Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Copper(I) Catalyzed C(*sp*²)-N bond formation: Synthesis of Pyrrolo[3,2-*c*]quinolinone Derivatives

Zhiguo Zhang,* Jingjing Qian, Guisheng Zhang,* Nana Ma, Qingfeng Liu, Tongxin Liu, Kai Sun, Lei Shi

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China

Fax: (+86) 373-3325250 E-mail: <u>zhangzg@htu.edu.cn</u> and <u>zgs6668@yahoo.com</u>

Table of Contents

I. General remarks	2
II. Typical procedure	2
III. Mechanism probing experiments	3
IV. Analytical data of compounds	4
V. X-ray single crystal diffraction data	11
VI. ¹ H NMR and ¹³ C NMR spectra copies	21

I. General remarks:

All reagents were purchased from commercial sources and used without further treatment. DMSO was distilled under reduced pressure from CaH₂ and stored over molecular sieves. All reactions were carried out under O₂ atmosphere. Petroleum ether (PE) used refers to the 60–90 °C boiling point fraction of petroleum. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz NMR spectrometer (¹H, 400 MHz; ¹³C, 100 MHz at 25 °C). Coupling constants are reported in Hz. All high-resolution mass spectra (HRMS) were measured on a mass spectrometer (ESI-oa-TOF). Melting points were measured on a melting point apparatus equipped with a thermometer and are uncorrected. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash chromatography was carried out on SiO₂ (silica gel 200–300 mesh).

II. Typical experimental procedure for the synthesis of **2** (**2a** as an example):

To an oven-dried round-bottom flask (25 mL) equipped with an oxygen balloon was added N,1-bis(4-chlorophenyl)-2-phenyl-1*H*-pyrrole-3-carboxamide **1a** (81.4 mg, 0.2 mmol), CuI (1.9 mg, 0.01 mmol), the mixture was well stirred for 9 h in DMSO (1.5 mL) at 160 °C (the whole process was closely monitored by TLC). After cooling, the mixture was added water (5.0 mL), and the aqueous phase was extracted with EtOAc (10 mL×3). The combined organic layer was dried over sodium sulfate. The solvent was evaporated, and the residue was purified by a short flash silica gel column chromatography (Eluent: EtOAc/PE = 1/3) to give 1,5-bis(4-chlorophenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one **2a** as a white solid (69%, the yield is an average of four times).

III. Mechanism probing experiments.

4-CIC ₆ H ₄ N HN	$\begin{array}{c} & CuI (5 \text{ mol}\%), O_2 \\ \hline \\ & \bullet \\ O \end{array}$	4-CIC ₆ H ₄ N N N +	4-CIC ₆ H ₄ CHO
4-CIC ₆ H ₄		4-CIC ₆ H ₄	4-CIC ₆ H ₄
1a		2a	3a
Radica	al trapping agents (1.0 equi	v) Yield of 2a	Yield of 3a
		69%	≤10%
1,4-Di	nitrobenzene	34%	27%
Dially	l ether	25%	35%
Hydro	quinone	16%	24%

IV. Analytical data of compounds 2

1,5-Bis(4-chlorophenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2a)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (65 mg, 69%). mp 187-190 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.75 (d, J = 8.4 Hz, 2H), 7.68 (t, J = 8.4 Hz, 4H), 7.38 (d, J = 8.4 Hz, 3H), 7.24-7.20 (m, 1H), 6.99 (d, J = 3.6 Hz, 2H), 6.88 (d, J = 2.4 Hz, 1H), 6.60 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.5, 138.6, 137.4, 134.1, 133.2, 132.7, 131.6, 130.1, 129.8, 129.3, 127.5, 121.7, 120.7, 116.8, 116.2, 113.4, 106.4. (Two carbons are not observed). HRMS (ESI), *m/z* calcd. for C₂₃H₁₅Cl₂N₂O ([M+H]⁺) 405.0556, found: 405.0562.

5-(3-Chlorophenyl)-1-(4-chlorophenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2b)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (49 mg, 61%). mp 173-175 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.76 (d, *J* = 9.2 Hz, 2H), 7.69-7.64 (m, 4H), 7.53 (s, 1H), 7.39 (d, *J* = 3.2 Hz, 1H), 7.35-7.33 (m, 1H), 7.25-7.22 (m, 1H), 7.03-6.98 (m, 2H), 6.88 (d, *J* = 3.2 Hz, 1H), 6.58 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.4, 139.9, 138.6, 138.5, 134.08, 134.05, 132.6, 131.7, 130.1, 129.8, 129.2, 128.8, 128.6, 127.5, 121.7, 120.68, 116.75, 116.20, 113.34, 106.32. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₂₃H₁₅Cl₂N₂O ([M+H]⁺) 405.0556, found: 405.0548.

5-(2-Chlorophenyl)-1-(4-chlorophenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2c)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (49 mg, 60%). mp 147-150 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.80-7.75 (m, 4H), 7.68-7.60 (m, 3H), 7.51 (dd, J = 6.0, 3.6 Hz, 1H), 7.39 (d, J = 3.2 Hz, 1H), 7.26-7.22 (m, 1H), 7.01 (d, J = 4.0 Hz, 2H), 6.90 (d, J = 2.8 Hz, 1H), 6.46 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.0, 138.6, 137.7, 135.8, 134.1, 132.7, 131.7, 130.7, 130.6, 130.1, 129.9, 129.4, 129.0, 127.7, 121.9, 120.9, 116.1, 116.0, 113.4, 106.4. (One carbon is not observed). HRMS (ESI), m/z calcd. for C₂₃H₁₅Cl₂N₂O ([M+H]⁺) 405.0556, found: 405.0557.

