Supporting Information

Synthesis of 1,1-Diboronate Esters by Cobalt-Catalyzed Sequential Hydroboration of Terminal Alkynes

Ziqing Zuo, Zheng Huang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China

huangzh@sioc.ac.cn

Table of Contents

1.	General Information
2.	Preparation of 4d and Alkynes
3.	Preparation of Terminal
	Alkynes
4.	Procedure for Dihydroboration of Terminal
	AlkynesS7
5.	Coupling Reactions of 1,1-Diboronate with Aryl BromidesS16
6.	Coupling Reactions of 5a with Aryl Iodides
7.	References
8.	NMR Spectra

1. General information

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. All manipulations were carried out using standard Schlenk, high-vacuum and glovebox techniques. Tetrahydrofuran (THF), dioxane and toluene were distilled from sodium benzophenone ketyl prior to use. The following compounds were prepared according to the related literature procedures: $[(S)-iPr-IPO]FeBr_2 ((S)-4a)$.¹ $[(S)-iPr-IPO]CoCl_2 ((S)-4b)$,² (^{iPr}PDI)CoCl_2 (4c).³

NMR spectra were recorded on Agilent 400 MHz or Varian Mercury 400 MHz. ¹H NMR chemical shifts were referenced to residual protio solvent peaks or tetramethylsilane signal (0 ppm), and ¹³C NMR chemical shifts were referenced to the solvent resonance. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, quint = quintuplet, sext = sextuplet, m = multiplet or unresolved, coupling constant (s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Elemental analyses and high resolution mass spectrometer (HR-MS) were carried out by the Analytical Laboratory of Shanghai Institute of Organic Chemistry (CAS).

2. Synthesize [(S)-*i*Pr-Pybox]CoCl₂((S)-4d)

Preparation of [*(S)-i***Pr-Pybox**]**CoCl₂***((S)*-4d). To a solution of (S)-^{*i*Pr}Pybox (60 mg, 0.199 mmol) in approximately 15 mL of THF, 26 mg (0.199 mmol) of CoCl₂ were added. The resulting mixture was stirred at room temperature for 8 hours. The solvent was removed under vacuum and the resulting solid was washed with diethyl ether, collected by filtration and dried under vacuum to yield 71 mg (85%) of a blue solid identified as (S)-4d. ¹H NMR (400 MHz, CDCl₃) δ 71.82, 11.17, 2.98, -11.26, -11.64, -17.92, -21.00, -40.89, -41.71. Anal. Calcd. (C₁₇H₂₃Cl₂CoN₃O₂): C, 47.35; H, 5.38; N, 9.74. Found: C, 46.96; H, 5.58; N, 9.58.

3. Procedure for prepare of terminal alkynes

(but-3-yn-1-yloxy)(tert-butyl)diphenylsilane (1f). Compound 1f was prepared according to the literature.⁴ The product was purified with silica gel chromatography (PE/EA = 100/1) as colorless oil (96%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.63 (m, 4H), 7.43 – 7.31 (m, 6H), 3.78 (t, *J* = 7.0 Hz, 2H), 2.43 (td, *J* = 7.0, 2.6 Hz, 2H), 1.90 (t, *J* = 2.6 Hz, 1H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 133.6, 129.8, 127.8, 81.5, 69.6, 62.4, 26.9, 22.7, 19.3. These spectroscopic data correspond to reported data.⁴

((hex-5-yn-1-yloxy)methyl)benzene (1g). Compound 1g was prepared according to the literature.⁵ The product was purified with silica gel chromatography (PE/EA = 100/1) as colorless oil (94%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.30 – 7.21 (m, 1H), 4.49 (s, 2H), 3.48 (t, *J* = 6.2 Hz, 2H), 2.21 (td, *J* = 7.0, 2.6 Hz, 2H), 1.94 (t, *J* = 2.6 Hz, 1H), 1.77 – 1.68 (m, 2H), 1.68 – 1.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 128.4, 127.7, 127.6, 84.4, 72.9, 69.8, 68.5, 28.8, 25.3, 18.3. These spectroscopic data correspond to reported data.⁵

