, 1H), 7.86 (m, 1H), 7.69-7.50 (m, 3H), 4.93 (s, 2H), 4.12 (s, 3H), 4.07 (s, 3H), 3.46 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃):

 δ (ppm) = 149.3, 149.1, 131.0, 130.7, 130.0, 128.7, 126.4, 125.9, 125.8, 125.7, 125.5, 122.0, 105.0, 103.6, 74.0, 57.8, 55.9, 55.9; **HR-ESI-MS**: calc. (C₁₈H₁₈O₃Na, [M+Na]⁺): 305.1148; obs.: 305.1145,

10-Cyclohexyl-2,3-dimethoxyphenanthrene (2k)

Phenanthrene **2k** was synthesized following the general procedure C using the corresponding alkene (80 mg, 261 μ mol, 1.00 equiv) and PIFA (135 mg, 339 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (49 mg, 154 μ mol, 59%).

R_f = 0.43 (pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2928, 2848, 1615, 1527, 1503, 1465, 1454, 1434, 1389, 1262, 1230, 1209, 1161, 1131, 1043, 1020, 888, 874, 849, 806, 781, 743, 637, 576; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.50 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H), 8.07 (s, 1H), 7.84 (m, 1H), 7.62-7.46 (m, 4H), 4.13 (s, 3H), 4.08 (s, 3H), 3.20 (m, 1H), 2.25-2.11 (m, 2H), 2.02-1.82 (m, 3H), 1.73-1.50 (m, 5H); ¹³**C-NMR** (76 MHz, CDCl₃): δ (ppm) = 149.1, 148.8, 140.9, 133.2, 131.5, 131.4, 128.7, 128.5, 128.5, 125.9, 125.6, 125.5, 121.9, 121.2, 104.4, 103.9, 77.5, 77.0, 76.6, 55.9, 55.9, 55.6, 39.9, 34.0, 27.4, 26.7; **HR-ESI-MS**: calc. (C₂₂H₂₄O₂Na, [M+Na]⁺): 343.1669; obs.: 343.1656

2,3-Dimethoxy-10-propylphenanthrene (2I)

Phenanthrene **2I** was synthesized following the general procedure C using the corresponding alkene (70 mg, 248 μ mol, 1.00 equiv) and PIFA (128 mg, 322 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a yellow resin (47 mg, 166 μ mol, 67%).

R_f = 0.43 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2956, 1616, 1528, 1503, 1465, 1436, 1340, 1269, 1230, 1209, 1166, 1039, 851, 805, 746; ¹**H-NMR** δ (500 MHz, CDCl₃) = 8.48 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 1H), 8.04 (s, 1H), 7.79 (dd, ${}^{3}J_{HH}$ = 7.8 Hz, ${}^{4}J_{HH}$ = 1.5 Hz, 1H), 7.58-7.46 (m, 3H), 7.41 (s, 1H), 4.11 (s, 3H), 4.05 (s, 3H), 3.07-3.00 (m, 2H), 1.92-1.78 (m, 2H), 1.06 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ (ppm) = 149.0, 148.8, 135.8, 131.4, 129.0, 128.1, 126.4, 125.6, 125.5, 125.4, 124.4, 121.9, 104.8, 103.8, 55.9, 55.9, 35.7, 22.9, 14.3; **HR-ESI-MS**: calc. (C₁₉H₂₀O₂Na, [M+Na]⁺): 303.1356; obs.: 33.1354.

9,10-Diethyl-2,3-dimethoxyphenanthrene (2m)

Phenanthrene **2m** was synthesized following the general procedure C using the corresponding alkene (100 mg, 337 μ mol, 1.00 equiv) and PIFA (175 mg, 439 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (75 mg, 253 μ mol, 75%).