Ethyl 4-(1-(4-chlorophenyl)-4-oxo-1*H*-pyrrolo[3,2-*c*]quinolin-5(4*H*)-yl)benzoate (2d)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (56 mg, 63%). mp 213-217 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.20 (d, J = 8.4 Hz, 2H), 7.76-7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 3.2 Hz, 1H), 7.23-7.19 (m, 1H), 7.00 (d, J = 4.0 Hz, 2H), 6.88 (d, J = 2.8 Hz, 1H), 6.55 (d, J = 8.8 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.2, 158.4, 142.9, 138.6, 138.4, 134.1, 132.7, 130.9, 130.3, 130.12, 130.09, 129.9, 129.3, 127.5, 121.8, 120.8, 116.8, 116.2, 113.4, 106.3, 61.1, 14.2. HRMS (ESI), *m/z* calcd. for C₂₆H₁₉ClN₂O₃ ([M+H]⁺) 443.1157, found: 415.1214.

1-(4-Chlorophenyl)-5-phenyl-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2e)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (34 mg, 46%). mp 212-215 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.75 (d, J = 8.4 Hz, 2H), 7.69-7.62 (m, 4H), 7.56 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 2.8 Hz, 1H), 7.32 (d, J = 7.2 Hz, 2H), 7.20 (t, J = 6.4 Hz, 1H), 7.00-6.95 (m, 2H), 6.87 (d, J = 2.8 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.6, 138.9, 138.7, 138.5, 134.1, 132.6, 130.1, 130.0, 129.8, 129.6, 129.3, 128.6, 127.4, 121.5, 120.7, 116.9, 116.4, 113.3, 106.3. HRMS (ESI), m/z calcd. for C₂₃H₁₆ClN₂O ([M+H]⁺) 371.0946, found: 371.0955.

1-(4-Chlorophenyl)-5-(4-methoxyphenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2f)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (56 mg, 70%). mp 231-235 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 8.8 Hz, 2H), 7.68 (m, *J* = 8.8 Hz, 2H), 7.37 (d, *J* = 2.8 Hz, 1H), 7.24-7.15 (m, 5H), 6.98 (m, *J* = 4.0 Hz, 2H), 6.86 (d, *J* = 3.2 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.0, 158.8, 139.2, 138.7, 134.0, 132.5, 130.8, 130.5, 130.1, 129.7, 129.3, 127.3, 121.4, 120.6, 117.0, 116.4, 115.2, 113.3, 106.3, 55.4. HRMS (ESI), *m/z* calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1064.

1-(4-Chlorophenyl)-5-(3-methoxyphenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2g)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (52 mg, 65%). mp 149-153 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.76-7.68 (m, 4H), 7.54 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 3.2 Hz, 1H), 7.24-7.20 (m, 1H), 7.14-7.12 (m, 1H), 6.99-6.97 (m, 2H), 6.90-6.87 (m, 3H), 6.60 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 160.6, 158.4, 139.6, 138.8, 138.7, 134.1, 132.6, 130.7, 130.1, 129.7, 129.3, 127.4, 121.53, 121.49, 120.6, 117.0, 116.4, 115.1, 114.3, 113.3, 106.3, 55.4. HRMS (ESI), *m*/*z* calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1061.

1-(4-Chlorophenyl)-5-(2-methoxyphenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2h)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (42 mg, 53%). mp 194-197 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.74-7.68 (m, 4H), 7.56-7.52 (m, 1H), 7.35 (d, J = 3.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.25-7.15 (m, 3H), 6.99-6.94 (m, 2H), 6.86 (d, J = 3.2 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.3, 155.5, 138.7, 138.4, 134.1, 132.6, 130.7, 130.3, 130.1, 129.6, 129.4, 127.5, 126.4, 121.44, 121.36, 120.6, 116.5, 116.3, 113.4, 112.8, 106.3, 55.6. HRMS (ESI), *m*/*z* calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1065.

Ethyl 4-(5-(4-chlorophenyl)-4-oxo-4,5-dihydro-1*H*-pyrrolo[3,2-*c*]quinolin-1-yl)benzoate (2k)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (65 mg, 73%). mp 224-228 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.71-7.69 (m, 2H), 7.43 (d, J = 3.2 Hz, 1H), 7.42-7.38 (m, 2H), 7.25-7.21 (m, 1H), 6.70-6.95 (m, 2H), 6.91 (d, J = 2.8 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.0, 158.5, 143.6, 138.7, 137.4, 133.2, 132.5, 131.6, 130.9, 130.6, 130.1, 129.7, 127.7, 127.6, 121.7, 120.9, 116.8, 116.6, 106.6, 61.3, 14.2. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₂₆H₂₀ClN₂O₃ ([M+H]⁺) 443.1157, found: 443.1162.