1-(pyrrolidin-1-yl)hept-6-yn-1-one (1h). A solution of pyrrolidine (2.54 g, 35.67 mol) in CH₂Cl₂ (10 mL) was added dropwise at 0 °C to a solution of hept-6-ynoyl chloride (1.71 g, 11.9 mmol) in 20 mL of CH₂Cl₂. The reaction mixture was allowed to warm to room temperature and was stirred for 1.5 hours. Then 2 M HCl (15 mL) was slowly added at that temperature. The resulting mixture was extracted with CH₂Cl₂ (3×20 mL). Combined organic phase was washed with saturated aq. NaHCO₃ solution and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue was purified by flash column chromatography with EtOAc/petroleum ether (1:2) to give the title compound **1h** (1.68 g, 79%) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.44 – 3.35 (m, 4H), 2.25 (t, *J* = 7.5 Hz, 2H), 2.19 (td, *J* = 7.1, 2.6 Hz, 2H), 1.96 – 1.88 (m, 3H), 1.85 – 1.79 (m, 2H), 1.78 – 1.69 (m, 2H), 1.60 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 84.3, 68.5, 46.7, 45.7, 34.2, 28.3, 26.2, 24.5, 24.0, 18.3. HRMS-ESI (*m/z*): Calc. for C₁₁H₁₈NO [M+H]⁺ 180.1383 , found 180.1384.

ethyl hept-6-ynoate (1i). Compound 1i was prepared according to the literature.⁶ The product was purified with silica gel chromatography (PE/EA = 30/1) as colorless oil

(80%).¹H NMR (400 MHz, CDCl₃) δ 4.10 (q, *J* = 7.1 Hz, 2H), 2.29 (t, *J* = 7.4 Hz, 2H), 2.18 (td, *J* = 7.0, 2.6 Hz, 2H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.78 – 1.66 (m, 2H), 1.58 – 1.48 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 84.0, 68.7, 60.4, 33.8, 27.9, 24.1, 18.2, 14.3. These spectroscopic data correspond to reported data.⁶

4. Procedure for Dihydroboration of Terminal Alkynes

Representative procedure for dihydroboration with cobalt complex. 2,2'-(hexane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2a). In а nitrogen filled glovebox, to a solution of cobalt complex (S)-4a (0.015mmol, 7.8 mg) in 2 mL of THF, a solution (1.0 M in THF) of NaBHEt₃ (30 µL, 0.03 mmol) was slowly added at 25 °C. After stirring for 1 min, HBpin (128 mg, 1.0 mmol, 2 equiv), 1-hexyne 1a (41.0 mg, 0.5 mmol) were sequentially added. The reaction mixture stirred for 12 h at 25 °C and then was quenched by exposing the solution to air. The resulting solution was concentrated in vacuum and the residue was purified by silica gel column chromatography (5% EtOAc in hexane) to give the product 2a as colorless oil (156 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 1.56 – 1.48 (m, 2H), 1.32 – 1.23 (m, 6H), 1.22 (s, 12H), 1.21 (s, 12H), 0.84 (t, J = 6.7 Hz, 3H), 0.70 (t, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 82.9, 32.3, 31.9, 25.7, 24.9, 24.6, 22.6, 14.1. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. These spectroscopic data correspond to reported data.⁷

2,2'-(5-methylhexane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2b). Colorless oil (168 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 1.53 – 1.46 (m, 3H), 1.30 – 1.23 (m, 2H), 1.21 (s, 12H), 1.20 (s, 12H), 1.16 – 1.09 (m, 2H), 0.82 (d, *J* = 6.6 Hz, 6H), 0.71 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 82.9, 39.1, 30.4, 27.8, 26.0, 25.0, 24.6, 22.7. ¹¹B NMR (192 MHz, EtOAc) δ 34.3. HRMS-EI (*m/z*): Calc. for C₁₈H₃₅B₂O₄ [M⁺- CH₃] 335.2794 , found 335.2796.