R_f = 0.43 (pentane/EtOAc 20:1); ¹**H-NMR** δ (300 MHz, CDCl₃) 8.58 (m, 1H), 8.13 (m 1H), 8.07 (s, 1H), 7.64-7.54 (m, 2H), 7.49 (s, 1H), 4.14 (s, 3H), 4.09 (s, 3H), 3.27-3.11 (m, 4H), 1.39 (m, 6H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 149.2, 148.4, 134.1, 133.3, 130.4, 129.3, 126.2, 125.6, 125.1, 124.7, 124.5, 122.5, 105.2, 103.8, 77.4, 77.2, 77.0, 76.6, 55.9, 55.9, 22.5, 22.1, 15.2, 14. 8; **IR**: v (cm⁻¹) = 2964,

1617, 1530, 1505, 1464, 1435, 1394, 1259, 1223, 1204, 1167, 1079, 1044, 1026, 847, 796, 758, 729; **HR-ESI-MS**: calc. $(C_{20}H_{22}O_2Na, [M+Na]^+)$: 317.1512; obs.: 317.1512,

2,3-Dimethoxyphenanthrene (2n)

Phenanthrene **2n** was synthesized following the general procedure C using the corresponding alkene (100 mg, 449 μ mol, 1.00 equiv) and PIFA (231 mg, 584 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 15:1) delivered the product as a white resin (42 mg, 176 μ mol, 39%).

R_f = 0.38 (pentane/EtOAc 15:1); ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.54 (dd, *J* = 8.3, 0.5 Hz, 1H), 8.02 (s, 1H), 7.88 (ddd, *J* = 7.9, 1.4, 0.5 Hz, 1H), 7.66 (s, 1H), 7.66 (s, 2H), 7.63 (ddd, *J* = 8.4, 5.3, 1.5 Hz, 1H), 7.54 (ddd, *J* = 8.0, 5.5, 1.2 Hz, 1H), 4.13 (s, 3H), 4.05 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 149.3, 131.3, 129.7, 128.7, 127.1, 126.2, 125.9, 125.5, 125.2, 124.8, 122.1, 108.3, 103.3, 56.0, 55.9; **IR**: v (cm⁻¹) = 3001, 2961, 1615, 1523, 1506, 1462, 1435, 1391, 1373, 1268, 1219, 1193, 1155, 1105, 1037, 1022, 855, 801, 779, 743; **HR-EI-MS**: [C₁₆H₁₄O₂]⁺ ([M]⁺): calcd.: 238.0994, obs.: 238.0997.

6-Methoxy-7-methyl-1,2,3,4-tetrahydrotriphenylene (20)

Phenanthrene **2n** was synthesized following the general procedure C using the corresponding alkene (100 mg, 359 μ mol, 1.00 equiv) and PIFA (186 mg, 467 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a brown resin (70 mg, 253 μ mol, 71%, ratio of 7-methyl- vs. 5-methyl-isomer = 85:15).

R_f = 0.44 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2933, 2835, 1622, 1500, 1452, 1435, 1246, 1221, 1193, 1156, 1135, 1050, 1018, 998, 868, 855, 823, 749, 717, 697, 627, 596, 557, 547, 459; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.63 (m, 1H), 8.46 (s, 1H), 8.06 (m, 1H), 7.63-7.52 (m, 2H), 7.33 (s, 1H), 4.02 (s, 3H), 3.21 (m, 4H), 2.49 (s, 3H), 2.03 (m, 4H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 131.7, 130.9, 129.8, 129.6, 129.5, 129.2, 128.7, 126.8, 126.5, 126.2, 125.3, 124.6, 123.3, 123.1, 122.3, 110.2, 102.0, 77.4, 77.2, 77.0, 76.6, 55.4, 55.3, 27.1, 26.8, 23.0, 16.9, 16.4; **HR-EI-MS**: calc. $(C_{20}H_{20}O, [M]^+)$: 276.1514, obs.: 276.1523.

7-Methoxy-6-methyl-1,2,3,4-tetrahydrotriphenylene (2p)

Phenanthrene **2o** was synthesized following the general procedure C using the corresponding alkene (100 mg, 359 μ mol, 1.00 equiv) and PIFA (186 mg, 467 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a yellow resin (73 mg, 262 μ mol, 73%).

