Supplementary Information for

Rhodium-Catalyzed Oxidative Coupling of N-Acyl Anilines with Alkynes Using an Acylamino Moiety as the Traceless Directing Group

Kaijun Geng, Zhoulong Fan, and Ao Zhang*

CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.

E-mail: aozhang@simm.ac.cn

Table of Contents

1. General Experimental Information	S3
2. General Procedure for the Oxidative Coupling of Amides with Alkynes	S3
3. General Procedure for Synthesis of 4 and 5	S3
4. Isotopic Labeling Studies	S4
5. KIE Determined By Two Parallel Reactions	\$5
6. Spectroscopic Data of All Products	S7
7. Supplementary References	S18
8. Copies of NMR Spectra Data	S19
9. Copies of NOE Spectra of Compounds 3s and 3t	S43

1. General Experimental Information

All reactions were performed in flame-dried glassware using sealed tube or Schlenk tube. Liquids and solutions were transferred with syringes. All solvents and chemical reagents were obtained from commercial sources and used without further purifications. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane as an internal reference. Low and high-resolution mass spectra were obtained in the EI mode. Flash column chromatography on silica gel (200-300 mesh) was used for the routine purification of reaction products. The column output was monitored by TLC on silica gel (100-200 mesh) precoated on glass plates (15 x 50 mm), and spots were visualized by UV light at 254 or 365 nM. Commercially available chemicals were obtained from Adamas-beta, Acros Organics, Strem Chemicals, Alfa Aesar, J&K and TCI. Starting materials (amides and alkynes) were prepared according to the literature procedures.^{1,2}

2. General Procedure for the Oxidative Coupling of Amides with Alkynes

 $Cu(OAc)_2 \cdot H_2O$ (100 mg, 0.50 mmol), $[Cp*RhCl_2]_2$ (15 mg, 5 mol%) and internal alkynes 2 (1.00 mmol) were added to a stirred solution of amides 1 (0.50 mmol) in HFIP (2.5 mL), the mixture was heated at 110 °C in a sealed tube till the starting material disappeared. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated. The residue was purified on a silica gel column with petroleum ether as the eluent to afford highly substituted naphthalenes 3.

3. General Procedure for Synthesis of 4 and 5

Cu(OAc)₂•H₂O (100 mg, 0.50 mmol), [Cp*RhCl₂]₂ (15 mg, 5 mol%) and diphenylacetylene (2a)

(178 mg, 1.00 mmol) were added to a stirred solution of amides 1 (0.50 mmol) in HFIP (2.5 mL), the mixture was heated at 110 °C in a sealed tube till the starting material disappeared. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated. The residue was purified on a silica gel column using petroleum ether/ethyl acetate (2:1, v/v) as eluent to afford the *N*-dearylated product **4** or **5**.

4. Isotopic Labeling Studies

1) Cu(OAc)₂·H₂O (10 mg, 0.05 mmol), [Cp*RhCl₂]₂ (2 mg, 5 mol%) and diphenylacetylene (**2a**) (18 mg, 0.10 mmol) were added to a stirred solution of [D₅]-**1a** (9 mg, 0.05 mmol) in HFIP (1.5 mL), the mixture was heated at 110 °C in a sealed tube till the starting material disappeared. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated. The residue was purified on a silica gel column with petroleum ether as the eluent to afford [D_n]-**3a** (18 mg, 85%).

2) Cu(OAc)₂·H₂O (10 mg, 0.05 mmol) and [Cp*RhCl₂]₂ (2 mg, 5 mol%) were added to a stirred solution of *N*-phenylpivalamide (**1a**) (9 mg, 0.05 mmol) in HFIP (1.5 mL) and D₂O (0.5 ml), the mixture was heated at 110 °C in a sealed tube for 5 h. After 5 h, purification by column chromatography (petroleum ether/ethyl acetate 10:1) to afford [D_n]-**1a**.