2,2'-(2-cyclohexylethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (**2c).** Colorless oil (159 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 1.73 – 1.53 (m, 5H), 1.43 (t, *J* = 7.4 Hz, 2H), 1.21 (s, 12H), 1.20 (s, 12H), 1.14 – 0.98 (m, 4H), 0.84 – 0.71 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 82.9, 39.9, 33.2, 33.0, 26.8, 26.6, 24.9, 24.7. ¹¹B NMR (192 MHz, EtOAc) δ 34.5. These spectroscopic data correspond to reported data.⁸

2,2'-(3-cyclopentylpropane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (**2d).** Colorless oil (152 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 1.77 – 1.64 (m, 1H), 1.60 – 1.48 (m, 1H), 1.48 – 1.39 (m, 1H), 1.29 – 1.23 (m, 1H), 1.22 (s, 1H), 1.21 (s, 1H), 1.10 – 0.99 (m, 1H), 0.68 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 82.9, 40.2, 39.5, 32.8, 25.3, 25.0, 24.9, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.0. HRMS-EI (*m/z*): Calc. for C₁₉H₃₅B₂O₄ [M⁺- CH₃] 347.2794 , found 347.2786.

2,2'-(6-chlorohexane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2e). Colorless oil (156 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 3.50 (t, *J* = 6.8 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.53 (dd, *J* = 15.5, 7.8 Hz, 2H), 1.44 – 1.35 (m, 2H), 1.33 – 1.25 (m, 2H), 1.21 (s, 6H), 1.20 (s, 8H), 0.70 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 83.1, 45.2, 32.5, 31.7, 26.9, 25.5, 25.0, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₁₇H₃₂B₂O₄Cl [M⁺- CH₃] 355.2248, found 355.2242.

(4,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butoxy)(tert-butyl)diphenylsi lane (2f). Colorless oil (251 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 2H), 7.43 – 7.34 (m, 3H), 3.66 (t, *J* = 6.1 Hz, 1H), 1.65 – 1.59 (m, 2H), 1.23 (s, 3H), 1.22 (s, 3H), 0.73 (t, *J* = 6.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.6, 134.4, 129.5, 127.6, 83.0, 64.2, 35.5, 27.0, 24.9, 24.6, 21.9, 19.3. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m*/*z*): Calc. for C₃₁H₄₇B₂O₅Si [M⁺- CH₃] 547.3452, found 547.3449.

2,2'-(6-(benzyloxy)hexane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)

(2g). Colorless oil (189 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 1H), 7.29 – 7.23 (m, 1H), 4.48 (s, 1H), 3.44 (t, *J* = 6.7 Hz, 1H), 1.65 – 1.51 (m, 1H), 1.39 – 1.28 (m, 1H), 1.22 (s, 3H), 1.21 (s, 3H), 0.71 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, cdcl₃) δ 138.9, 128.4, 127.7, 127.5, 83.0, 73.0, 70.7, 32.5, 29.8, 26.3, 25.8, 25.00, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₂₄H₃₉B₂O₅ [M⁺- CH₃] 427.3056, found 427.3058.

1-(pyrrolidin-1-yl)-7,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-1-o ne (2h). Colorless oil (191 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 3.38 (dt, J =18.5, 6.8 Hz, 4H), 2.18 (t, J = 8.0 Hz, 2H), 1.94 – 1.85 (m, 2H), 1.84 – 1.75 (m, 2H), 1.64 – 1.54 (m, 2H), 1.54 – 1.45 (m, 2H), 1.28 – 1.24 (m, 4H), 1.18 (s, 12H), 1.17 (s, 12H), 0.66 (t, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 82.9, 46.7, 45.6, 34.9, 32.4, 29.6, 26.2, 25.6, 25.0, 24.9, 24.6, 24.5. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₂₃H₄₃NB₂O₄ [M]⁺ 433.3400 , found 433.3389.

ethyl 7,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanoate (2i). Light yellow oil (160 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 4.08 (q, *J* = 7.1 Hz, 2H), 2.24 (t, *J* = 7.9 Hz 2H), 1.62 – 1.47 (m, 4H), 1.30 – 1.24 (m, 4H), 1.22 (t, *J* = 7.2 Hz, 3H, COOCH₂CH₃, the "CH₃" signals were partially overlappled by the intensive signal of four Me groups), 1.20 (s, 12H), 1.19 (s, 12H), 0.68 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 83.0, 60.2, 34.5, 32.2, 29.2, 25.6, 25.0, 24.9, 24.6, 14.4. ¹¹B NMR (192 MHz, EtOAc) δ 34.3. HRMS-EI (*m*/*z*): Calc. for C₂₀H₃₇B₂O₆ [M⁺- CH₃] 393.2849, found 393.2844.