5-(4-Chlorophenyl)-1-phenyl-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2l)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (38 mg, 52%). mp: 241-245 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.70-7.67 (m, 5H), 7.63-7.61 (m, 2H), 7.41-7.37 (m, 3H), 7.22-7.18 (m, 1H), 6.93-6.91 (m, 2H), 6.87 (d, J = 3.2 Hz, 1H), 6.58 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.6, 139.7, 138.6, 137.4, 133.1, 132.6, 131.6, 130.12, 130.09, 129.7, 129.6, 127.4, 121.5, 120.7, 116.8, 116.0, 113.5, 106.1. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₂₃H₁₆ClN₂O ([M+H]⁺) 371.0946, found: 371.0965.

5-(4-Chlorophenyl)-1-(4-methoxyphenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2m)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (58 mg, 73%). mp 198-200 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 2.4 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 3H), 7.00-6.93 (m, 2H), 6.84 (s, 1H), 6.57 (d, *J* = 8.4 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.8, 158.6, 138.6, 137.5, 133.1, 132.8, 132.4, 131.6, 130.1, 130.0, 128.6, 127.3, 121.5, 120.7, 116.7, 115.8, 115.1, 113.6, 105.8, 55.6. HRMS (ESI), m/z calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1068.

1-Benzyl-5-(4-chlorophenyl)-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2n)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (38 mg, 50%). mp 226-228 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 3.2 Hz, 1H), 7.38-7.34 (m, 4H), 7.26 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.11-7.06 (m, 3H), 6.81 (d, J = 2.8 Hz, 1H), 6.56 (d, J = 8.4 Hz, 1H), 5.89 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.5, 138.3, 137.53, 137.51, 133.0, 131.9, 131.6, 130.1, 130.0, 128.9, 127.4, 127.0, 125.8, 121.8, 121.7, 116.53, 116.48, 113.7, 105.2, 52.3. HRMS (ESI), *m/z* calcd. for C₂₄H₁₈ClN₂O ([M+H]⁺) 385.1102, found: 385.1120.

5-(4-Chlorophenyl)-7-methoxy-1-phenyl-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2p)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a white solid (52 mg, 65%). mp 210-213 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.71-7.67 (m, 5H), 7.62-7.59 (m, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 2.8 Hz, 1H), 6.85 (d, J = 9.2, 1H), 6.81 (d, J = 2.8, 1H), 6.63 (dd, J_1 = 9.2 Hz, J_2 = 2.4 Hz, 1H), 5.97 (d, J = 2.0 Hz, 1H), 3.56 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.9, 158.3, 140.3, 139.7, 137.4, 133.2, 133.1, 131.6, 130.14, 130.12, 129.6, 128.8, 127.4, 122.2, 114.2, 108.0, 107.5, 105.9, 102.0, 55.2. HRMS (ESI), *m*/*z* calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1059.

1,5-Bis(4-chlorophenyl)-8-methoxy-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (2q)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (62 mg, 71%). mp 234-238 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.75-7.65 (m, 6H), 7.37 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 2.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.98 (s, 1H), 3.57 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.8, 158.3, 140.3, 138.6, 137.3, 134.0, 133.2, 131.5, 130.1, 129.3, 128.8, 122.2, 114.4, 108.2, 107.4, 106.2, 102.1, 55.2. (Two carbons are not observed). HRMS (ESI), *m/z* calcd. for C₂₄H₁₆Cl₂N₂O₂ ([M+H]⁺) 435.0662, found: 435.0668.

1-(4-Chlorophenyl)-6-methoxy-5-phenyl-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2*r*)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (18 mg, 23%). mp 92-96 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.81-7.76 (m, 2H), 7.71 (d, J = 8.8 Hz, 2H), 7.63 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.40 (d, J = 3.2 Hz, 1H), 7.30 (d, J = 7.6 Hz, 2H), 6.89-6.86 (m, 1H), 6.47 (d, J = 9.2 Hz, 1H), 6.41 (d, J = 2.8 Hz, 1H), 3.41 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.2, 153.4, 138.6, 138.5, 134.1, 133.3, 132.2, 130.0, 129.64, 129.60, 128.5, 118.1, 116.7, 114.7, 113.8, 106.4, 104.2, 54.7. (Two carbons are not observed). HRMS (ESI), m/z calcd. for C₂₄H₁₈ClN₂O₂ ([M+H]⁺) 401.1051, found: 401.1054.

7-Chloro-1-(4-chlorophenyl)-5-phenyl-1*H*-pyrrolo[3,2-*c*]quinolin-4(5*H*)-one (2t)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (54 mg, 67%). mp 228-230 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.75 (d, J = 8.4 Hz, 2H), 7.69-7.64 (m, 4H), 7.59 (t, J = 7.2 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 7.36 (d, J = 7.2 Hz, 2H), 7.10 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 3.2 Hz, 1H), 6.46 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.5, 139.9, 138.3, 137.9, 134.2, 131.9, 131.6, 130.3, 130.2, 129.5, 129.2, 129.0, 122.3, 121.6, 116.5, 116.0, 112.3, 106.5. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₂₃H₁₅Cl₂N₂O ([M+H]⁺) 405.0556, found: 405.0565.

