Supporting Information

Direct Isoperfluoropropylation of Arenediazonium Salts with Hexafluoropropylene

Xiaojun Wang,^{a,b} Yajun Li,^b Yuwei Guo,^{a,b} Zhentong Zhu,^{b,c} Yongming Wu*^b and Weiguo Cao*^{a,b}

^a Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

^c School of Chemiscal and environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.

Email: wgcao@staff.shu.edu.cn and ymwu@sioc.ac.cn

Table of Contents

General information			1			
Synthesis of 4-(ethoxycarbonyl)benzenediazonium tetrafluoroborate ¹ 1						
General procedure for the synthesis of isoperfluoropropylarenes	from	the	4-			
(ethoxycarbonyl)benzenediazonium tetrafluoroborate			1			
General procedure for the synthesis of isoperfluoropropylarenes from the aromatic amines (one-						
pot protocol)			2			
Spectral data of the products			4			
References			.11			
Spectrum of the Products			.12			

General information

Unless noted otherwise, the reactions were performed in oven-dried glassware containing a Teflon-coated stirrer bar and dry septum under a nitrogen atmosphere. Acetonitrile was dried by refluxing over CaH₂ and subsequent distillation.Room temperature (rt) was range from 17 °C to 24 °C. ¹H NMR spectra were recorded on a Agilent 400 spectrometer (400 MHz) spectrometer with residual solvent peak as internal reference. ¹⁹F NMR spectra were taken on a Agilent 400 spectrometer (376 MHz). ¹³C NMR spectra were taken a Bruker AM-400 spectrometer (101MHz) or Agilent 400 spectrometer (101MHz) with residual solvent peak as internal reference. CDCl₃ was referenced to 7.26 ppm in ¹H NMR and 77.00 ppm in ¹³C spectra. DMSO-*d*₆ was referenced to 3.33 and 2.50 ppm in ¹H NMR and 39.52 ppm in ¹³C spectra. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad. Column chromatography over silica gel (mesh 300-400) and hexane/ethyl acetate or pentane/ dichloromethane were used as the eluent.

Aniline and cuprous iodide were freshly purified according to the purification handbook *Purification of Laboratory Chemicals* before using. Unless otherwise noted, all other reagents were purchased from commercial suppliers and used as received.

Synthesis of 4-(ethoxycarbonyl)benzenediazonium tetrafluoroborate¹

In a 50 mL round-bottom flask, the ethyl 4-aminobenzoate (5 mmol) was dissolved in a mixture of absolute ethanol (2 mL) and an aqueous solution of HBF₄ (40%, 1.6 mL, 10 mmol) and tertbutyl nitrite (1.2 mL, 10 mmol) was added dropwise to the solution at 0 °C. The reaction was stirred at room temperature for 1 h and diethyl ether (10 mL) was added to precipitate the 4- (ethoxycarbonyl)benzenediazonium tetrafluoroborate that was filtered off and washed with diethyl ether (3 × 10 mL). The 4-(ethoxycarbonyl)benzenediazonium tetrafluoroborate was dried in vacuo and was then directly used without further purification.

General procedure for the synthesis of isoperfluoropropylarenes from the 4-

(ethoxycarbonyl)benzenediazonium tetrafluoroborate.

In a nitrogen-filled glove box, an oven-dried 20 mL crimp cap vessel with Teflon-coated stirrer bar was charged with silver fluoride (25.4 mg, 0.20 mmol) and was brought under an atmosphere of dry nitrogen. To this vessel were added 1.5 mL of anhydrous acetonitrile and hexafluoropropylene (balloon, excess) and the mixture was stirred at room temperature and

ordinary pressure in the dark until silver fluoride precipitate is disappeared. This process takes about two hours and the the isoperfluoropropyl silver is generate.² Then this solution was added to another oven-dried 20 mL crimp cap vessel with corresponding copper/cuprous salt/ copper salt (0.16 mmol) and additive in it. 4-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (0.1 mmol)was dissolved in 1 mL acetonitrile and was added via syringe under nitrogen subsequently. The reaction mixture was stirred at ambient temperature for overnight. The resulting crud product was quantified by PhCF₃ as an internal standard.