2,2'-(4-phenylbutane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2j). Colorless oil (185 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 1H), 7.18 – 7.12 (m, 2H), 2.59 (t, *J* = 7.0 Hz, 1H), 1.66 – 1.59 (m, 2H), 1.23 (s, 4H), 1.22 (s, 6H), 0.77 (t, *J* = 6.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 128.5, 128.3, 125.5, 83.1, 36.2, 34.5, 25.7, 25.0, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. These spectroscopic data correspond to reported data.⁷

2,2'-(2-(cyclohex-1-en-1-yl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxabor olane) (2k). Colorless oil (99 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.35 (m, 1H), 2.15 (d, *J* = 8.2 Hz, 2H), 1.95 – 1.85 (m, 4H), 1.60 – 1.44 (m, 4H), 1.19 (s, 12H), 1.18 (s, 12H), 0.96 (t, *J* = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 119.6, 83.0, 33.4, 28.6, 25.3, 24.9, 24.6, 23.2, 22.8. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₂₀H₃₆B₂O₄ [M]⁺ 360.2872, found 360.2870.

N-(3,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-N-phenylaniline (2l). White solid (108 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 4H), 7.13 – 7.03 (m, 4H), 6.96 – 6.84 (m, 2H), 3.65 (t, J = 8.0 Hz, 1H), 1.98 – 1.87 (m, 2H), 1.24 (s, 12H), 1.23 (s, 12H), 0.68 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 129.2, 120.9, 120.8, 83.3, 54.8, 25.01, 24.7, 23.3. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₂₇H₃₉NB₂O₄ [M]⁺461.3138, found 461.3136.

2,2'-(2-phenylethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2m). Colorless oil (155 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 4H), 7.15 – 7.09 (m, 1H), 2.89 (d, *J* = 8.4 Hz, 2H), 1.19 (s, 12H), 1.18 (s, 13H, C(CH₃)₂ and CH₂CH, the "CH" signals were overlappled by the intensive signal of four Me groups). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 128.4, 128.0, 125.4, 83.2, 31.4, 24.9, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.0. These spectroscopic data correspond to reported data.⁹

2,2'-(2-(4-ethylphenyl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan e) (2n). Light yellow oil (182 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.85 (d, J = 8.3 Hz, 2H), 2.58 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 8.0 Hz, 3H, PhCH₂*CH*₃, the "CH₃" signals were partially overlappled by the intensive signal of four Me groups), 1.18 (s, 12H), 1.17 (s, 12H), 1.15 (t, J = 8.4 Hz, 1H, PhCH₂*CH*B₂, the "CH" signals were partially overlappled by the intensive signal of four Me groups). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.2, 128.3, 127.5, 83.1, 31.0, 28.5, 24.9, 24.6, 15.9. ¹¹B NMR (192 MHz, EtOAc) δ 34.4. HRMS-EI (*m/z*): Calc. for C₂₂H₃₆B₂O₄ [M]⁺ 384.2872 , found 384.2868.

2,2'-(2-(m-tolyl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (20). Colorless oil (155 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.00 (m, 3H), 6.93 (d, *J* = 7.2 Hz, 1H), 2.84 (d, *J* = 8.3 Hz, 2H), 2.29 (s, 3H), 1.19 (s, 12H), 1.18 (s, 12H), 1.13 (t, *J* = 8.3 Hz,1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 137.4, 129.3, 128.0, 126.1, 125.4, 83.2, 31.3, 24.9, 24.6, 21.5. ¹¹B NMR (192 MHz, EtOAc) δ 34.3. HRMS-EI (*m/z*): Calc. for C₂₁H₃₄B₂O₄ [M]⁺ 370.2716, found 370.2711.

2,2'-(2-(4-methoxyphenyl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaboro lane) (2p). Colorless oil (170 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 3.73 (s, 3H), 2.80 (d, J = 8.3 Hz, 2H), 1.16 (s, 12H), 1.15 (s, 12H), 1.11 (t, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 136.7, 129.2, 113.3, 83.1, 55.2, 30.4, 24.8, 24.5. ¹¹B NMR (192 MHz, EtOAc) δ 34.3. These spectroscopic data correspond to reported data.⁹