1,5-Bis(4-Chlorophenyl)-4-oxo-4,5-dihydro-1*H*-**pyrrolo**[**3,2-***c*]**quinoline-2-carbaldehyde (4a)** The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (30 mg, 35%). mp 212-216 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.65 (s, 1H), 7.83 (s, 1H), 7.77-7.68 (m, 6H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 180.6, 158.1, 140.5, 137.9, 137.0, 136.8, 136.0, 134.7, 133.4, 131.5, 130.2, 130.1, 129.7, 122.1, 122.0, 119.4, 117.3, 115.8, 112.7. (One carbon is not observed) HRMS (ESI), *m/z* calcd. for C₂₄H₁₄Cl₂N₂O₂ ([M+Na]⁺) 455.0325, found: 455.0330.

1-(4-Chlorophenyl)-4-oxo-5-phenyl-4,5-dihydro-1*H*-pyrrolo[3,2-*c*]quinoline-2-carbaldehyde (4e)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (25 mg, 31%). mp 111-113 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.66 (s, 1H), 7.83 (s, 1H), 7.77-7.69 (m, 4H), 7.65 (t, J = 7.2 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.36-7.29 (m, 3H), 6.99 (t, J = 8.0 Hz, 1H), 6.78 (d, J = 7.2 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 180.5, 158.1, 140.7, 137.90, 137.87, 137.8, 137.0, 136.0, 134.6, 130.11, 130.09, 130.07, 129.5, 129.4, 128.7, 121.9, 119.3, 117.2, 116.0, 112.6. HRMS (ESI), *m/z* calcd. for C₂₄H₁₅ClN₂O₂ ([M+H]⁺) 399.0894, found: 399.0911.

5-(4-Chlorophenyl)-4-oxo-1-phenyl-4,5-dihydro-1*H*-pyrrolo[3,2-*c*]quinoline-2-carbaldehyde (4l)

The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/3) as a White solid (25 mg, 32%). mp 261-264 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.62 (s, 1H), 7.80 (s, 1H), 7.73-7.63 (m, 6H), 7.42 (d, J = 8.8 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 180.5, 158.2, 140.5, 137.8, 137.7, 136.9, 136.1, 133.4, 131.5, 130.21, 130.15, 129.7, 129.5, 128.2, 122.0, 121.9, 118.4, 117.2, 115.7, 112.8. HRMS (ESI), *m/z* calcd. for C₂₄H₁₅ClN₂O₂ ([M+Na]⁺) 421.0714, found: 421.0731.

1,5-Bis(4-chlorophenyl)-4-oxo-4,5-dihydro-1*H***-pyrrolo[3,2-***c***]quinoline-3-carbaldehyde (4a') The product was isolated by flash chromatography (Eluent: EtOAc/PE = 1/4) as a White solid (24 mg, 28%). mp 185-189 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 10.60 (s, 1H), 8.13 (s, 1H), 7.80-7.71 (m, 6H), 7.44 (d,** *J* **= 8.4 Hz, 2H), 7.32 (t,** *J* **= 7.6 Hz, 1H), 7.05 (t,** *J* **= 7.6 Hz, 1H), 6.93 (d,** *J* **= 8.0 Hz, 1H), 6.66 (d,** *J* **= 8.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 186.9, 158.3, 138.8, 137.7, 136.8, 134.9, 134.5, 133.4, 132.6, 131.5, 130.22, 130.16, 129.3, 128.5, 122.3, 122.1, 121.0, 117.0, 113.9, 112.8. HRMS (ESI),** *m/z* **calcd. for C₂₄H₁₄Cl₂N₂O₂ ([M+Na]⁺) 455.0325, found: 455.0331** **V.** X-ray single crystal diffraction data.

2a:

Note: Ortep drawing of 2a with thermal ellipsoids set at 50% probability

Identification code	2a
Empirical formula	$C_{23}H_{14}Cl_2N_2O$
Formula weight	405.26
Temperature	100.01(10) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 8.9936(3) A alpha = 90 deg.
	b = 20.9137(5) A beta = 112.585(4) deg.
	c=10.6975(4) A gamma = 90 deg.
Volume	1857.79(10) A^3
Z, Calculated density	4, 1.449 Mg/m^3
Absorption coefficient	3.274 mm^-1
F(000)	832
Theta range for data collection	4.23 to 70.08 deg.
Limiting indices	-10<=h<=10, -23<=k<=25, -13<=l<=12
Reflections collected / unique	3092 / 3521 [R(int) = 0.0417]
Completeness to theta $= 25.00$	99.9%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2014 / 0 / 253
Goodness-of-fit on F^2	1.031
Final R indices [I>2sigma(I)]	$R1 = 0.0417, \omega R2 = 0.0991$
R indices (all data)	$R1 = 0.0479, \omega R2 = 0.1029$