General procedure for the synthesis of isoperfluoropropylarenes from the

aromatic amines (one-pot protocol)

			F F	CF ₃ 1) F 2) the	AgF, CH ₃ CN, rt, 2h Cul en EtO ₂ C $- N_2^{\dagger}$	→ EtO ₂ C-	$\begin{array}{c} & & CF_3 \\ & & F \\ & CF_3 \\ & 3a \end{array}$
$EtO_2C \xrightarrow{\text{NH}_2} + {}^{t}BuONO + pTSA \xrightarrow{\text{CH}_3CN, rt, 2h}$							
Entry		equiviva	alent		Temperature($^{\circ}$ C)	Time	Yield [%] ^a
	^t BuONO	pTSA	CuI	AgF			
1	1.00	1.5	1.6	2.0	rt	overnight	57
2	1.20	1.5	1.6	2.0	rt	overnight	75
3	1.35	1.5	1.6	2.0	rt	overnight	66
4	1.20	1.1	1.6	2.0	rt	overnight	53
5	1.20	2.0	1.6	2.0	rt	overnight	57
6	1.20	1.5	1.2	2.0	rt	overnight	32
7	1.20	1.5	1.8	2.0	rt	overnight	70
8	1.20	1.5	1.6	1.6	rt	overnight	73
9	1.20	1.5	1.6	2.4	rt	overnight	59
10	1.20	1.5	1.6	2.0	0 °C	overnight	42

Table S1. Details of screening equivalents, temperature and reaction time.

11	1.20	1.5	1.6	2.0	40 °C	overnight	58
12	1.20	1.5	1.6	2.0	rt	20 min	70
13	1.20	1.5	1.6	2.0	rt	200 min	72

Reaction conditions: HFP (excessive), **2a** (0.1 mmol), CH₃CN (1.5 mL+1.5 mL), under N₂ atmosphere. a: Yield determined by ¹⁹F NMR analysis versus PhCF₃ as an internal standard.

In a nitrogen-filled glove box, an oven-dried 20 mL crimp cap vessel (1) with Teflon-coated stirrer bar was charged with silver fluoride (76.2 mg, 0.60 mmol) and was brought under an atmosphere of dry nitrogen. To this vessel, 3 mL of anhydrous acetonitrile and hexafluoropropylene (balloon, excess) were added, and the mixture was stirred at room temperature under ordinary pressure in the dark until silver fluoride precipitate is disappeared. This process takes about two hours and the isoperfluoropropyl silver is generated. In the process of this reaction, in a nitrogen-filled glove box, an oven-dried 20 mL crimp cap vessel (2) with Teflon-coated stirrer bar was charged with p-toluenesulfonic acid (77.4 mg, 0.45 mmol) and was brought under an atmosphere of dry nitrogen. To this vessel, 2a (49.5mg, 0.3 mmol), 3 mL of anhydrous acetonitrile and tert-butyl nitrite (37.1 mg, 0.36 mmol) were added. The reaction mixture was stirred at ambient temperature for 2 h to generate the corresponding diazonium salt. After these procedures, the reaction mixtures in crimp cap vessels (1) and (2) was added in sequence via syringe into an third oven-dried 20 mL crimp cap vessel with Teflon-coated stirrer bar charging with cuprous iodide (91.4 mg, 0.48 mmol) under nitrogen. The new reaction mixture was stirred at ambient temperature for overnight. The resulting mixture was diluted with Et_2O (10 mL), then filtered through a short pad of celite and rinsed with diethyl ether. The resulting organic solution was add into water (10 mL) and extracted by ethyl Et₂O (3×10 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The residue was further purified by flash chromatography on silica gel to give the desired product.