5. KIE Determined By Two Parallel Reactions

Two parallel reactions of 1,2-bis(4-methoxyphenyl)ethyne (**2b**) with *N*-phenylpivalamide (**1a**) and $[D_5]$ -**1a** respectively were performed to determine the KIE value by comparison of the initial rates. Cu(OAc)₂:H₂O (100 mg, 0.50 mmol), $[Cp*RhCl_2]_2$ (15 mg, 5 mol%) and 1,2-bis(4-methoxyphenyl)ethyne (**2b**) (238 mg, 1.00 mmol) were added to a stirred solution of *N*-phenylpivalamide (**1a**) (89 mg, 0.50 mmol) or $[D_5]$ -**1a** (91 mg, 0.50 mmol) in HFIP (5 mL), the mixture was heated at 110 °C in a sealed tube. A periodic aliquot (0.5 mL) was removed by a syringe and analyzed by ¹H NMR to provide the following conversions.

t/min	40	60	80	100	120
3n /%	2.00	2.25	4.90	6.20	8.30

6. Spectroscopic Data of All Products³

1,2,3,4-Tetraphenylnaphthalene (3a)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (dd, *J* = 6.4, 3.3 Hz, 2H), 7.39 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.28 – 7.17 (m, 10H), 6.84 (s, 10H); ¹³**C NMR** (151 MHz, CDCl₃) δ 140.53, 139.59, 138.90, 138.42, 132.03, 131.32, 127.54, 127.00, 126.58, 126.44, 125.89, 125.34; **EI-MS** (m/z) 432 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₄H₂₄, 432.1878; found, 432.1883.

6-Chloro-1,2,3,4-tetraphenylnaphthalene (3b)

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, J = 1.7 Hz, 1H), 7.58 (d, J = 9.1 Hz, 1H), 7.31 (dd, J = 9.1, 2.1 Hz, 1H), 7.27 – 7.15 (m, 10H), 6.88 – 6.78 (m, 10H);¹³C NMR (151 MHz, CDCl₃) δ 140.18, 140.15, 140.07, 139.20, 139.11, 138.84, 138.47, 137.75, 132.90, 132.00, 131.19, 131.17, 131.14, 130.39, 128.82, 127.74, 127.65, 126.74, 126.66, 126.64, 125.68, 125.51, 125.48; **EI-MS** (m/z) 466 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₄H₂₃³⁵Cl, 466.1488; found, 466.1486.

6-Methyl-1,2,3,4-tetraphenylnaphthalene (3c)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 8.6 Hz, 1H), 7.40 (s, 1H), 7.21 (s, 11H), 6.83 (s, 10H), 2.37 (s, 3H); ¹³**C** NMR (151 MHz, CDCl₃) δ 140.73, 140.66, 139.78, 139.77, 139.00, 138.26, 138.03, 137.80, 135.64, 132.19, 131.42, 131.39, 131.36, 131.33, 130.30, 128.15, 127.54, 127.53, 126.95, 126.56, 126.39, 126.37, 125.89, 125.28, 21.88; **EI-MS** (m/z) 446 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₅H₂₆, 446.2035; found, 446.2037.

6-Methoxy-1,2,3,4-tetraphenylnaphthalene (3d)

White solid (112 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 9.2 Hz, 1H), 7.24 – 7.19 (m, 10H), 7.06 (dd, J = 9.2, 2.5 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.83 (s, 10H), 3.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 157.57, 140.74, 140.60, 139.79, 139.73, 139.44, 138.36, 137.30, 136.80, 133.29, 131.49, 131.29, 131.27, 131.22, 128.72, 127.65, 127.51, 126.55, 126.43, 126.41, 125.29, 125.22, 118.03, 105.68, 55.16; **EI-MS** (m/z) 462 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₅H₂₆O, 462.1984; found, 462.1982.

1,2,3,4-Tetraphenyl-6-(trifluoromethyl)naphthalene (3e)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.95 (s, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.32 – 7.14 (m, 10H), 6.85 (d, *J* = 4.0 Hz, 10H); ¹³**C NMR** (151 MHz, CDCl₃) δ 141.07, 140.31, 139.97, 139.96, 139.45, 138.89, 138.54, 138.47, 133.34, 131.16, 131.14, 131.13, 131.05, 128.21, 127.79, 127.73, 127.48, 126.95, 126.80, 126.72, 125.65, 125.63, 125.31, 124.68, 124.65,

123.51, 121.36, 121.34; **EI-MS** (m/z) 500 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for $C_{35}H_{23}F_{3}$, 500.1752; found, 500.1756.

Methyl 5,6,7,8-tetraphenyl-2-naphthoate (3f)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 8.42 (d, 1H), 7.96 (dd, 1H), 7.69 (d, 1H), 7.25 – 7.15 (m, 10H), 6.85 (d, *J* = 3.6 Hz, 10H), 3.87 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 166.83, 140.72, 139.62, 139.60, 139.40, 139.32, 138.57, 138.22, 137.93, 133.69, 130.84, 130.75, 130.70, 130.55, 129.50, 127.18, 127.17, 126.85, 126.81, 126.30, 126.16, 125.07, 125.02, 124.67, 51.67; **EI-MS** (m/z) 490 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₆H₂₆O₂, 490.1933; found, 490.1934.