Table 1. Crystal data and structure refinement for 2a

Largest diff. peak and hole	$0.834 \text{ and } -0.473 \text{ e} \cdot \text{\AA}^{-3}$
Table 2. Bond lengths [A] and angles [deg] for 2a	
C(2)- C(10) 1.393(3)	C(8)-C(12) 1.384(3)
C(2)- C(20) 1.382(3)	C(8)-C(21) 1.379(3)
N(3)-C(4) 1.391(3)	C(9)-C(12) 1.384(3)
N(3)-C(11) 1.415(3)	C(9)-C(19) 1.380(3)
N(3)-C(19) 1.443(3)	C(10)-C(24) 1.377(3)
C(4)-C(7) 1.453(3)	C(11)-C(24) 1.396(3)
N(5)-C(13) 1.447(3)	C(13)-C(23) 1.389(3)
N(5)-C(18) 1.382(3)	C(13)-C(25) 1.389(3)
N(5)-C(22) 1.370(3)	C(14)-C(15) 1.385(3)
C(6)-C(11) 1.414(3)	C(14)-C(23) 1.392(3)
C(6)-C(20) 1.410(3)	C(15)-C(26) 1.385(3)
C(6)-C(22) 1.445(3)	C(16)-C(19) 1.384(3)
C(7)-C(17) 1.410(3)	C(16)-C(21) 1.384(3)
C(7)-C(22) 1.382(3)	C(17)-C(18) 1.375(3)
	C(25)-C(26) 1.389(3)
C(20)-C(2)-C(10) 119.0 (2)	C(19)-C(9)-C(12) 120.12 (19)
C(4)-N(3)-C(11) 124.12 (17)	C(24)-C(10)-C(2) 121.5 (2)
C(4)-N(3)-C(19) 115.43 (17)	C(6)-C(11)-N(3) 121.28 (19)
C(11)-N(3)-C(19) 120.45 (18)	C(24)-C(11)-N(3) 119.45 (19)
O(1)- C(4)- N(3) 121.94 (19)	C(24)-C(11)-C(6) 119.27 (19)
O(1)-C(4)-C(7) 123.56 (19)	C(8)-C(12)-C(9) 118.5 (2)
N(3)-C(4)-C(7) 114.44 (17)	C(23)-C(13)-N(5) 119.31 (19)
C(18)-N(5)-C(13) 120.31 (18)	C(25)-C(13)-N(5) 119.70 (19)
C(22)-N(5)-C(13) 130.27 (19)	C(25)-C(13)-C(23) 120.7 (2)
C(22)-N(5)-C(18) 109.28 (18)	C(15)-C(14)-C(23) 119.18 (19)
C(11)-C(6)-C(22) 115.20 (19)	C(14)-C(15)-Cl(1) 119.44 (17)
C(20)-C(6)-C(11) 119.13 (19)	C(26)-C(15)-Cl(1) 118.99 (17)
C(20)-C(6)-C(22) 125.63 (19)	C(26)-C(15)-C(14) 121.6 (2)
C(17)-C(7)-C(4) 128.01 (19)	C(19)-C(16)-C(21) 119.6 (2)
C(22)-C(7)-C(4) 122.16 (19)	C(18)-C(17)-C(7) 105.63 (19)
C(22)-C(7)-C(17) 109.62 (18)	C(17)-C(18)-N(5) 109.00 (19)

C(12)-C(8)-Cl(2) 118.88 (17)	C(9)-C(19)-N(3) 119.56 (19)
C(21)-C(8)-Cl(2) 119.20 (17)	C(9)-C(19)-C(16) 120.73 (19)
C(21)-C(8)-C(12) 121.89 (19)	C(16)-C(19)-N(3) 119.64 (19)
C(2)-C(20)-C(6) 120.8 (2)	C(13)-C(23)-C(14) 119.6 (2)
C(8)-C(21)-C(16) 119.0 (2)	C(10)-C(24)-C(11) 120.2 (2)
N(5)-C(22)-C(6) 131.15 (19)	C(13)-C(25)-C(26) 119.8 (2)
N(5)-C(22)-C(7) 106.46 (18)	C(15)-C(26)-C(25) 119.1 (2)
C(7)-C(22)-C(6) 122.35 (19)	

2r:

Note: Ortep drawing of **2r** with thermal ellipsoids set at 50% probability

Table 1.	Crystal	data	and	structure	refinement	for	2r
----------	---------	------	-----	-----------	------------	-----	----

Identification code	2r
Empirical formula	$C_{24}H_{17}CIN_2O_2$
Formula weight	400.85
Temperature	291(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 8.0462 (5) A alpha = 90 deg.
	b = 9.2337 (6) A beta = 90 deg.
	c = 26.6656 (13) A gamma = 90 deg.
Volume	1981.1 (2) A^3
Z, Calculated density	4, 1.344 Mg/m^3
Absorption coefficient	1.890 mm^-1
F(000)	832
Theta range for data collection	3.31 to 72.47 deg.