Spectral data of the products

3a, ethyl 4-(perfluoropropan-2-yl)benzoate

$$EtO_2C \longrightarrow F_{CF_3}$$

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.56 (d, *J* = 7.2 Hz, 6F), -182.59 (hept, *J* = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 165.53, 133.28, 131.07 (d, *J* = 20.5 Hz), 130.10 (d, *J* = 2.2 Hz), 125.97 (d, *J* = 10.6 Hz), 120.78 (qd, *J* = 285.3, 27.6 H), 93.191 – 89.85 (m), 61.67, 14.41; IR (film, cm⁻¹): v 2986, 1729, 1615, 1307, 1213, 985, 953, 723; MS (EI) m/z (relative intensity) 318 (15) [M⁺], 273 (100); HRMS (EI) calcd. For C₁₂H₉O₂F₇: 318.0491, Found: 318.0488.

3b, (perfluoropropan-2-yl)benzene

MS (EI) m/z (relative intensity) 246 [M⁺], 127 (100);

3c, 1-methyl-4-(perfluoropropan-2-yl)benzene

MS (EI) m/z (relative intensity) 260 [M⁺];

3d, 1-(tert-butyl)-4-(perfluoropropan-2-yl)benzene

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.47 (m, 4H), 1.35 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.83 (d, *J* = 7.3 Hz, 6F), -182.68 (hept, *J* = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 154.44, 125.98, 125.57 (d, *J* = 10.3 Hz), 123.91 (d, *J* = 20.6 Hz), 120.88 (qd, *J* = 286.8, 28.5 Hz), 93.40 – 90.09 (m), 34.95, 31.25; IR (film, cm⁻¹): v 2968, 1611, 1308, 1218, 1100, 982, 832, 711; MS (EI) m/z (relative intensity) 302 [M⁺], 287 (100); HRMS (EI) calcd. For C₁₃H₁₃F₇:

3e, 1-(benzyloxy)-4-(perfluoropropan-2-yl)benzene

White solid, mp: 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.6 Hz, 2H), 7.50 – 7.32 (m, 4H), 7.09 (d, J = 8.9 Hz, 2H), 5.12 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.96 (d, J = 7.3 Hz, 6F), -181.75 (hept, J = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 160.84, 136.38, 128.87, 128.42, 127.67, 127.41 (d, J = 10.6 Hz), 120.84 (qd, J = 284.4, 27.6 Hz), 115.25 (d, J = 2.0 Hz), 93.30 – 89.99 (m), 70.32; IR (KBr, cm⁻¹): v 2938, 1614, 1517, 1214, 1102, 980, 853, 738, 698; MS (EI) m/z (relative intensity) 352 [M⁺], 91 (100); HRMS (EI) calcd. For C₁₆H₁₁OF₇: 352.0698, Found: 322.0700.

3f, 1-(4-(perfluoropropan-2-yl)phenyl)ethanone

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.6 Hz, 2H), 2.65 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.52 (d, J = 7.2 Hz, 6F), -182.63 (hept, J = 7.1 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 197.09, 139.19, 131.22 (d, J = 20.5 Hz), 128.78 (d, J = 2.2 Hz), 126.29 (d, J = 10.6 Hz), 120.50 (qd, J = 285.8, 28.1 Hz), 93.16 – 89.82 (m), 26.86; IR (film, cm⁻¹): v 3372, 3008, 1696, 1613, 1414, 1362, 1273, 1214, 1103, 985, 830, 708; MS (EI) m/z (relative intensity) 288 [M⁺], 273 (100); HRMS (EI) calcd. For C₁₁H₇OF₇: 288.0385, Found: 288.0389.