R_f = 0.46 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2931, 2864, 1673, 1603, 1498, 1485, 1441, 1394, 1297, 1248, 1222, 1159, 1033, 909, 842, 768, 753, 730; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.62 (m, 1H), 8.05 (m, 1H), 7.98 (s, 1H), 7.83 (d, ${}^{4}J_{HH}$ = 0.6 Hz, 1H), 7.64-7.55 (m, 2H), 4.07 (s, 3H), 3.22-3.07 (m, 4H), 2.47 (d, ${}^{4}J_{HH}$ = 0.6 Hz, 3H), 2.06-1.94 (m, 4H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 156.4, 132.0, 129.9, 128.9, 128.8, 127.7, 127.3, 126.3, 126.1, 125.1, 125.0, 123.4, 122.5,

101.7, 55.4, 27. 0, 26.7, 23.1, 23.0, 17.0; **HR-EI-MS**: calc. $(C_{20}H_{20}O, [M]^{+})$: 276.1514; obs.: 276.1509,

7-Methoxy-1,2,3,4-tetrahydrotriphenylene (2q)

Phenanthrene **2p** was synthesized following the general procedure C using the corresponding alkene (100 mg, 378 μ mol, 1.00 equiv) and PIFA (189 mg, 492 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a yellow resin (78 mg, 299 μ mol, 79%).

R_f = 0.41 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2930, 2834, 1618, 1530, 1504, 1435, 1362, 1282, 1228, 1177, 1044, 1018, 840, 807, 752; ¹**H-NMR** δ (300 MHz, CDCl₃) = 8.63 (m, 1H), 8.07 (m, 2H), 7.98 (d, ${}^{3}J_{HH}$ = 9.1 Hz, 1H), 7.61 (m, 2H), 7.26 (m, 1H), 4.03 (s, 3H), 3.22-3.02 (m, *J* = 7.6, 5.3 Hz, 4H), 2.05-1.92 (m, 4H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 157.6, 132.5, 130.7, 130.2, 128.8, 127.9, 126.7, 126.6, 125.2, 124.9, 123.4, 122.8, 116.1, 104.5, 55.5, 26.9, 26.7, 23.0, 23.0; **HR-EI-MS**: calc. (C₁₉H₁₈O, [M]⁺): 262.1358; obs.: 262.1365.

6-Fluoro-2,3-dimethoxy-10-propylphenanthrene (2r)

Phenanthrene **2q** was synthesized following the general procedure C using the corresponding alkene (100 mg, 333 μ mol, 1.00 equiv) and PIFA (186 mg, 433 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 30:1) delivered the product as a yellow resin (65 mg, 218 μ mol, 65%).

R_f = 0.32 (pentane/EtOAc 30:1); **IR**: v (cm⁻¹) = 2962, 2250, 1529, 1505, 1467, 1435, 1415, 1265, 1200, 1155, 1103, 1030, 913, 862, 845, 792, 721, 643, 615, 559; ¹**H-NMR** δ (400 MHz, CDCl₃) = 8.06 (dd, ³*J*_{HH} = 11.4 Hz, ⁴*J*_{HF} = 2.4 Hz, 1H), 7.84 (s, 1H), 7.76 (dd, ³*J*_{HF} = 8.8 Hz, ³*J*_{HH} = 6.0 Hz, 1H), 7.45 (s, 1H), 7.38 (s, 1H), 7.28-7.21 (m, 1H), 4.10 (s, 3H), 4.06 (s, 3H), 3.05-2.96 (m, 2H), 1.93-1.79 (m, 2H), 1.08 (t, ³*J*_{HH} = 7.4 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 161.0 (d, ¹*J*_{CF} = 243.4 Hz), 149.5, 148.8, 134.9 (d, ⁵*J*_{CF} = 2.6 Hz), 130.2 (d, ³*J*_{CF} = 8.2 Hz), 130.1 (d, ³*J*_{CF} = 8.9 Hz), 128.0 (d, ⁵*J*_{CF} = 1.4 Hz), 126.7, 124.7 (d, ⁴*J*_{CF} = 4.4 Hz), 123.7, 114.6 (d, ²*J*_{CF} = 23.9 Hz), 106.8 (d, ²*J*_{CF} = 22.2 Hz), 104.7, 103.8, 55.9, 55.8, 35.5, 22.9, 14.3; **HR-ESI-MS**: $[C_{19}H_{20}O_2F]^+$ ([M+H]⁺): calcd.: 299.1442, obs.: 299.1429.