Limiting indices	-8<=h<=9, -11<=k<=11, -17<=l<=32
Reflections collected / unique	3048 / 3843 [R(int) = 0.0399]
Completeness to theta $= 25.00$	99.9%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2014 / 0 / 264
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	$R1 = 0.0399, \omega R2 = 0.1013$
R indices (all data)	$R1 = 0.0529, \omega R2 = 0.1123$
Largest diff. peak and hole	0.120 and -0.156 e·Å ⁻³
<i>Table 2.</i> Bond lengths [A] and angles [deg] for 2r	
Cl(1)-C(3) 1.735 (3)	C(16)-O(2)-C(18) 117.1 (2)
O(1)-C(9) 1.228 (3)	C(7)-N(1)-C(6) 124.03 (19)
O(2)-C(16) 1.379 (3)	C(11)-N(1)-C(6) 127.5 (2)
O(2)-C(18) 1.410 (3)	C(11)-N(1)-C(7) 108.52 (19)
N(1)-C(6) 1.441 (3)	C(9)-N(2)-C(13) 124.39 (18)
N(1)-C(7) 1.382 (3)	C(9)-N(2)-C(19) 116.89 (18)
N(1)-C(11) 1.376 (3)	C(13)-N(2)-C(19) 118.58 (19)
N(2)-C(9) 1.391 (3)	C(6)-C(1)-C(2) 119.8 (3)
N(2)-C(13) 1.407 (3)	C(3)-C(2)-C(1) 119.0 (3)
N(2)-C(19) 1.444 (3)	C(2)-C(3)-Cl(1) 119.2 (2)
C(1)-C(2) 1.379 (3)	C(2)-C(3)-C(4) 121.6(2)
C(1)-C(6) 1.376 (3)	C(4)-C(3)-Cl(1) 119.2(2)
C(2)-C(3) 1.370 (5)	C(5)-C(4)-C(3) 118.9(3)
C(3)-C(4) 1.383 (4)	C(4)-C(5)-C(6) 119.8(2)
C(4)-C(5) 1.373 (3)	C(1)-C(6)-N(1) 119.7(2)
C(5)-C(6) 1.376 (3)	C(5)-C(6)-N(1) 119.4 (2)
C(7)-C(8) 1.353 (3)	C(5)-C(6)-C(1) 120.8 (2)
C(8)-C(10) 1.415 (3)	C(8)-C(7)-N(1) 109.4 (2)
C(9)-C(10) 1.442 (3)	C(7)-C(8)-C(10) 106.6 (2)
C(10)-C(11) 1.379 (3)	O(1)-C(9)-N(2) 121.3 (2)
C(11)-C(12) 1.439 (3)	O(1)- C(9)-C(10) 124.3 (2)
C(12)-C(13) 1.414 (3)	N(2)-C(9)-C(10) 114.43 (18)

C(12)-C(17) 1.397 (3)	C(8)-C(10)-C(9) 129.5 (2)	
C(13)-C(14) 1.398 (3)	C(11)-C(10)-C(8) 108.5(2)	
C(14)-C(15) 1.369 (3)	C(11)-C(10)-C(9) 121.95 (19)	
C(15)-C(16) 1.383 (3)	N(1)-C(11)-C(10) 107.04 (19)	
C(16)-C(17) 1.369 (3)	N(1)-C(11)-C(12) 130.15 (19)	
C(19)-C(20) 1.358 (5)	C(10)-C(11)-C(12) 122.81 (18)	
C(19)-C(24) 1.362 (4)	C(13)-C(12)-C(11) 115.05 (18)	
C(20)-C(21) 1.385 (5)	C(17)-C(12)-C(11) 125.65 (19)	
C(21)-C(22) 1.370 (7)	C(17)-C(12)-C(13) 119.28 (18)	
C(22)-C(23) 1.338 (7)	N(2)-C(13)-C(12) 121.07(18)	
C(23)-C(24) 1.396 (4)	C(14)-C(13)-N(2) 120.77 (18)	
C(16)-C(17)-C(12) 120.66 (18)	C(14)-C(13)-C(12) 118.15 (18)	
C(20)-C(19)-N(2) 118.9 (3)	C(15)-C(14)-C(13) 121.6 (2)	
C(20)-C(19)-C(24) 121.2 (3)	C(14)-C(15)-C(16) 119.8 (2)	
C(24)-C(19)-N(2) 119.9 (3)	O(2)- C(16)-C(15) 115.6 (2)	
C(19)-C(20)-C(21) 119.4 (4)	C(17)-C(16)-O(2) 123.9(2)	
C(22)-C(21)-C(20) 120.0 (5)	C(17)-C(16)-C(15) 120.5 (2)	
C(23)-C(22)-C(21) 119.9 (4)	C(22)-C(23)-C(24) 121.1 (4)	
C(19)-C(24)-C(23) 118.4(4)		

Note: Ortep drawing of **4a** with thermal ellipsoids set at 50% probability

Table 1.	Crystal	data and	structure	refinement	for	4a
----------	---------	----------	-----------	------------	-----	----

4a:

Identification code	4a
Empirical formula	$C_{24}H_{14}Cl_2N_2O_2$
Formula weight	433.27
Temperature	291(2) K
Wavelength	1.54184 A

Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 6.3775 (5) A alpha = 80.819 (6) deg.
	b = 12.1686 (10) A beta = 88.955(5) deg.
	c = 13.4121 (8) A gamma = 75.537 (7) deg.
Volume	994.69(12) A^3
Z, Calculated density	2, 1.447 Mg/m^3
Absorption coefficient	3.137 mm^-1
F(000)	444
Theta range for data collection	3.796 to 72.174 deg.
Limiting indices	-7<=h<=6, -14<=k<=14, -16<=l<=11
Reflections collected / unique	2754 / 3554 [R(int) = 0.0475]
Completeness to theta $= 25.00$	100%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2014 / 0 / 271
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	$R1 = 0.0475, \omega R2 = 0.1165$
R indices (all data)	$R1 = 0.0623, \omega R2 = 0.1292$
Largest diff. peak and hole	0.272 and -0.349 $e \cdot Å^{-3}$
Table 2. Bond lengths [A] and angles [deg] for 4a	
Cl(1)-C(16) 1.744 (2)	C(5)-N(1)-C(13) 120.00 (18)
Cl(2)-C(22) 1.736 (2)	C(9)-N(1)-C(5) 124.15 (18)
O(1)-C(9) 1.219 (3)	C(9)-N(1)-C(13) 115.81 (18)
O(2)-C(12) 1.208 (3)	C(7)-N(2)-C(11) 108.06 (18)
N(1)-C(5) 1.411 (3)	C(7)-N(2)-C(19) 128.32 (19)
N(1)-C(9) 1.396 (3)	C(11)-N(2)-C(19) 123.34 (19)
N(1)-C(13) 1.445 (3)	C(2)-C(1)-C(6) 121.1 (2)
N(2)-C(7) 1.369 (3)	C(3)-C(2)-C(1) 120.0 (2)
N(2)-C(11) 1.401 (3)	C(2)-C(3)-C(4) 120.6 (2)
N(2)-C(19) 1.440 (3)	C(3)-C(4)-C(5) 120.7 (2)
C(1)-C(2) 1.381 (3)	N(1)-C(5)-C(6) 120.95 (19)
C(1)-C(6) 1.403 (3)	C(4)-C(5)-N(1) 119.9 (2)
C(2)-C(3) 1.376 (4)	C(4)-C(5)-C(6) 119.1 (2)

C(3)-C(4) = 1,376(3)	C(1)- $C(6)$ - $C(5)$ 118 5 (2)
C(4)-C(5) = 1.402 (3)	C(1)- $C(6)$ - $C(7)$ 125 6 (2)
C(5)- $C(6)$ 1 417 (3)	C(5)- $C(6)$ - $C(7)$ 115 88 (19)
C(6)- $C(7)$ 1 442 (3)	N(2)-C(7)-C(6) + 130.66(2)
C(7) C(8) 1 386 (3)	N(2) = C(7) = C(8) + 107 + 53 + (10)
C(8) C(0) 1.445 (3)	C(2) = C(7) = C(6) + 107.55 (17)
C(8) - C(10) + 408 (2)	C(3)-C(7)-C(0) 121.8 (2) C(7)-C(8)-C(0) 122.5 (2)
C(8)- $C(10)$ 1.408 (3)	C(7) - C(8) - C(9) + 122.5 (2)
C(10)- $C(11)$ 1.360 (3)	C(7)- $C(8)$ - $C(10)$ 108.63 (19)
C(11)-C(12) 1.451 (3)	C(10)-C(8)-C(9) 128.8 (2)
C(13)-C(14) 1.380 (3)	O(1)-C(9)-N(1) 121.2 (2)
C(13)-C(18) 1.379 (3)	O(1)-C(9)-C(8) 124.2 (2)
C(14)-C(15) 1.382 (3)	N(1)-C(9)-C(8) 114.57 (18)
C(15)-C(16) 1.380 (4)	C(11)-C(10)-C(8) 106.73 (19)
C(16)-C(17) 1.369 (4)	N(2)-C(11)-C(12) 122.7 (2)
C(17)-C(18) 1.388 (4)	C(10)-C(11)-N(2) 109.06 (19)
C(19)-C(20) 1.368 (3)	C(10)-C(11)-C(12) 128.3 (2)
C(19)-C(24) 1.375 (4)	O(2)-C(12)-C(11) 123.2 (2)
C(20)-C(21) 1.380 (4)	C(14)-C(13)-N(1) 120.2 (2)
C(21)-C(22) 1.375 (4)	C(18)-C(13)-N(1) 119.2 (2)
C(22)-C(23) 1.365 (5)	C(18)-C(13)-C(14) 120.5 (2)
C(23)-C(24) 1.384 (4)	C(13)-C(14)-C(15) 120.2 (2)
C(16)-C(15)-C(14) 118.6 (2)	C(20)-C(19)-C(24) 120.5 (2)
C(15)-C(16)-Cl(1) 119.6 (2)	C(24)-C(19)-N(2) 120.0 (2)
C(17)-C(16)-Cl(1) 118.4 (2)	C(19)-C(20)-C(21) 120.0 (3)
C(17)-C(16)-C(15) 122.0 (2)	C(22)-C(21)-C(20) 119.3 (3)
C(16)-C(17)-C(18) 119.1 (3)	C(21)-C(22)-Cl(2) 120.4 (2)
C(13)-C(18)-C(17) 119.7 (2)	C(23)-C(22)-Cl(2) 118.5 (2)
C(20)-C(19)-N(2) 119.5 (2)	C(23)-C(22)-C(21) 121.1 (3)
C(22)-C(23)-C(24) 119.4 (3)	C(19)-C(24)-C(23) 119.7 (3)

4a':

Note: Ortep drawing of 4a' with thermal ellipsoids set at 50% probability

Identification code	4a'
Empirical formula	$C_{24}H_{14}Cl_2N_2O_2$
Formula weight	433.27
Temperature	291(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 5.2005 (5) A alpha = 73.584 (12) deg.
	b = 13.556 (3) A beta = 85.490 (8) deg.
	c = 15.6215 (13) A gamma = 87.120 (12) deg.
Volume	1052.6 (2) A^3
Z, Calculated density	2, 1.367 Mg/m^3
Absorption coefficient	2.964 mm^-1
F(000)	444
Theta range for data collection	2.96 to 67.12 deg.
Limiting indices	-4<=h<=6, -16<=k<=14, -18<=l<=18
Reflections collected / unique	2071 / 3774 [R(int) = 0.0698]
Completeness to theta $= 25.00$	99.8%
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2014 / 0 / 272
Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	$R1 = 0.0698, \omega R2 = 0.1908$
R indices (all data)	$R1 = 0.1141, \omega R2 = 0.2294$
Largest diff. peak and hole	0.347 and -0.214 $e \cdot Å^{-3}$