3g, N-(4-(perfluoropropan-2-yl)phenyl)acetamide

Light yellow solid; mp: 132-134 °C; ¹H NMR (400 MHz, DMSO-d6) δ 10.30 (s, 1H), 7.81 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 8.7 Hz, 2H), 2.08 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.88 (d, J = 7.2 Hz, 6F), -182.31 (hept, J = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 168.94, 140.50, 126.77 (d, J = 10.6 Hz), 122.05, 120.69 (qd, J = 284.6, 27.3 Hz), 119.81, 93.13 – 89.81 (m), 24.74; IR

(KBr, cm⁻¹): v 3301, 1674, 1604, 1306, 1266, 983, 739, 707; MS (EI) m/z (relative intensity) 303 (26) [M⁺], 192 (100); HRMS (EI) calcd. For C₁₁H₈NOF₇: 303.0494, Found: 303.0490.

3h, (E)-ethyl 3-(4-(perfluoropropan-2-yl)phenyl)acrylate

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 16.0 Hz, 1H), 7.63 (s, 4H), 6.51 (d, J = 16.0 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 75.66 (d, J = 7.3 Hz, 6F), -182.65 (hept, J = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 166.54, 142.71, 137.37, 128.39, 128.16, 126.43 (d, J = 10.6 Hz), 121.01, 120.63 (qd, J = 284.6, 28.0 H), 92.88 – 89.88 (m), 60.92, 14.36; IR (film, cm⁻¹): v 2985, 1717, 1643, 1516, 1280, 1211, 1104, 984, 953, 827, 719; MS (EI) m/z (relative intensity) 344 (25) [M⁺], 299 (100); HRMS (EI) calcd. For C₁₄H₁₁O₂F₇: 344.0647, Found: 344.0652.

3i, 1-nitro-4-(perfluoropropan-2-yl)benzene

Light yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 8.8 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.39 (d, J = 7.2 Hz, 6F), -181.99 (hept, J = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 149.78, 133.09 (d, J = 20.7 Hz), 127.41 (d, J = 10.8 Hz), 124.21 (d, J = 2.1 Hz), 120.30 (qd, J = 285.7, 27.6 Hz), 93.01 – 89.64 (m); IR (film, cm⁻¹): v 3118, 1611, 1536, 1276, 1217, 1106, 986, 854, 760; MS (EI) m/z (relative intensity) 291 [M⁺], 145 (100); HRMS (EI) calcd. For C₉H₄NO₂F₇: 291.0130, Found: 291.0123.

3j, 1-nitro-3-(perfluoropropan-2-yl)benzene

Light yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.44 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.76 (t, J = 8.1 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.54 (d, J = 7.3 Hz, 6F), -181.94 (hept, J = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 148.72, 131.68 (d, J = 9.9 Hz),

130.56 (d, J = 1.9 Hz), 128.95 (d, J = 21.3 Hz), 126.28, 121.52 (d, J = 12.4 Hz), 120.34 (qd, J = 285.4, 27.3 Hz), 92.71 – 89.34 (m); IR (film, cm⁻¹): v 2927, 1543, 1284, 1216, 1106, 983, 906, 720; MS (EI) m/z (relative intensity) 291 [M⁺], 145 (100); HRMS (EI) calcd. For C₉H₄NO₂F₇: 291.0130, Found: 291.0126.

3k, 4-(perfluoropropan-2-yl)benzonitrile

$$N \equiv - \left\langle \begin{array}{c} \mathsf{CF}_3 \\ \mathsf{F} \\ \mathsf{CF}_3 \end{array} \right\rangle$$

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.40 (d, *J* = 7.3 Hz, 6F), -182.73(hept, *J* = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 132.82 (d, *J* = 2.1 Hz), 131.53 (d, *J* = 20.8 Hz), 126.86 (d, *J* = 10.8 Hz), 120.35 (qd, *J* = 285.1, 27.6 Hz), 117.51, 115.76, 92.93 – 89.45 (m); IR (film, cm⁻¹): v 2911, 1611, 1510, 1497, 1453, 1307, 1277, 1095, 1044, 979, 755; MS (EI) m/z (relative intensity) 271 (34) [M⁺], 152 (100); HRMS (EI) calcd. For C₁₀H₄NF₇: 271.0232, Found: 271.0234.