2,2'-(2-(4-fluorophenyl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborola ne) (2q). White solid (147 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.14 (m, 2H), 6.89 (t, *J* = 8.6 Hz, 2H), 2.83 (d, *J* = 8.3 Hz, 2H), 1.17 (s, 12H), 1.16 (s, 12H), 1.12 (t, *J* = 8.0 Hz, 1H, PhCH₂*CH*B₂, the "CH" signals were partially overlappled by the intensive signal of four Me groups). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 159.9 (s), 140.2(d, *J* = 3.1 Hz), 129.7 (d, *J* = 7.7 Hz), 114.7 (d, *J* = 20.9 Hz), 83.3 (s), 30.6 (s), 24.9 (s), 24.6 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.67. ¹¹B NMR (192 MHz, EtOAc) δ 34.9. HRMS-EI (*m/z*): Calc. for C₂₀H₃₁FB₂O₄ [M]⁺ 374.2465, found 374.2469.

4-(2,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-N,N-dimethylaniline (2r). Yellow solid (175 mg, 87%).¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.7 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H), 2.87 (s, 6H), 2.80 (d, *J* = 8.3 Hz, 2H), 1.19 (s, 12H), 1.18 (s, 12H), 1.12 (t, *J* = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 133.3, 128.9, 113.2, 83.1, 41.3, 30.4, 24.9, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.1. HRMS-EI (*m/z*): Calc. for C₂₂H₃₇NB₂O₄ [M]⁺ 399.2981, found 399.2987.

2,2'-(2-(6-methoxynaphthalen-2-yl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-d ioxaborolane) (2s). White solid (173 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 3H), 7.36 (d, J = 8.4 Hz, 1H), 7.12 – 7.06 (m, 2H), 3.89 (s, 3H), 3.02 (d, J = 8.2 Hz, 2H), 1.17 (s, 25H, C(CH₃)₂ and CH₂CH, the "CH" signals were overlappled by the intensive signal of four Me groups). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 139.9, 132.9, 129.1, 129.0, 128.2, 126.5, 126.0, 118.4, 105.7, 83.2, 55.3, 31.4, 24.9, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₂₅H₃₆B₂O₅ [M]⁺436.2822, found 399.2987.

2,2'-(2-(thiophen-3-yl)ethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (**2t).** White solid (132 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.14 (m, 1H), 6.97 – 6.93 (m, 2H), 2.88 (d, *J* = 8.3 Hz, 2H), 1.19 (s, 12H), 1.17 (s, 13H, C(CH₃)₂ and CH₂*CH*, the "CH" signals were overlappled by the intensive signal of four Me groups). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 128.6, 124.8, 119.8, 83.2, 26.1, 24.9, 24.6. ¹¹B NMR (192 MHz, EtOAc) δ 34.2. HRMS-EI (*m/z*): Calc. for C₁₈H₃₀B₂O₄ [M]⁺ 362.2124, found 362.2129.

2,2'-(2-ferrocenylethane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2u). Brown solid (168 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 4.10 – 4.06 (m, 7H), 3.97 – 3.95 (m, 2H), 2.59 (d, *J* = 7.8 Hz, 21H), 1.21 (s, 24H), 0.98 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, cdcl₃) δ 91.8, 83.2, 68.5, 68.4, 66.9, 25.6, 24.9, 24.8. ¹¹B NMR (192 MHz, EtOAc) δ 34.0. HRMS-EI (*m/z*): Calc. for C₂₄H₃₆B₂O₄Fe [M]⁺ 462.2268, found 462.2260.

5. General procedure for coupling reactions of 1,1-diboronate 2j with aryl bromides

To a solution of 1,1-diborylalkane **2j** (0.2 mmol, 1.1 equiv), aryl bormide (0.2 mmol), and $Pd[P(tBu)_3]_2$ (5 mol %) in dioxane 1 mL was added 10 N KOH aq. (0.4 mmol, 40 μ L) at room temperature. The mixture was stirred at room temperature for 10 h and filtered through a pad of silica gel with ether. Concentration gave the residue which was purified by silica gel column chromatography (1% EtOAc in petroleum ether) to gave the product **5** or the protodeborylation product **6**.