1,2,3,4,6-Pentaphenylnaphthalene (3g)

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (s, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.54 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.32 (d, J = 7.1 Hz, 1H), 7.22 (dd, J = 12.0, 2.9 Hz, 10H), 6.86 (s, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 141.18, 140.50, 140.47, 139.52, 139.39, 138.97, 138.72, 138.43, 138.26, 132.26, 131.29, 131.28, 131.20, 128.77, 127.58, 127.57, 127.39, 127.25, 126.50, 126.47, 125.49, 125.34, 124.93; EI-MS (m/z) 508 (M⁺); HRMS (EI): m/z [M⁺] calcd for C₄₀H₂₈, 508.2191; found, 508.2193.

5-Methyl-1,2,3,4-tetraphenylnaphthalene (3h)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.49 (dd, *J* = 7.2, 2.3 Hz, 1H), 7.26 – 7.00 (m, 12H), 6.85 – 6.68 (m, 10H), 1.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 142.94, 140.75, 140.67, 140.46, 140.34, 139.08, 138.49, 138.07, 135.93, 133.40, 131.64, 131.39, 131.30, 131.12, 130.92, 130.32, 127.48, 126.82, 126.47, 126.33, 126.27, 126.18, 125.45, 125.22, 125.02, 25.36; **EI-MS** (m/z) 446 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₅H₂₆, 446.2035; found, 446.2035.

5-Chloro-1,2,3,4-tetraphenylnaphthalene(3i)

Orange solid; ¹**H NMR** (300 MHz, CDCl3) δ 7.59 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.26 – 7.16 (m, 7H), 7.10 (s, 4H), 6.78 (m, 10H); ¹³**C NMR** (151 MHz, CDCl₃) δ 141.86, 141.28, 140.19, 139.65, 139.06, 137.08, 134.62, 131.99, 131.53, 131.24, 131.19, 130.95, 129.96, 128.56, 127.62, 127.12, 126.65, 126.58, 126.35, 126.11, 125.47, 125.46, 125.25; **EI-MS** (m/z) 466 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₄H₂₃³⁵Cl, 466.1488; found, 466.1479.

5,6,7,8-Tetraphenyl-2,3-dihydro-1*H*-cyclopenta[*b*]naphthalene (3j)

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (s, 2H), 7.22 (s, 10H), 6.83 (s, 10H), 2.93 (t, J = 7.2 Hz, 4H), 2.17 – 1.96 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 143.52, 140.82, 140.13, 137.95,

137.93, 131.40, 131.36, 127.46, 126.45, 126.22, 125.13, 121.17, 32.80, 26.18; **EI-MS** (m/z) 472 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₇H₂₈, 472.2191; found, 472.2182.

6,7,8,9-Tetraphenyl-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalene (3k)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 8.5 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 1H), 7.26 – 7.07 (m, 10H), 6.80 (d, *J* = 4.2 Hz, 10H), 2.92 (t, *J* = 7.4 Hz, 2H), 2.27 (t, *J* = 7.2 Hz, 2H), 1.90 – 1.74 (m, 2H); ¹³**C** NMR (151 MHz, CDCl₃) δ 143.36, 142.16, 140.76, 140.73, 140.49, 140.14, 139.97, 139.06, 137.72, 137.36, 131.84, 131.67, 131.34, 131.28, 131.25, 129.29, 127.46, 126.72, 126.57, 126.45, 126.28, 125.16, 125.05, 123.47, 35.16, 33.35, 25.60; **EI-MS** (m/z) 472 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₇H₂₈, 472.2191; found, 472.2182.

5,6,7,8-Tetraphenyl-3,4-dihydroanthracen-1(2H)-one (3l)

Yellow solid; ¹**H NMR** (300 MHz, CDCl₃) δ 8.45 (s, 1H), 7.47 (s, 1H), 7.24 – 7.15 (m, 10H), 6.83 (d, J = 2.0 Hz, 10H), 2.97 (t, J = 5.5 Hz, 2H), 2.66 (d, J = 6.3 Hz, 2H), 2.14 – 2.08 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 198.49, 141.61, 140.54, 140.24, 140.12, 139.32, 139.24, 139.09, 138.69, 137.68, 134.57, 131.25, 131.23, 131.21, 131.02, 130.66, 130.55, 128.10, 127.68, 127.68, 126.84, 126.63, 125.88, 125.54, 125.46, 39.74, 30.19, 23.32; **EI-MS** (m/z) 500 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₈H₂₈O, 500.2140; found, 500.2141.