3l, 1-fluoro-4-(perfluoropropan-2-yl)benzene

MS (EI) m/z (relative intensity) 264 [M⁺];

3m, 4-chloro-2-methyl-1-(perfluoropropan-2-yl)benzene

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.24 (m, 2H), 2.51 (d, *J* = 9.0 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.93 (d, *J* = 5.9 Hz, 6F), -178.90(s, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 141.01, 137.05, 133.73, 128.07, 126.40, 121.02 (qd, *J* = 288.1, 28.3 Hz), 96.09 – 92.74 (m), 21.90 (d, *J* = 15.8 Hz); IR (film, cm⁻¹): v 2925, 1599, 1492, 1306, 1209, 1101, 977, 950, 818, 737; MS (EI) m/z (relative intensity) 294 (42)[M⁺], 225(100); HRMS (EI) calcd. For C₁₀H₆F₇Cl: 294.0046, Found: 294.0042.

3n, 1-bromo-4-(perfluoropropan-2-yl)benzene

$$\mathsf{Br} \xrightarrow{\mathsf{CF}_3} \mathsf{F}_{\mathsf{CF}_3}$$

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.81 (d, *J* = 7.3 Hz, 6F), -182.63 (hept, *J* = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 132.42 (d, *J* = 2.1 Hz), 127.50 (d, *J* = 10.6 Hz), 126.10, 125.94 (d, *J* = 20.8 Hz), 120.51 (qd, *J* = 286.9, 27.8 Hz), 93.12 – 89.78 (m); IR (film, cm⁻¹): v 2925, 1599, 1462, 1305, 1222, 986, 954, 822, 734; MS (EI) m/z (relative intensity) 324[M⁺], 255(100); HRMS (EI) calcd. For C₉H₄F₇Br: 323.9385, Found: 323.9383.

30, 1-iodo-2-(perfluoropropan-2-yl)benzene

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.43 (m, 2H), 7.15 (t, *J* = 7.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.94 (d, *J* = 7.8 Hz, 6F), -176.32 (hept, *J* = 7.7 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 144.98 (d, *J* = 2.5 Hz), 139.63, 137.65, 132.18, 130.39, 129.32, 128.72, 128.08, 127.94 (d, *J* = 2.1 Hz), 127.61, 120.75 (qd, *J* = 286.5, 27.8 Hz), 108.01, 93.11 – 90.03 (m), 89.42 (d, *J* = 3.3 Hz); IR (film, cm⁻¹): v 2925, 1587, 1475, 1304, 1208, 976, 948, 758, 731; MS (EI) m/z (relative intensity) 372 (100) [M⁺]; HRMS (EI) calcd. For C₉H₄F₇I: 371.9246, Found: 371.9243.

3p, 1-iodo-3-(perfluoropropan-2-yl)benzene

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.63 (d, J = 7.2 Hz, 6F), -182.57 (hept, J = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 140.43, 134.68 (d, J = 11.8 Hz), 130.58 (d, J = 2.2 Hz), 128.87 (d, J = 20.6 Hz), 125.05 (d, J = 10.0 Hz), 120.53 (qd, J = 285.3, 27.6 Hz), 94.44 (d, J = 2.4 Hz), 92.53 – 89.18 (m); IR (film, cm⁻¹): v 2926, 1593, 1477, 1305, 1212, 984, 764, 725; MS (EI) m/z (relative intensity) 372 (100) [M⁺]; HRMS (EI) calcd. For

3q, 1-iodo-4-(perfluoropropan-2-yl)benzene

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.77 (d, *J* = 7.3 Hz, 6F), -182.91 (hept, *J* = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 138.35 (d, *J* = 1.8 Hz), 127.47 (d, *J* = 10.5 Hz), 126.65 (d, *J* = 20.8 Hz), 120.50 (qd, *J* = 287.5, 29.6 Hz), 98.07, 92.85 – 90.18 (m); IR (film, cm⁻¹): v 2926, 1591, 1491, 1301, 1213, 984, 950, 816, 748; MS (EI) m/z (relative intensity) 372 (100) [M⁺]; HRMS (EI) calcd. For C₉H₄F₇I: 371.9246, Found: 371.9251.

3r, 4-chloro-2-iodo-1-(perfluoropropan-2-yl)benzene

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.50 – 7.36 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.00 (d, *J* = 7.7 Hz, 6F), -176.27 (hept, *J* = 7.7 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 144.29 (d, *J* = 2.4 Hz), 137.92, 129.29, 128.30, 126.51 (d, *J* = 18.9 Hz), 120.59 (qd, *J* = 288.8, 28.7 Hz), 93.35 – 89.92 (m), 89.84 (d, *J* = 2.9 Hz); IR (film, cm⁻¹): v 2926, 1581, 1476, 1302, 1208, 1108, 977, 948, 819, 735; MS (EI) m/z (relative intensity) 406 (100) [M⁺]; HRMS (EI) calcd. For C₉H₃F₇CII: 405.8856, Found: 405.8857.

3s, 4-(perfluoropropan-2-yl)-1,1'-biphenyl

White solid, mp: 89-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (q, J = 8.5 Hz, 4H), 7.62 (d, J = 7.1 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.45 – 7.36 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.68 (d, J = 7.3 Hz, 6F), -182.52 (hept, J = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 144.12, 139.75, 129.14, 128.33, 127.68 (d, J = 2.1 Hz), 127.38, 126.29 (d, J = 10.5 Hz), 125.66 (d, J = 20.7 Hz), 120.81 (qd, J = 286.6, 28.3 Hz), 93.36 – 90.04 (m); IR (KBr, cm⁻¹): v 3078, 1446, 1280, 1218,

1101, 981, 835, 736, 697; MS (EI) m/z (relative intensity) 322 [M⁺], 253 (100); HRMS (EI) calcd. For C₁₅H₉F₇: 322.0592, Found: 322.0587.

3t, 2-(perfluoropropan-2-yl)-1,1'-biphenyl

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.6 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.38 – 7.33 (m, 3H), 7.28 (d, *J* = 1.5 Hz, 1H), 7.22 (dd, *J* = 6.4, 2.8 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.07 (d, *J* = 5.6 Hz, 6F), -175.95(s, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 142.99 (d, *J* = 2.8 Hz), 141.95 (d, *J* = 5.2 Hz), 133.78 (d, *J* = 1.8 Hz), 130.09, 128.90, 128.34 (d, *J* = 4.7 Hz), 127.60 (d, *J* = 2.4 Hz), 127.43, 127.32, 127.06, 126.23 (dt, *J* = 8.6, 2.8 Hz), 123.94 (d, *J* = 17.8 Hz), 120.88 (qd, *J* = 286.1, 28.1 Hz), 95.11 – 91.74 (m); IR (KBr, cm⁻¹): v 3065, 1598, 1484, 1441, 1271, 1205, 1113, 977, 948, 739, 701; MS (EI) m/z (relative intensity) 322 [M⁺], 183 (100); HRMS (EI) calcd. For C₁₅H₉F₇: 322.0592, Found: 322.0586.

3u, 2-(perfluoropropan-2-yl)naphthalene

White solid, mp: 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.00 – 7.87 (m, 3H), 7.69 – 7.55 (m, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.44 (d, *J* = 7.2 Hz, 6F), -181.96 (hept, *J* = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 134.19, 132.64 (d, *J* = 2.1 Hz), 129.05 (d, *J* = 2.3 Hz), 128.91, 128.16, 127.86, 127.33, 126.64 (d, *J* = 11.9 Hz), 124.16 (d, *J* = 20.3 Hz), 121.76 (d, *J* = 9.4 Hz), 120.90 (qd, *J* = 285.6, 28.1 Hz), 93.54 – 90.18 (m); IR (KBr, cm⁻¹): v 3060, 1276, 1220, 981, 907, 751; MS (EI) m/z (relative intensity) 296 (76) [M⁺], 177 (100); HRMS (EI) calcd. For C₁₃H₇F₇: 296.0436, Found: 296.0433.

3v, 6-(perfluoropropan-2-yl)quinoline

Yellow solid, mp: 46-48 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.04 (dd, J = 4.1, 1.5 Hz, 1H), 8.32 -

8.20 (m, 2H), 8.14 (d, J = 1.2 Hz, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.51 (dd, J = 8.4, 4.2 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.42 (d, J = 7.2 Hz, 6F), -181.67 (hept, J = 7.2 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 152.61, 148.77, 1367.02, 130.74 (d, J = 1.7 Hz), 127.66 (d, J = 1.7 Hz), 126.81 (d, J = 11.9 Hz), 125.48 (d, J = 9.2 Hz), 125.06 (d, J = 20.5 Hz), 122.44, 120.74 (qd, J = 284.8, 27.6 Hz), 93.38 – 90.04 (m); IR (KBr, cm⁻¹): v 2929, 1596, 1504, 1297, 1214, 1102, 982, 894, 838, 752; MS (EI) m/z (relative intensity) 297 (66) [M⁺], 178 (100); HRMS (EI) calcd. For C₁₂H₆NF₇: 297.0388, Found: 297.0384.

3w, 5-(perfluoropropan-2-yl)benzo[d][1,3]dioxole

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.2 Hz, 1H), 7.05 (s, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.05 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.97 (d, *J* = 7.2 Hz, 6F), -180.58 (hept, *J* = 7.3 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 149.99, 148.48 (d, *J* = 2.8 Hz), 120.74 (qd, *J* = 284.9, 27.5 Hz), 120.29 (d, *J* = 11.6 Hz), 120.07 (d, *J* = 20.8 Hz), 108.70 (d, *J* = 2.0 Hz), 106.41 (d, *J* = 11.6 Hz), 102.06, 93.20 – 89.88 (m); IR (film, cm⁻¹): v 2934, 2237, 1508, 1310, 1277, 1212, 986, 836, 749, 705; MS (EI) m/z (relative intensity) 290 (46) [M⁺], 221 (100); HRMS (EI) calcd. For C₁₀H₅O₂F₇: 290.0178, Found: 290.0173.

References

- G. Danoun, B. Bayarmagnai, and M. F. Grünberg, L. J. Gooßen, *Angew. Chem. Int. Ed.*, 2013, 52, 7972.
- 2. W. T. Miller, and Jr., R. J. Burnard, J. Am. Chem. Soc., 1968, 90, 7367.

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1-(tert-butyl)-4-(perfluoropropan-2-yl)benzene 3d $\sum_{i=1}^{-182} \sum_{i=182}^{-182} \sum_{i=182}^{627} \sum_{i=182}^{-182} \sum_{i=182}^{665} \sum_{i=182}^{-182} \sum_{i=182}^{704} \sum_{i=182}^{724} \sum_{i=182}^$ < $^{-75.820}_{-75.840}$ 6.26 1. 00 -200 -50 0 -100 -150

¹³C NMR (101 MHz, CDCl₃) spectrum of 1-(tert-butyl)-4-(perfluoropropan-2-yl)benzene 3d

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1-(benzyloxy)-4-(perfluoropropan-2-yl)benzene 3e

¹H NMR (400 MHz, DMSO-d6) spectrum of N-(4-(perfluoropropan-2-yl)phenyl)acetamide

yl)phenyl)acrylate 3h $<^{-75.649}_{-75.669}$ 1.00 -200 -50 -100 -150 0 ¹³C NMR (101 MHz, CDCl₃) spectrum of 3-(4-(perfluoropropan-2-yl)phenyl)acrylate 3h 137, 374 138, 391 128, 156 128, 156 126, 350 126, 350 121, 577 122, 191 123, 191 124, 191 124 -166.53692.884 92.554 91.894 91.894 90.872 90.541 90.541 89.900 - 60. 100 50 200 0 150

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (E)-ethyl 3-(4-(perfluoropropan-2-

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1-nitro-4-(perfluoropropan-2-yl)benzene 3i

¹H NMR (400 MHz, CDCl₃) spectrum of 1-nitro-3-(perfluoropropan-2-yl)benzene 3j

¹³C NMR (101 MHz, CDCl₃) spectrum of 1-nitro-3-(perfluoropropan-2-yl)benzene 3j

¹³C NMR (101 MHz, CDCl₃) spectrum of 4-(perfluoropropan-2-yl)benzonitrile 3k

7.424 1.229 7.236 7.236

¹³C NMR (101 MHz, CDCl₃) spectrum of 4-chloro-2-methyl-1-(perfluoropropan-2yl)benzene 3m

	110, 172, 690 123, 690 124, 690 1	1116.580 1116.580 985.766 985.444 985.444 982.117 992.331 922.712		$< \frac{21.977}{21.820}$
		1		
				ļ
200	150	100	50	0

¹H NMR (400 MHz, CDCl₃) spectrum of 1-iodo-2-(perfluoropropan-2-yl)benzene 3o

¹³C NMR (101 MHz, CDCl₃) spectrum of 1-iodo-2-(perfluoropropan-2-yl)benzene 3o

29

132 137 137 137 137 137 137 137 147 137 147 100 100 100 100 100 100 100 100 100 10	553 30 330 330 330 338 338 338 338 338 338
140. 134. 134. 134. 135. 135. 135. 116. 116. 116. 116. 116. 116. 116. 11	282.291.291.292.294.494.494.494.494.494.494.494.494
INNV KAMMEN	

¹H NMR (400 MHz, CDCl₃) spectrum of 1-iodo-4-(perfluoropropan-2-yl)benzene 3q

¹³C NMR (101 MHz, CDCl₃) spectrum of 1-iodo-4-(perfluoropropan-2-yl)benzene 3q

¹H NMR (400 MHz, CDCl₃) spectrum of 4-chloro-2-iodo-1-(perfluoropropan-2-yl)benzene

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 4-chloro-2-iodo-1-(perfluoropropan-2-yl)benzene

		3r	
< 144. 303 < 144. 279 -137.915	129-287 128-303 128-400 128-412 121-747 121-747 122-167 121-884 119-013 119-013 119-013	93, 353 94, 2703 94, 2703 94, 256 94, 256 96, 256 88, 825 88, 825 89, 256 80,	

¹H NMR (400 MHz, CDCl₃) spectrum of 4-(perfluoropropan-2-yl)-1,1'-biphenyl 3s

¹³C NMR (101 MHz, CDCl₃) spectrum of 4-(perfluoropropan-2-yl)-1,1'-biphenyl 3s

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(perfluoropropan-2-yl)-1,1'-biphenyl 3t

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2-(perfluoropropan-2-yl)-1,1'-biphenyl 3t

¹³C NMR (101 MHz, CDCl₃) spectrum of 2-(perfluoropropan-2-yl)-1,1'-biphenyl 3t

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(perfluoropropan-2-yl)naphthalene 3u

¹³C NMR (101 MHz, CDCl₃) spectrum of 2-(perfluoropropan-2-yl)naphthalene 3u

¹H NMR (400 MHz, CDCl₃) spectrum of 6-(perfluoropropan-2-yl)quinolone 3v

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 6-(perfluoropropan-2-yl)quinolone 3v

¹H NMR (400 MHz, CDCl₃) spectrum of 5-(perfluoropropan-2-yl)benzo[d][1,3]dioxole 3w

¹³C NMR (101 MHz, CDCl₃) spectrum of 5-(perfluoropropan-2-yl)benzo[d][1,3]dioxole 3w