2,3-Dimethoxy-7-methyl-10-propylphenanthrene (2s)

Phenanthrene **2r** was synthesized following the general procedure C using the corresponding alkene (100 mg, 337 μ mol, 1.00 equiv) and PIFA (168 mg, 438 μ mol, 1.30 equiv). Column chromatography (SiO₂, pentane/EtOAc 20:1) delivered the product as a yellow resin (66 mg, 223 μ mol, 66%).

R_f = 0.34 (pentane/EtOAc 20:1); **IR**: v (cm⁻¹) = 2956, 1785, 1609, 1520, 1442, 1266, 1207, 1157, 1029, 860, 845, 829, 792; ¹**H-NMR** δ (400 MHz, CDCl₃) = 8.26 (s, 1H), 8.04 (s, 1H), 7.71 (d,

 ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.46 (s, 1H), 7.41 (s, 1H), 7.34 (dd, ${}^{3}J_{HH} = 8.1$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 1H), 4.14 (s, 3H), 4.06 (s, 3H), 3.10-2.98 (m, 2H), 2.61 (s, 3H), 1.92-1.79 (m, 2H),

1.27 (t, ${}^{3}J_{HH}$ = 7.2 Hz, 3H); 13 **C-NMR** (100 MHz, CDCl₃): δ (ppm) = 149.0, 148.7, 135.0, 134.7, 129.3, 129.1, 128.0, 127.4, 126.5, 125.1, 124.2, 121.6, 104.8, 103.8, 56.0, 55.8, 35.6, 22.9, 22.1, 14.3; **HR-ESI-MS**: calc. (C₂₀H₂₃O₂, [M+H]⁺): 295.1693; obs.: 295.1690,

References:

- 1 S. Maity, N. Zheng, *Angew. Chem. Int. Ed.* 2012, **51**, 9562.
- 2 M. D. Kennedy, S. J. Bailey, S. M. Wales, P. A. Keller, *J. Org. Chem.* 2015, **80**, 5992.

(E)-1-Bromo-2-(4-methylstyryl)benzene

(E)-1-Bromo-2-(3-methoxyprop-1-en-1-yl)benzene

S 20

(E)-1-Bromo-2-(2-cyclohexylvinyl)benzene

Page 1/1

(E)-1-Bromo-2-(pent-1-en-1-yl)benzene

(E)-1-Bromo-4-methyl-2-(pent-1-en-1-yl)benzene

(E)-2-Bromo-4-fluoro-1-(pent-1-en-1-yl)benzene

2-Bromo-3',4'-dimethoxy-1,1'-biphenyl

3',4'-Dimethoxy-2-vinyl-1,1'-biphenyl

(E)-2-(Hex-3-en-3-yl)-3',4'-dimethoxy-1,1'-biphenyl

(E)-3',4'-Dimethoxy-2-(4-methoxystyryl)-1,1'-biphenyl

(E)-2-(Hex-3-en-3-yl)-3',4'-dimethoxy-1,1'-biphenyl

(*E*)-*tert*-Butyl((4-(3',4'-dimethoxy-[1,1'-biphenyl]-2-yl)but-3-en-1-yl)oxy)dimethyl-silane

(E)-3',4'-Dimethoxy-2-(3-methoxyprop-1-en-1-yl)-1,1'-biphenyl

(E)-2-(2-Cyclohexylvinyl)-3',4'-dimethoxy-1,1'-biphenyl

S 34

(E)-3',4'-Dimethoxy-2-(pent-1-en-1-yl)-1,1'-biphenyl

(*E*)-3',4'-Dimethoxy-4-methyl-2-(pent-1-en-1-yl)-1,1'-biphenyl

(E)-5-Fluoro-3',4'-dimethoxy-2-(pent-1-en-1-yl)-1,1'-biphenyl

2-(Cyclopent-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

(E)-2-(Cyclooct-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

S 39

2-(Cyclohept-1-en-1-yl)-3',4'-dimethoxy-1,1'-biphenyl

1-(2-Bromophenyl)cyclohept-1-ene

(E)-1-(2-Bromophenyl)cyclooct-1-ene

1-Bromo-2-(cyclopent-1-en-1-yl)benzene