2-(1,4-diphenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5a). Colorless oil (152 mg, 90%, his case was carried out in 0.5 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 6H), 7.17 – 7.09 (m, 4H), 2.67 – 2.51 (m, 2H), 2.33 (t, J = 7.8 Hz, 1H), 1.91 (dt, J = 14.6, 7.8 Hz, 1H), 1.77 – 1.66 (m, 1H), 1.60 (dt, J = 11.3, 5.6 Hz, 2H), 1.20 (s, 6H), 1.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 142.8, 128.5, 128.4, 128.3, 125.7, 125.3, 83.4, 36.1, 32.4, 31.2, 24.8, 24.7. HRMS-EI (*m/z*): Calc. for C₂₂H₂₉BO₂ [M]⁺ 335.2297 , found 335.2291.

2-(1-(4-fluorophenyl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(**5b**). Colorless oil (61 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.21 – 7.13 (m, 5H), 6.99 – 6.91 (m, 2H), 2.71 – 2.54 (m, 2H), 2.33 (t, *J* = 7.8 Hz, 1H), 1.96 – 1.83 (m, 1H), 1.78 – 1.66 (m, 1H), 1.66 – 1.55 (m, 2H), 1.22 (s, 6H), 1.21 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 159.8, 142.7, 138.8 (d, *J* = 3.1 Hz), 129.7 (d, *J* = 7.6 Hz), 128.4 (d, *J* = 11.3 Hz), 125.7, 115.2, 114.9, 83.5, 36.0, 32.5, 31.1, 24.8, 24.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.73 (m). HRMS-EI (*m/z*): Calc. for C₂₂H₂₈BO₂F [M]⁺ 353.2203, found 353.2207.

2-(1-(4-methoxyphenyl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**5c).** Colorless oil (67 mg, 91%).¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.0, 6.8 Hz, 2H), 7.20 – 7.10 (m, 5H), 6.84 – 6.80 (m, 2H), 3.79 (s, 3H), 2.71 – 2.54 (m, 2H), 2.30 (t, J = 7.7 Hz, 1H), 1.95 – 1.83 (m, 1H), 1.71 (dt, J = 12.6, 6.4 Hz, 1H), 1.66 – 1.56 (m, 2H), 1.23 (s, 6H), 1.20 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 142.8, 135.3, 129.3, 128.5, 128.3, 125.6, 113.8, 83.4, 55.3, 36.1, 32.7, 31.2, 24.8, 24.7.These spectroscopic data correspond to reported data.⁷

2-(1-(3,5-dimethylphenyl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolan e (5d). Colorless oil (65 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 2H), 7.19 – 7.10 (m, 3H), 6.86 – 6.72 (m, 3H), 2.69 – 2.52 (m, 2H), 2.29 – 2.21 (m, 7H, Ph(C*H*₃)₂ and Ph*CH*B-, the "CH" signals were overlappled by the intensive signal of two Me groups of the phenyl ring), 1.92 – 1.81 (m, 1H), 1.73 – 1.55 (m, 3H), 1.20 (s, 6H), 1.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.9, 137.6, 128.5, 128.3, 127.0, 126.3, 125.6, 83.3, 36.1, 32.6, 31.3, 24.7, 21.5. HRMS-EI (*m/z*): Calc. for C₂₄H₃₃BO₂ [M]⁺ 363.2610, found 363.2614.

2-(1-(benzo[d][1,3]dioxol-5-yl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxabor olane (5e). Colorless oil (65 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.11 (m, 5H), 6.75 – 6.60 (m, 3H), 5.89 (s, 2H), 2.70 – 2.48 (m, 2H), 2.24 (t, *J* = 7.7 Hz, 1H), 1.92 – 1.78 (m, 1H), 1.70 – 1.51 (m, 3H), 1.20 (s, 6H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 145.2, 142.8, 137.1, 128.5, 128.3, 125.7, 121.3, 108.9, 108.2, 100.7, 83.4, 36.1, 32.7, 31.1, 24.8, 24.7. HRMS-EI (*m/z*): Calc. for C₂₃H₂₉BO₄ [M]⁺ 379.2195, found 375.2191.

2-(1-(benzofuran-5-yl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(5f). Colorless oil (67 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 2.1 Hz, 1H), 7.43 (d, J = 1.0 Hz, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.26 (t, J = 7.4 Hz, 2H), 7.19 – 7.12 (m, 4H), 6.71 (d, J = 1.5 Hz, 1H), 2.72 – 2.55 (m, 2H), 2.45 (t, J = 7.9 Hz, 1H), 1.97 (dt, J = 13.9, 7.7 Hz, 1H), 1.83 – 1.71 (m, 1H), 1.68 – 1.58 (m, 2H), 1.23 (s, 6H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 144.9, 142.8, 137.6, 128.5, 128.3, 127.6, 125.7, 125.0, 120.5, 111.0, 106.6, 83.4, 36.1, 32.9, 31.2, 24.8, 24.7. HRMS-EI (*m/z*): Calc. for C₂₄H₂₉BO₃ [M]⁺ 375.2246, found 375.2243.