1,2,3,4-Tetra-p-tolylnaphthalene (3m)

Yellow solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.61 (dd, 2H), 7.33 (dd, 2H), 7.09 – 7.02 (m, 8H), 6.72 – 6.64 (m, 8H), 2.31 (s, 6H), 2.10 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 139.10, 138.28, 137.73, 136.78, 135.60, 134.29, 132.18, 131.14, 131.12, 128.19, 127.24, 126.97, 125.51, 21.26, 21.09; **EI-MS** (m/z) 488 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₈H₃₂, 488.2504; found, 488.2505.

1,2,3,4-Tetrakis(4-methoxyphenyl)naphthalene (3n)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.64 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.36 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 4H), 6.79 (d, *J* = 8.6 Hz, 4H), 6.71 (d, *J* = 8.5 Hz, 4H), 6.43 (d, *J* = 8.6 Hz, 4H), 3.79 (s, 6H), 3.62 (s, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.90, 156.89, 139.14, 138.17, 133.37, 132.38, 132.30, 132.27, 132.14, 126.96, 125.59, 113.03, 112.16, 55.14, 54.90; **EI-MS** (m/z) 552 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₈H₃₂O₄, 552.2301; found, 552.2302.

1,2,3,4-Tetrakis(4-(tert-butyl)phenyl)naphthalene (30)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.76 (dd, 2H), 7.37 (dd, 2H), 7.24 (d, J = 5.2 Hz, 2H), 7.20 (s, 2H), 7.11 (d, J = 8.2 Hz, 4H), 6.81 (d, J = 8.3 Hz, 4H), 6.68 (d, J = 8.2 Hz, 4H), 1.27 (s, 18H), 1.09 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 148.85, 147.53, 139.43, 138.33, 137.78, 136.72, 131.96, 131.02, 130.97, 127.09, 125.52, 124.13, 123.02, 34.40, 34.05, 31.36, 31.18; **EI-MS** (m/z) 656 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₅₀H₅₆, 656.4382; found, 656.4388.

1,2,3,4-Tetra-m-tolylnaphthalene (3p)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.64 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.37 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.11 (t, *J* = 7.5 Hz, 2H), 7.00 (t, *J* = 7.5 Hz, 6H), 6.77 – 6.68 (m, 3H), 6.62 (d, *J* = 6.9 Hz, 5H), 2.26 (s, 6H), 2.01 (t, *J* = 5.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 140.42, 139.58, 139.02, 138.99, 138.27, 138.23, 138.20, 136.76, 136.71, 135.59, 135.53, 135.46, 132.31, 132.26, 132.23, 132.18, 132.16, 132.11, 132.06, 131.94, 128.44, 128.42, 128.36, 128.29, 127.26, 127.22, 127.02, 126.98, 126.23, 126.17, 126.09, 125.81, 125.58, 21.38, 21.35, 21.08; **EI-MS** (m/z) 488 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₈H₃₂, 488.2504; found, 488.2503.

1,2,3,4-Tetrakis(3-chlorophenyl)naphthalene (3q)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.58 (dd, 2H), 7.47 (dd, J = 6.4, 3.3 Hz, 2H), 7.25 – 7.16 (m, 6H), 7.12 – 7.02 (m, 2H), 6.92 – 6.80 (m, 6H), 6.79 – 6.67 (m, 2H); ¹³**C** NMR (151 MHz, CDCl₃) δ 141.31, 140.61, 137.59, 137.09, 133.85, 133.69, 133.65, 133.00, 132.96, 132.79, 131.79, 131.11, 131.08, 131.05, 130.97, 130.95, 130.92, 130.87, 129.28, 129.18, 129.14, 129.10, 129.06, 128.43, 128.38, 128.31, 128.27, 128.23, 128.15, 128.11, 127.21, 126.82, 126.79, 126.28; **EI-MS** (m/z) 568 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₄H₂₀³⁵Cl₄, 568.0319; found, 568.0319.