Table 1. Crystal data and structure refinement for 4a'

Table 2. Bond lengths [A] and angles [deg] for 4a'

$C_{1}(1) - C_{2}(3) + 747(4)$	C(11)-N(1)-C(6) 119 3 (3)
Cl(2)-C(22) = 1.747 (4)	C(15)-N(1)-C(6) 116 4 (4)
O(1)- $C(15)$ 1 227 (5)	C(15)-N(1)-C(11) 124 1 (3)
0(2)-C(18) 1.208 (5)	C(13)-N(2)-C(19) 129.6 (4)
N(1)-C(6) 1.454 (5)	C(16)-N(2)-C(13) 108.0 (4)
N(1)-C(11) 1.403 (5)	C(16)-N(2)-C(19) 122.4 (3)
N(1)-C(15) 1.396 (5)	C(6)-C(1)-C(2) 119.9 (5)
N(2)-C(13) 1.390 (4)	C(3)-C(2)-C(1) 119.7 (5)
N(2)-C(16) 1.368 (5)	C(2)-C(3)-Cl(1) 120.0 (4)
N(2)-C(19) 1.430 (5)	C(2)-C(3)-C(4) 121.4 (4)
C(1)-C(2) 1.378 (6)	C(4)-C(3)-Cl(1) 118.5 (4)
C(1)-C(6) 1.359 (6)	C(3)-C(4)-C(5) 118.8 (5)
C(2)-C(3) 1.356 (8)	C(6)-C(5)-C(4) 120.1 (4)
C(3)-C(4) 1.357 (7)	C(1)-C(6)-N(1) 120.8 (4)
C(4)-C(5) 1.388 (6)	C(1)-C(6)-C(5) 120.0 (4)
C(5)-C(6) 1.370 (6)	C(5)-C(6)-N(1) 119.2 (4)
C(7)-C(8) 1.387 (6)	C(8)-C(7)-C(12) 121.4 (4)
C(7)-C(12) 1.397 (6)	C(9)-C(8)-C(7) 119.3 (4)
C(8)-C(9) 1.379 (6)	C(10)-C(9)-C(8) 120.7 (4)
C(9)-C(10) 1.374 (6)	C(9)-C(10)-C(11) 121.0 (4)
C(10)-C(11) 1.403 (6)	N(1)-C(11)-C(12) 121.3 (3)
C(11)-C(12) 1.413 (5)	C(10)-C(11)-N(1) 120.0 (4)
C(12)-C(13) 1.439 (5)	C(10)-C(11)-C(12) 118.7 (4)
C(13)-C(14) 1.374 (6)	C(7)-C(12)-C(11) 118.8 (4)
C(14)-C(15) 1.444 (5)	C(7)-C(12)-C(13) 125.8 (4)
C(14)-C(17) 1.428 (5)	C(11)-C(12)-C(13) 115.3 (4)
C(16)-C(17) 1.372 (6)	N(2)-C(13)-C(12) 130.1 (4)
C(19)-C(20) 1.366 (6)	C(14)-C(13)-N(2) 107.3 (3)
C(19)-C(24) 1.375 (6)	C(14)-C(13)-C(12) 122.6 (3)
C(21)-C(22) 1.357 (7)	C(13)-C(14)-C(15) 122.2 (4)
C(22)-C(23) 1.361 (7)	C(13)-C(14)- C(17) 109.0 (3)
C(23)-C(24) 1.369 (6)	C(17)-C(14)-C(15) 128.8 (4)
O(1)-C(15)-N(1) 121.1 (3)	O(2)-C(18)-C(17) 125.4 (4)

O(1)-C(15)-C(14) 124.4 (4)	C(20)-C(19)-N(2) 119.9 (4)
N(1)-C(15)-C(14) 114.5 (4)	C(20)-C(19)-C(24) 120.1 (4)
N(2)-C(16)-C(17) 110.7 (4)	C(24)-C(19)-N(2) 119.9 (4)
C(14)-C(17)-C(18) 129.9 (4)	C(19)-C(20)-C(21) 120.2 (5)
C(16)-C(17)-C(14) 105.0 (4)	C(22)-C(21)-C(20) 118.7 (5)
C(16)-C(17)-C(18) 125.1 (4)	C(21)-C(22)-Cl(2) 118.8 (5)
C(21)-C(22)-C(23) 121.4 (5)	C(23)-C(22)-Cl(2) 119.8 (4)
C(22)-C(23)-C(24) 120.1 (5)	C(23)-C(24)-C(19) 119.4 (5)

VI. ¹H NMR and ¹³C NMR spectra copies.

Compound 2a

Compound 2b

Compound 2d

Compound 2h

Compound 2k

Compound 2l

Compound 2n

Compound 2t

Compound 4a

Compound 4e

Compound 41

Compound 4a'