2-(1-(benzo[b]thiophen-5-yl)-4-phenylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborol ane (5g). White solid (158 mg, 86%; this case was carried out in 0.47 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 1H), 7.66 (s, 1H), 7.38 (d, *J* = 5.4 Hz, 1H), 7.28 – 7.22 (m, 4H), 7.16 (t, *J* = 7.8 Hz, 3H), 2.72 – 2.55 (m, 2H), 2.47 (t, *J* = 7.8 Hz, 1H), 1.99 (dt, *J* = 14.2, 7.7 Hz, 1H), 1.80 (dt, *J* = 15.4, 8.0 Hz, 1H), 1.70 – 1.59 (m, 2H), 1.22 (d, *J* = 5.3 Hz, 6H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 140.1, 139.4, 136.9, 128.5, 128.3, 126.2, 125.7, 125.5, 123.9, 123.1, 122.3, 83.4, 36.1, 32.7, 31.2, 24.8, 24.7. HRMS-EI (*m/z*): Calc. for C₂₄H₂₉BO₂S [M]⁺ 391.2018, found 391.2015.

4,4,5,5-tetramethyl-2-(4-phenyl-1-(thiophen-3-yl)butyl)-1,3,2-dioxaborolane (5h). Colorless oil (38 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 7.20 (dd, *J* = 4.9, 2.9 Hz, 1H), 7.18 – 7.13 (m, 3H), 6.95 (dd, *J* = 4.9, 1.2 Hz, 1H), 6.93 – 6.91 (m, 1H), 2.65 – 2.56 (m, 2H), 2.48 (t, *J* = 7.7 Hz, 1H), 1.91 – 1.81 (m, 1H), 1.76 – 1.66 (m, 1H), 1.65 – 1.57 (m, 2H), 1.21 (s, 6H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 142.7, 128.5, 128.4, 128.3, 125.7, 124.9, 119.5, 83.5, 36.0, 32.1, 31.2, 24.8, 24.7. HRMS-EI (*m/z*): Calc. for C₂₀H₂₇BO₂S [M]⁺ 341.1861, found 341.1858.

The protodeborylation product 6a and 6b

1-(4-phenylbutyl)-4-(trifluoromethyl)benzene (6a). Colorless oil (45 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.30 – 7.22 (m, 4H), 7.20 – 7.13 (m, 3H), 2.68 (t, J = 7.0 Hz, 2H), 2.63 (t, J = 7.1 Hz, 2H), 1.70 – 1.62 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7 (s), 142.4 (s), 128.8 (s), 128.5 (s), 128.4 (s), 125.9 (s), 125.3 (q, J = 3.8 Hz), 35.9 (s), 35.8 (s), 31.1 (s), 30.9 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3. HRMS-EI (m/z): Calc. for C₁₇H₁₇F₃ [M]⁺ 278.1282, found 278.1279.

2-methyl-4-(4-phenylbutyl)pyridine (6b). Pale yellow oil (40 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 5.1 Hz, 1H), 7.27 (t, J = 7.4 Hz, 2H), 7.20 – 7.13 (m, 3H), 6.94 (s, 1H), 6.88 (d, J = 5.0 Hz, 1H), 2.63 (t, J = 6.7 Hz, 2H), 2.57 (t, J = 6.7 Hz, 2H), 2.51 (s, 3H), 1.68 – 1.62 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 151.7, 148.9, 142.3, 128.5, 128.4, 125.8, 123.5, 121.1, 35.8, 35.1, 31.0, 29.9, 24.4. HRMS-EI (*m/z*): Calc. for C₁₆H₁₉N [M]⁺ 225.1517, found 225.1517.