1,2,3,4-Tetrakis(3-fluorophenyl)naphthalene (3r)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.61 (dd, *J* = 6.4, 3.3 Hz, 2H), 7.45 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.26 – 7.21 (m, 2H), 7.02 – 6.87 (m, 8H), 6.67 – 6.54 (m, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 163.15, 163.12, 162.55, 162.51, 162.46, 161.51, 161.48, 160.91, 160.88, 160.84, 141.89, 141.83, 141.11, 141.06, 137.62, 137.15, 131.79, 129.40, 129.35, 129.32, 129.30, 129.25, 128.61, 128.58, 128.55, 128.53, 128.49, 128.47, 128.44, 128.41, 128.38, 128.35, 128.32, 126.90, 126.81, 126.68, 118.10, 118.08, 118.05, 117.96, 117.93, 117.81, 117.79, 117.77, 114.00, 113.99, 113.87, 113.85, 113.07, 112.93; **EI-MS** (m/z) 504 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₃₄H₂₀F₄, 504.1501; found, 504.1494.

1,4-Dimethyl-2,3-diphenylnaphthalene (3s)

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 8.10 (dd, *J* = 6.5, 3.4 Hz, 2H), 7.54 (dd, *J* = 6.6, 3.4 Hz, 2H), 7.06 (p, *J* = 6.6 Hz, 6H), 6.92 (d, *J* = 7.2 Hz, 4H), 2.39 (s, 6H); ¹³**C NMR** (126 MHz, CDCl3) δ 141.23, 138.92, 131.54, 129.91, 128.91, 126.74, 125.34, 125.26, 124.52, 16.36; **EI-MS** (m/z) 308 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₂₄H₂₀, 308.1565; found, 308.1562.

1,3-Dimethyl-2,4-diphenylnaphthalene (3s')

White solid; ¹**H NMR** (300 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.53 – 7.35 (m, 9H), 7.31 (d, J = 1.7 Hz, 2H), 7.24 (d, J = 6.8 Hz, 2H), 2.41 (s, 3H), 1.84 (s, 3H); ¹³**C NMR** (126 MHz, CDCl3) δ 141.78, 140.14, 139.79, 136.26, 131.83, 131.59, 130.49, 130.45, 129.95, 128.96, 127.92, 127.90, 126.46, 126.38, 126.18, 124.88, 124.59, 123.81, 19.46, 16.41; **EI-MS** (m/z) 308 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₂₄H₂₀, 308.1565; found, 308.1566.

1,4-Dibutyl-2,3-diphenylnaphthalene (3t)

Colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.19 – 8.11 (m, 2H), 7.56 (dd, J = 6.7, 3.3 Hz, 2H), 7.15 – 7.03 (m, 6H), 7.01 – 6.96 (m, 4H), 2.80 (t, J = 8.3 Hz, 4H), 1.63 – 1.50 (m, 4H), 1.25 (q, J =7.5 Hz, 4H), 0.77 (t, J = 7.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 141.01, 138.80, 134.09, 131.04, 129.74, 126.58, 125.29, 125.00, 124.75, 32.95, 29.45, 22.67, 13.21; EI-MS (m/z) 392 (M⁺); HRMS (EI): m/z [M⁺] calcd for C₂₄H₂₀, 392.2504; found, 392.2504.

1,3-Dibutyl-2,4-diphenylnaphthalene (3t')

Colourless oil; ¹**H** NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.56 – 7.25 (m, 13H), 2.77 (dd, J = 10.1, 6.7 Hz, 2H), 2.29 – 2.14 (m, 2H), 1.65 – 1.50 (m, 2H), 1.27 (q, J = 7.4 Hz, 2H), 1.14 (td, J = 7.3, 3.0 Hz, 2H), 0.78 (tt, J = 7.4, 3.7 Hz, 5H), 0.41 (td, J = 7.3, 2.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.84, 139.82, 139.25, 136.81, 136.22, 135.98, 132.48, 130.15, 129.60, 129.42, 127.59, 127.33, 126.76, 126.33, 126.17, 124.61, 124.50, 123.82, 32.86, 32.47, 31.03, 29.58, 22.76, 22.27, 13.24, 12.64; EI-MS (m/z) 392 (M⁺); HRMS (EI): m/z [M⁺] calcd for C₂₄H₂₀, 392.2504; found, 392.2505.