6. General procedure for subsequential coupling reactions of 5a with aryl iodides

To a solution of **5a** (0.2 mmol), aryl iodide (0.24 mmol, 1.2 equiv.) in dioxane 1 mL was added sequentially $Pd_2(dba)_3$ (5 mol %), PPh₃ (0.2 mmol, 1.0 equiv.), and Ag_2O (0.3 mmol, 1.5 equiv.) at room temperature. The mixture was stirred at 90 °C for 24 h and filtered through a pad of silica gel with ether. Concentration gave the residue which was purified by silica gel column chromatography to gave the product 7.

butane-1,1,4-triyltribenzene (7a). Colorless oil (42 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.08 (m, 15H), 3.90 (t, *J* = 7.8 Hz, 1H), 2.63 (t, *J* = 7.7 Hz, 2H), 2.14 – 2.02 (m, 2H), 1.64 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 142.4, 128.5, 128.4, 127.9, 126.2, 125.8, 51.4, 35.9, 35.3, 29.9. HRMS-EI (*m/z*): Calc. for C₂₂H₂₂ [M]⁺ 286.1722, found 286.1274.

(1-(3-methoxyphenyl)butane-1,4-diyl)dibenzene (7b). Pale yellow oil (47 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.08 (m, 11H), 6.84 – 6.66 (m, 3H), 3.87 (t, J =7.8 Hz, 1H), 3.74 (s, 3H), 2.63 (t, J = 7.7 Hz, 2H), 2.11 – 2.01 (m, 2H), 1.64 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 146.8, 145.0, 142.4, 129.4, 128.5, 128.4, 127.9, 126.2, 125.8, 120.4, 114.1, 111.0, 55.2, 51.4, 35.9, 35.3, 29.9. HRMS-EI (*m/z*): Calc. for C₂₃H₂₄O [M]⁺ 316.1827, found 316.1825.

1-(4-(1,4-diphenylbutyl)phenyl)ethanone (7c). Pale yellow oil (32 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.33 – 7.09 (m, 12H), 3.96 (t, J = 7.8 Hz, 1H), 2.64 (t, J = 7.6 Hz, 2H), 2.55 (s, 3H), 2.16 – 2.05 (m, 2H), 1.65 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 150.8, 144.1, 142.2, 135.3, 128.8,

128.7, 128.5, 128.4, 128.2, 127.9, 126.5, 125.9, 51.4, 35.9, 35.0, 29.8, 26.7. HRMS-EI (*m/z*): Calc. for $C_{24}H_{24}O[M]^+$ 328.1827, found 328.1830.

6. References

(1) Z. Zuo, L. Zhang, X. Leng and Z. Huang, *Chem Commun (Camb)*, 2015, **51**, 5073-5076.

(2) L. Zhang, Z. Zuo, X. Wan and Z. Huang, J. Am. Chem. Soc., 2014, 136, 15501-15504.

(3) G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Strömberg, A. J. P. White and D. J. Williams, *J. Am. Chem. Soc.*, 1999, **121**, 8728-8740.

(4) C. Tresse, C. Guissart, S. Schweizer, Y. Bouhoute, A.-C. Chany, M.-L. Goddard,

N. Blanchard and G. Evano, Adv. Synth. Catal., 2014, 356, 2051-2060.

(5) D. Brandt, V. Bellosta and J. Cossy, Org. Lett., 2012, 14, 5594-5597.

- (6) S. R. Parsons, J. F. Hooper and M. C. Willis, Org. Lett., 2011, 13, 998-1000.
- (7) C. Sun, B. Potter and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 6534-6537.
- (8) S. Lee, D. Li and J. Yun, Chem. Asian J., 2014, 9, 2440-2443.
- (9) K. Endo, M. Hirokami and T. Shibata, Synlett, 2009, 2009, 1331-1335.

S24

853888444868888888888889999999886828

¹³C NMR (101 M, CDCl₃) spectrum of **2b**

-34.25

¹³C NMR (101 M, CDCl₃) spectrum of **2d**

-34,03

¹³C NMR (101 M, CDCl₃) spectrum of **2f**

 ^1H NMR (400 M, CDCl₃) spectrum of $\mathbf{2g}$

¹¹B NMR (192 MHz, EtOAc) spectrum of 2g

¹³C NMR (101 M, CDCl₃) spectrum of **2h**

S40

--34, 18

S46

 ^{13}C NMR (101 M, CDCl₃) spectrum of 2p

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

-33.88

S57

¹¹B NMR (192 MHz, EtOAc) spectrum of **2t**

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