(9H-Fluoren-9-yl) methyl 4-carbamoylpiperidine-1-carboxylate (4)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 7.4 Hz, 2H), 7.57 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 5.61 – 5.41 (m, 2H), 4.43 (s, 2H), 4.24 (t, 1H), 4.22 – 3.99 (m, 2H), 2.93 – 2.75 (m, 2H), 2.40 – 2.23 (m, 1H), 1.93 – 1.79 (m, 2H), 1.71 – 1.54 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 176.20, 155.10, 144.03, 141.35, 127.69, 127.06, 124.96, 119.99, 67.26, 47.38, 43.39, 42.56, 28.47; **EI-MS** (m/z) 350 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₂₁H₂₂N₂O₃, 350.1630; found, 350.1651.

(S)-(9H-Fluoren-9-yl) methyl (1-amino-1-oxopropan-2-yl)(methyl)carbamate (5)

White solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 7.1 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.1 Hz, 2H), 5.92 (d, *J* = 35.1 Hz, 2H), 4.78 (s, 1H), 4.53 (s, 2H),

4.23 (t, *J* = 6.0 Hz, 1H), 2.76 (s, 3H), 1.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.57, 156.90, 143.79, 143.71, 141.37, 127.79, 127.14, 124.95, 124.81, 120.05, 120.04, 67.54, 53.99, 47.37, 29.48, 13.49; **EI-MS** (m/z) 324 (M⁺); **HRMS** (EI): m/z [M⁺] calcd for C₁₉H₂₀N₂O₃, 324.1474; found, 324.1470.

7. Supplementary References

- 1. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth,
- C.J.; Grieco, P. A. Org. Lett. 2002, 4, 3199.
- 2. Vermaa, A.; Patela, S.; Meenakshia.; Kumara, A.; Yadava, A.;Kumara, S.; Janaa, S.; Sharmaa, S.; Prasada, ChD.; Kumar, S. *Chem. Commun.* **2015**, *51*, 1371.
- 3. (a) Fukutani, T; Hirano, K; Satoh, T; Miura, M. Org. Lett. **2009**, *11*, 5198. (b) Fukutani, T; Hirano, K; Satoh, T; Miura, M. J. Org. Chem. **2011**, *76*, 2867.

8. Copies of NMR Spectra Data

¹H and ¹³C NMR spectra of compound **3a**

¹H and ¹³C NMR spectra of compound **3b**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3c

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3d}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3e


~~~



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3f



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound  $\mathbf{3g}$ 



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound  $\boldsymbol{3h}$ 



-1.92

 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3i

7.60 7.57 7.57 7.53 7.75 7.75 7.72 7.72 7.72 7.72 7.71 7.71 6.77



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3j



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3k

2.95 2.92 2.92 2.23 2.23 1.86 1.79 1.76





<sup>1</sup>H and <sup>13</sup>C NMR spectra of compound **3**l

-8.45 7.47 7.25 7.24 7.21 7.21 6.84 6.83 2.99 72.97 72.96 72.69 72.65 7.65 7.65 7.65 7.65 7.08 7.08







 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3m





S32



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound  $\boldsymbol{3p}$ 

7.65

~ ~ ~







 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound  $\boldsymbol{3q}$ 

7.58 7.46 7.47 7.45 7.45 7.45 7.19 7.19 7.19 7.10 7.10 7.10 7.10 6.87 6.89 6.87 6.87 6.81 6.75 6.73



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 3r



- - -

<sup>1</sup>H and <sup>13</sup>C NMR spectra of compound (3s)



<sup>1</sup>H and <sup>13</sup>C NMR spectra of compound (**3s'**)



<sup>1</sup>H and <sup>13</sup>C NMR spectra of compound(**3**t)





# <sup>1</sup>H and <sup>13</sup>C NMR spectra of compound(**3t'**)

 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound 4

| 7.75<br>7.75<br>7.59<br>7.56<br>7.40<br>7.38<br>7.38<br>7.31<br>7.31 | 5.55 | 4.13<br>4.14<br>4.15<br>4.18<br>4.11<br>4.11 | -2.85<br>-2.33<br>-2.29<br>-1.88<br>-1.65<br>-1.65 |  |
|----------------------------------------------------------------------|------|----------------------------------------------|----------------------------------------------------|--|
|                                                                      | 21   |                                              |                                                    |  |



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR spectra of compound  $\boldsymbol{5}$ 





# 9. Copies of NOE Spectra of Compounds 3s and 3t

compound 3s:



compound 3t:

