Supplementary information

Concurrent modifications of the C- terminus and side ring of thiostrepton and their synergistic effects with respect to improving antibacterial activities

Shoufeng Wang^{a,#,*},Qingfei Zheng^{a,#}, Jianfeng Wang^b, Dandan Chen^c, Yunsong Yu^b, Wen Liu^{a,c,*}

^aState Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

^bDepartment of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.

^cHuzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.

[#]These Authors equally contributed to this work.

* To whom correspondence should be addressed: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China. Wen Liu, Email: <u>wliu@mail.sioc.ac.cn</u>, Tel: 86-21-54925111, Fax: 86-21-64166128. Shoufeng Wang, Email: <u>wangshoufeng@sioc.ac.cn</u>, Tel: 86-21-54925539.

Table of Contents

1. Supplementary Methods

- 1.1.General materials and methods
- **1.2.**Construction of double mutant strain *S. laurentii* $\Delta tsrB/T$
- 1.3.Fermentation, chemical feeding, compound analysis and isolation
- 1.4.Antibacterial activity of CmTSRs
- 1.5. Synthesis of methyl quinoline-2-carboxylate and its analogues
- 1.6. Synthesis of methyl 4-acetyl-quinoline-2-carboxylate and its analogues
- 1.7. Synthesis of methyl 4-hydroxymethyl-quinoline-2-carboxylate

2. Supplementary Results

- 2.1. Characterization of 5'-F-CmTSR
- 2.2. Characterization of 6'-F-CmTSR
- 2.3. Characterization of 12'-Me-CmTSR
- 2.4. Characterization of 12'-de-Me-CmTSR
- 2.5. Characterization of 6'-Cl-CmTSR
- 2.6. Characterization of methyl quinoline-2-carboxylate and its analogues

2.7. Characterization of methyl 4-acetyl-quinoline-2-carboxylate and its analogues

3. Supplementary Tables

Table S1. ¹H and ¹³C NMR assignments of 5'-F-CmTSR

Table S2. ¹H and ¹³C NMR assignments of 6'-F-CmTSR

Table S3. ¹H and ¹³C NMR assignments of 12'-Me-CmTSR

Table S4. ¹H and ¹³C NMR assignments of 12'-de-Me-CmTSR

Table S5. ¹H NMR assignments of 6'-Cl-CmTSR

Table S6. Antibacterial activity of CmTSRs

Table S7. Strains and plasmids used in this study

Table S8. Primers used in this study

4. Supplementary Figures

Figure S1. Structures of thiostrepton-series thiopeptides

Figure S2. Biosynthesis of the quinaldic acid side ring of thiostrepton

Figure S3. Construction and genotype verification of the double mutant

Figure S4. Ultraviolet absorption of CmTSR and its analogs

Figure S5. 1D and 2D NMR spectra of 5'-F-CmTSR

Figure S6. 1D and 2D NMR spectra of 6'-F-CmTSR

Figure S7. 1D and 2D NMR spectra of 12'-Me-CmTSR

Figure S8. 1D and 2D NMR spectra of 12'-de-Me-CmTSR

Figure S9. 1D and 2D NMR spectra of 6'-Cl-CmTSR

Figure S10. NMR analysis of methyl quinoline-2-carboxylates and its analogues

Figure S11. NMR analysis of methyl 4-acetyl-quinoline-2-carboxylate and its analogues

Figure S12. NMR analysis of methyl 4-(hydroxymethyl)quinoline-2-carboxylate(5)

5. References

1. Supplementary Methods

1.1. General materials and methods

Biochemicals and media were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) unless otherwise stated. Phanta Super-Fidelity DNA Polymerases (cat. no. P501-d1/d2/d3) and Rapid T4 DNA Ligase (cat. no. N103-01) used for PCRs and molecular cloning were purchased from Vazyme Biotech Co.,Ltd (Nanjing, China). Restriction endonucleases were purchased from Thermo Fisher Scientific Co. Ltd. (USA). The synthesis of primers was performed at Shanghai Sangon Biotech Co. Ltd. (China). The DNA sequencing was conducted at Shanghai Majorbio Biotech Co. Ltd. or Shenzhen BGI in China. Bacterial strains and plasmids used in this study are summarized in Table S7. Primer sequences are listed in Table S8.

All commercially available reagents and solvents were used without further purification unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on DC-Alufolien Kieselgel 60F₂₅₄ 0.2 mm plates (Merk) and compounds were visualized by UV fluorescence. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AC-500 or Bruker AC-600 spectrometer, using deuterated solvents and were referenced internally to the residual solvent peak signal. Couple constants (*J*-values) are given in hertzs (Hz). NMR spectra assignation was aided by comparison with literature values for similar compounds. In this experimental section only clear identifiable peaks are assigned. High performance liquid chromatography (HPLC) analysis was carried out on an AgilentTM 1260 HPLC system (Aglient Technologies Inc., USA). Electrospray ionization MS (ESI-MS) was performed on a Thermo Fisher LTQ Fleet ESI-MS spectrometer (Thermo Fisher Scientific Inc., USA). High resolution-MS (HRMS) analysis was carried out on an IonSpec 4.7 Tesla FTMS (IonSpec, Lake Forest, CA).

1.2. Construction of double mutant strain S. laurentii △tsrB/T

Cosmid pSL1001 served as the template for PCR amplification. A 2.19 kb fragment obtained by using the primers pTLf: 5'-CG <u>GAA TTC</u> GCG GTG ATC GAG TGG GTA CGG-3' (*Eco*RI site underlined) and pTLr: 5'-GC <u>TCT AGA</u> GGG TGG ATC

TGG TTG GGG TTG-3' (*Xba*I site underlined) and a 2.18 kb fragment obtained by using the primers pTRf: 5'-GC <u>TCT AGA</u> GGG ATA CAC GGG CGC TTT CTG-3' (*Xba*I site underlined) and pTRr: C CCC <u>AAG CTT</u> CCC GTA CGT ATC TGG ACC ACC-3' (*Hin*dIII site underlined) were initially cloned into the pMD19-T vector, giving pSL12011 and pSL12012, respectively. After sequencing to confirm the fidelity, the 2.19 kb *Eco*RI/*Xba*I and 2.18 kb *Xba*I/*Hin*dIII fragments were recovered and then co-ligated into the *Eco*RI/*Hin*dIII site of pKC1139, yielding the recombinant plasmid pSL1201, in which a 1650 bp in-frame coding region (corresponding to AA₈-AA₅₆₇ of the deduced product TsrT) of *tsrT* was deleted.

Introduction of pSL1201 into *S. laurentii* SL1051 was carried out by *E. coli-Streptomyces* conjugation, following the procedure described previously [1]. The apramycin-resistant colonies were subjected to a double-crossover recombination event, leading to the generation of the recombinant strains SL1201 ($\Delta tsrB/T$). The genotype for each mutation was validated by PCR amplification by using primes pTf: 5'-CGG GCG GCT GCT GCT CTT CGG-3' and pTr: 5'-ATC CGC CAC CGC CAC GGC GAC-3' (Fig. S3).

1.3. Fermentation, chemical feeding, compound analysis and isolation

Fermentation. The $\Delta tsrB/T$ mutant was grown in flask containing seed medium [15 g L⁻¹ solube starch, 15 g L⁻¹ tryptic soy broth, 50 g L⁻¹ sucrose, pH 7.2] (50 mL) for 2 days at 28 °C and 220 rpm. The seed culture (5 mL each) was used to inoculate ten flasks (500 mL) containing fermentation medium [15g L⁻¹ tryptic soy broth, 15 g L⁻¹ CaSO₄, 11 g L⁻¹ yeast extra, 50 g L⁻¹ glucose, pH 7.2] (100 mL). To produce CmTSR and its derivatives, the medium was fed with methyl 4-acetyl-quinoline-2-carboxylate and its analogues (2 mg dissolved in 1 mL DMSO) and incubated at 28 °C and 220 rpm for 3 days.

Compound analysis. After three days of incubation, the cultures were centrifuged and the mycelia cake was soaked with acetone overnight. The acetone was evaporated using rotary evaporator and the product was dissolved in chloroform. Samples were analyzed by HPLC with a

ZORBAX SB-C18 column (250 x 4.6 mm, 5 μ m). The column was developed using solvents A (water) and B (acetonitrile) at a flow rate of 1 mL min⁻¹ as follows: the mobile phase was developed with 15% solvent B for 3 min and then increased from 15% to 40% solvent B over 3 min, then held constant at 40% solvent B for 6 min, then increased from 40% to 55% solvent B over 7 min, the increased from 55% to 85% solvent B over 3 min, then held constant at 85% solvent B for 6 min, and finally decreased from 85% to 15% solvent B over 2 min. Absorbance was monitored at 254 nm.

Compound isolation. To obtain purified compound, the crude metabolites were subjected to a silica gel column and eluted with 100% CHCl₃ followed by CHCl₃-MeOH (100:1 to 100:10). Fractions containing CmTSR analogues were pooled and the organic solvent was evaporated to give crude products for further purification. For purification of CmTSR, the column was developed using solvents A (water) and B (acetonitrile) at a flow rate of 3 mL min-1 as follows: the mobile phase was developed with 15% solvent B for 3 min and then increased from 15% to 40 % solvent B over 3 min, then held constant at 40% solvent B for 6 min, then increased from 40% to 55 % solvent B over 7 min, the increased from 55% to 85% solvent B over 3 min, then held constant at 85% solvent B for 6 min, and finally decreased from 85% to 15% solvent B over 2 min. Purified samples were analyzed by HPLC-MS, HRMS and NMR and were stored at -20 $^{\circ}$ C.

1.4. Antibacterial activity of CmTSRs

The minimum inhibitory concentrations (MICs) were measured by broth dilution using a modified method described previously [3]. Each tested compound was dissolved in DMSO to produce a stock solution (100 μ g/ml), which was serially diluted into 100 μ L of Mueller-Hinton broth (Qingdao Hope Bio-Technology Co. Ltd., China) in a 96-well micro-titer plate to a final concentration ranging from 1 to 0 μ g/ml. 100 μ L of the testing strain (10⁷-10⁸ cfu/ml, calculated according to the 0.5 McFarland standard (McFarland, 1907)) was then added into each well of the

microtiter plate. After incubation at 37° C for 18-24 hr, the MIC was determined to be the lowest concentration of compound that inhibited visible bacterial growth. For the determination of MICs of CmTSRs against *Clostridium difficile*, the bioassays were carried out by using a modified method described previously [4]. The manipulations and interpretations were in accordance with the descriptions of the Clinical and Laboratory Standard Institute (CLSI 2011) [5].

1.5. Synthesis of methyl quinoline-2-carboxylate and its analogues

Quinoline-2-carboxylic acid (10.0 mmol) was dissolved in the dry MeOH and placed in an ice-bath. SOCl₂ (0.92 mL, 12.0 mmol) was then added dropwise and the corresponding mixture refluxed overnight until the starting material was undetectable upon TLC analysis. The suspension cooling to room temperature was carefully poured into the aqueous and saturated NaHCO₃ solution. The resulting mixture was extracted twice with CH₂Cl₂. The organic extracts were combined, dried over anhydrous Na₂SO₄ and filtered, and the solvent was then removed by evaporation in vacuum. The resulting residue was purified by column chromatography to obtain the pure ester.

1.6. Synthesis of methyl 4-acetyl-quinoline-2-carboxylate and its analogues

FeSO₄•7H₂O (0.38 g, 1.37 mmol) was added to a solution of methyl quinoline-2-carboxylate (10 mmol) in TFA (0.97 mL) and acetaldehyde (50 mL) and the resulting mixture was cooled to 0 °C. A first portion of 30% aqueous solution of H₂O₂ (5.5 mL) was slowly added dropwise and the mixture had been stirred for 30 min. And then, a second portion of 30% aqueous H₂O₂ (5.5 mL) was slowly added dropwise and the resulting mixture had been stirred for 30 min. And then, a second portion of 30% aqueous H₂O₂ (5.5 mL) was slowly added dropwise and the resulting mixture had been stirred for additional 90 min. After warming to 25 °C, the reaction mixture was slowly quenched with 5% aqueous Na₂S₂O₃ solution (50 mL) followed by addition of saturated aqueous NaHCO₃ solution. The aqueous layer was

extracted with EtOAc and the combined organic layers were then washed with brine, dried over anhydrous Na₂SO₄, and filtered, and the solvent was then removed by evaporation in vacuum. The resulting residue was purified by column chromatography to obtain the pure product.

1.7. Synthesis of methyl 4-hydroxymethyl-quinoline-2-carboxylate

TFA was added carefully to a solution of FeSO₄•7H₂O and Methyl quinolone-2-carboxylate in MeOH and the solution brought to reflux. Aquenous H₂O₂ was carefully added over a period of 30 min to give a pale-brown solution which was heated at reflux for further 15 h. The solution was left to cool to room temperature and then concentrated in vacuo. The residue was diluted with water and extracted with EtOAc. The organic extracts were pooled, dried, filtered and the solvent evaporated in vacuo to give dark-brown oil. The product was obtained by chromatography on silica gel, eluting with EtOAc: hexanes.

2. Supplementary Results

2.1. Characterization of 5'-F-CmTSR

HPLC-MS analysis of culture extracts from *S. laurentii* $\triangle tsrB/T$ mutant strains fed with **1**.

(1) Total ion chromatogram.

(2) Chromatogram extracted for m/z 1697.

(3) Mass spectrum of 5'-F-CmTSR from tsrBT mutant extract eluting at t_R = 26.10 min (calculated m/z 1697.49 [M+H]+, observed m/z 1697.02 [M+H]+).

Under the conditions used for HPLC-MS, **5'-F-CmTSR** elutes at a t_R of about 26.10 min providing ions at m/z 1697.02 [M + H] ⁺ and m/z 849.44 [M + 2H] ²⁺. The predominant ion for **5'-F-CmTSR** was [M + 2H] ²⁺, whereas [M + H] ⁺ was only a minor species.

¹H NMR (600 MHz, CDCl₃): 8.24(s, 1H), 8.23(s, 1H), 8.03(s, 1H), 7.52(s, 1H), 7.42(s, 1H), 6.75(d, J = 2.0 Hz, 1H), 6.66(s, 1H), 6.35(q, J = 7.2 Hz, 1H), 6.17(q, J = 7.2 Hz, 1H), 6.01(s, 1H), 5.85(m, 1H), 5.78(d, J = 9.8 Hz, 1H), 5.76(d, J = 9.0 Hz, 1H), 5.75(s, 1H), 5.61(q, J = 7.2 Hz, 1H), 5.51(s, 1H), 5.27(br, 1H), 5.18(s, 1H), 4.95(dd, J = 12.5, 8.5 Hz, 1H), 4.74(m, 1H), 4.62(d, J = 6.3 Hz, 1H), 4.45(dd, J = 7.9, 3.0 Hz, 1H), 4.06(m, 1H), 3.87(s, 3H), 3.85(m 1H), 3.81(m, 1H), 3.67(m, 1H), 3.42(m, 1H), 3.38(m, 1H), 3.10(t, J = 12.5 Hz, 1H), 2.90(m, 1H), 2.94(d, J = 8.6 Hz, 1H), 2.26(m, 1H), 1.71(d. J = 7.2 Hz, 3H), 1.60(d, J = 7.2 Hz, 3H), 1.43(m, 1H), 1.40(d, J = 6.9 Hz, 3H), 1.31(d, J = 6.9 Hz, 3H), 1.30(d, J = 7.2 Hz, 3H), 1.21(m, 1H), 1.21(s, 3H), 1.16(d, J = 6.8 Hz, 3H), 1.08(m, 1H), 0.95(d, J = 7.2 Hz, 3H), 0.91(t, J = 7.5 Hz, 3H), 0.88(d, J = 6.9 Hz, 3H); ¹³C NMR (150MHz, CDCl₃): 174.4, 172.9, 172.3, 170.9, 170.3, 169.6, 168.4, 168.3, 165.9, 165.5,

164.3, 163.3, 162.1, 162.0, 161.9, 161.6, 160.6, 159.5, 158.1(d, J = 312 Hz), 157.5, 156.4(d, J = 10.0 Hz), 155.6(d, J = 8.4 Hz), 150.4, 150.2, 146.8, 144.5, 134.3, 132.4, 132.2, 130.5, 128.7, 127.8, 125.2, 124.8, 123.3, 122.6(d, J = 29.1 Hz), 117.9, 109.8, 107.6(d, J = 21.8 Hz), 102.9, 102.3, 79.0, 77.8, 72.5, 67.5, 67.1, 67.0, 66.7, 65.5(d, J = 18.9 Hz), 64.4, 58.5(d, J = 12.8 Hz), 57.3, 55.7, 53.5, 53.3, 52.2, 48.8, 38.8, 35.5, 28.9, 25.8, 24.9, 23.3, 19.6, 19.5, 19.4, 19.0, 17.4, 16.3, 15.8, 15.7, 11.4; ¹⁹F NMR (282 MHz, CDCl₃):-114.58; HRMS (m/z) [M+H]⁺ calcd. For $C_{73}H_{86}FN_{18}O_{19}S_5$, 1697.4904; found 1697.4910.

2.2. Characterization of 6'-F-CmTSR

HPLC-MS analysis of culture extracts from S.Laurentii tsrBT mutant strains fed with 2.

(1) Total ion chromatogram.

(2) Chromatogram extracted for m/z 1697.

(3) Mass spectrum of 6'-F-CmTSR from tsrBT mutant extract eluting at $t_R = 26.30$ min (calculated m/z 1697.49 [M+H]+, observed m/z 1697.20 [M+H]+).

Under the conditions used for HPLC-MS, **6'-F-CmTSR** elutes at a $t_{\rm R}$ of about 26.30 min providing ions at m/z 1697.20 [M + H] ⁺ and m/z 849.83 [M + 2H] ²⁺. The predominant ion for **6'-F-CmTSR** was [M + 2H] ²⁺, whereas [M + H] ⁺ was only a minor species.

 3H), 0.97(t, J = 7.2 Hz, 3H), 0.92(d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): 174.4, 173.0, 172.5, 171.2, 170.2, 169.6, 168.5, 168.0, 165.9, 165.5, 164.4, 163.4(d, J = 274.1 Hz), 163.3, 162.2, 162.0, 161.8, 161.5, 160.9, 159.5, 157.6, 153.9(d, J = 8.9 Hz), 152.1, 150.6, 150.4, 146.9, 142.9, 134.5, 132.5, 132.3, 130.6, 128.8, 127.7, 127.2(d, J = 12.8 Hz), 125.2, 125.0, 122.3, 117.8, 109.7, 102.7, 101.2, 100.9(d, J = 22.5 Hz), 79.0, 78.0, 72.3, 68.1(d, J = 12.8 Hz), 67.1, 67.5, 66.5, 64.6, 64.5, 62.0(d, J = 27.5 Hz), 57.4, 55.8, 55.7, 53.4, 53.3, 52.4, 48.8, 38.9, 35.7, 29.0, 26.2, 24.9, 22.9, 19.8, 19.6, 19.5, 18.9, 17.4, 16.2, 15.9, 15.6, 11.3, ; ¹⁹F NMR (282 MHz, CDCl₃):-101.48; HRMS (m/z) [M+H]⁺ calcd. For C₇₃H₈₆FN₁₈O₁₉S₅, 1697.4904; found 1697.4909.

2.3. Characterization of 12'-Me-CmTSR

HPLC-MS analysis of culture extracts from *S. laurentii* $\triangle tsrB/T$ mutant strains fed with **3**.

- RT: 0.00 28.99 9.38 NL: 3.59E4 100-9.57 TIC MS BING-TSRB-B+ 95-10.23 90-9.19 16.92 MEOH 85-8.59 8.99 16.<u>78</u> 80-17.00 75-11.15 11.35 14 46 70-11.51 14.50 1.65 65 14.3 1.86 <u>17</u>.09 14.58 25.28 60-11.91 6.77 <u>25</u>.51 55 12.09 <u>25</u>.67 50 2.49 14.83 45 40 <u>17</u>.34 19.69 35-25.14 <u>17</u>.44 17.56 25.0 24.18 30-21.80 25-17.68 20.03 20 15 10-0.56 0^Ξ 18 20 22 8 10 12 14 16 24 26 28 ò 4 Time (min)
- (1) Total ion chromatogram.

(2) Chromatogram extracted for m/z 1693.

(3) Mass spectrum of 12'-Me-CmTSR from tsrBT mutant extract eluting at $t_R = 25.50$ min (calculated m/z 1693.52 [M+H]+, observed m/z 1693.47 [M+H]+).

Under the conditions used for HPLC-MS, **12'-Me-CmTSR** elutes at a $t_{\rm R}$ of about 25.50 min providing ions at m/z 1693.47 [M + H] ⁺ and m/z 847.95 [M + 2H] ²⁺. The predominant ion for **12'-Me-CmTSR** was [M + 2H] ²⁺, whereas [M + H] ⁺ was only a minor species.

¹H NMR (500 MHz, CDCl₃): 8.28(s, 1H), 8.25(s, 1H), 8.15(s, 1H), 7.46(s, 1H), 7.29(s, 1H), 6.84(d, J = 8.4 Hz, 1H), 6.80(d, J = 2.0 Hz, 1H), 6.74(s, 1H), 6.40(m, 1H), 6.30(m, 1H), 6.20(q, J = 7.5 Hz, 1H), 6.07(s, 1H), 5.86(d, J = 9.0 Hz, 1H), 5.76(d, J = 9.6 Hz, 1H), 5.76(s, 1H), 5.52(s, 1H), 5.22(br, 1H), 5.12(s, 1H), 5.09 (t, J = 6.6 Hz, 1H), 4.95(dd, J = 12., 9.0 Hz, 1H), 4.78(m, 1H), 4.69(d, J = 7.0 Hz, 1H), 4.47(dd, J = 8.0, 2.7 Hz, 1H), 4.13(m, 1H), 3.93(s, 3H), 3.85(m, 1H), 3.82(m, 1H), 3.72(t, J = 12.0, 1H), 3.62(d, J = 7.2 Hz, 1H), 3.50(m, 1H), 3.15(t, J = 12.0 Hz, 1H), 2.99(d, J = 6.1 Hz, 1H), 2.95(m, 1H), 2.26(m, 1H), 1.75(d. J = 7.5 Hz, 3H), 1.60(m, 1H), 1.63(d, J = 7.5 Hz, 3H), 1.59(m, 2H), 1.47(m, 1H), 1.46(d, J = 7.2 Hz, 3H), 1.37(d, J = 7.2 Hz, 3H), 1.20(d, J = 7.0 Hz, 3H), 1.19(s, 3H), 1.10(m, 1H), 1.05(t, J = 6.3 Hz, 3H), 1.02(d, J = 7.9 Hz, 3H), 0.96(t, J = 7.2 Hz, 3H), 0.90(d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃):

174.9, 173.0, 172.4, 171.1, 170.3, 169.5, 168.5, 168.1, 165.9, 165.6, 164.4, 163.5, 162.2, 162.1, 161.7, 161.5, 161.1, 159.5, 157.6, 154.3, 153.5, 150.6, 150.4, 146.9, 143.3, 134.5, 132.6, 132.2, 130.5, 129.6, 128.8, 127.8, 127.7, 125.1, 123.8, 123.1, 117.8, 109.7, 102.7, 101.4, 79.0, 77.9, 72.2, 69.4, 67.5, 67.4, 67.1, 66.9, 64.5, 59.8, 57.4, 55.8, 53.5, 53.3, 52.4, 48.9, 38.9, 35.7, 31.1, 29.0, 26.2, 24.9, 19.8, 19.5, 19.0, 17.3, 16.1, 15.9, 15.6, 11.3, 10.4; HRMS (m/z) [M+H]⁺ calcd. For C_{74H89N18O19S5}, 1693.5155; found 1693.5159.

2.4. Characterization of 12'-de-Me-CmTSR

HPLC-MS analysis of culture extracts from S.Laurentii tsrBT mutant strains fed with 5.

(1) Total ion chromatogram.

(2) Chromatogram extracted for m/z 1665.

(3) Mass spectrum of 12'-de-Me-CmTSR from tsrBT mutant extract eluting at $t_R = 24.20$ min (calculated m/z 1665.48 [M+H]⁺, observed m/z 1665.29 [M+H]⁺).

Under the conditions used for HPLC-MS, **12'-de-Me-CmTSR** elutes at a t_R of about 24.20 min providing ions at m/z 1665.29 [M + H] ⁺ and m/z 833.41[M + 2H] ²⁺. The predominant ion for **12'-de-Me-CmTSR** was [M + 2H] ²⁺, whereas [M + H] ⁺ was only a minor species.

¹H NMR (600 MHz, CDCl₃): 8.28(s, 1H), 8.26(s, 1H), 8.10(s, 1H), 7.51(s, 1H), 7.47(s, 1H), 6.92(d, J = 9.0Hz, 1H), 6.79(s, 1H), 6.72(s, 1H), 6.39(q, J = 7.5 Hz, 1H), 6.31(m, 1H), 6.20(q, J = 7.2 Hz, 1H), 6.05(s, 1H), 5.85(d, J = 9.8 Hz, 1H), 5.77(d, J = 9.0 Hz, 1H), 5.71(d, J = 1.5 Hz, 1H), 5.51(s, 1H), 5.33(m, 2H), 5.19(br, 1H), 5.09(s, 1H), 4.94(m, 1H), 4.78(m, 1H), 4.66(d, J = 6.3 Hz, 1H), 4.46(dd, J = 7.9, 3.0 Hz, 1H), 4.09(m, 1H), 3.91(s, 3H), 3.82(m, 1H), 3.83(m, 1H), 3.71(t, J = 12.5, 1H), 3.62(d, J = 6.6Hz, 1H), 3.45(m, 1H), 3.12(t, J = 12.5 Hz, 1H), 2.99(d, J = 8.6 Hz, 1H), 2.94(m, 1H), 2.25(m, 1H), 1.75(d. J = 7.2 Hz, 3H), 1.65(m, 1H), 1.62(d, J = 7.2 Hz, 3H), 1.46(m, 1H), 1.46(d, J = 6.9Hz, 3H), 1.35(d, J = 6.9 Hz, 3H), 1.24(m, 1H), 1.19(d, J = 6.8 Hz, 3H), 1.18(s, 3H), 1.12(m, 1H), 0.98(d, J = 7.2 Hz, 3H), 0.93(t, J = 7.5 Hz, 3H), 0.86(d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃):174.8, 173.2, 172.4, 171.0, 170.2, 169.9, 168.4, 168.2,

165.9, 165.6, 164.4, 163.3, 162.1, 161.9, 161.5, 161.2, 160.9, 159.5, 157.5, 154.6, 150.5, 150.3,
148.2, 147.2, 143.2, 134.4, 132.4, 132.2, 130.5, 130.2, 128.9, 128.8, 127.7, 125.1, 124.5, 124.4,
123.8, 117.9, 109.7, 102.8, 101.4, 79.0, 77.8, 72.2, 68.3, 67.5, 67.1, 66.7, 65.0, 64.4, 59.9, 57.5,
55.7, 53.4, 53.3, 52.3, 48.8, 38.9, 35.6, 29.1, 26.0, 24.9, 19.7, 19.4, 19.2, 17.4, 16.1, 15.9, 15.6,
11.4; HRMS (m/z) [M+H]⁺ calcd. For C₇₂H₈₅N₁₈O₁₉S₅, 1665.4842; found 1665.4848.

2.5. Characterization of 6'-Cl-CmTSR

HPLC-MS analysis of culture extracts from S.Laurentii tsrBT mutant strains fed with 4.

(1) Total ion chromatogram.

(2) Chromatogram extracted for m/z 1713.

(3) Mass spectrum of 6'-Cl-CmTSR from tsrBT mutant extract eluting at $t_R = 27.30$ min (calculated m/z 1713.46 [M+H]+, observed m/z 1713.18 [M+H]+).

Under the conditions used for HPLC-MS, **6'-Cl-CmTSR** elutes at a t_R of about 27.30 min providing ions at m/z 1713.18[M + H] ⁺ and m/z 857.48 [M + 2H] ²⁺. The predominant ion for **6'-Cl-CmTSR** was [M + 2H] ²⁺, whereas [M + H] ⁺ was only a minor species.

¹H NMR (500 MHz, CDCl₃): 8.29(s, 1H), 8.28(s, 1H), 8.11(s, 1H), 7.47(s, 1H), 7.31(s, 1H), 6.90(s, 1H), 6.81(d, J = 2.2 Hz, 1H), 6.73(s, 1H), 6.39(q, J = 6.3 Hz, 1H), 6.21(q, J = 7.0 Hz, 1H), 6.07(s, 1H),5.85(d, J = 9.1 Hz, 1H), 5.77(d, J = 8.6 Hz, 1H), 5.78(d, J = 1.5Hz, 1H), 5.53(s, 1H), 5.33(q, J = 6.6 Hz, 1H), 5.22(s, 1H), 5.15(s, 1H), 4.96(dd, J = 13.2, 8.8 Hz, 1H), 4.78(m, 1H), 4.765(m, 1H), 4.45(dd, J = 7.9, 3.1 Hz, 1H), 4.11(m, 1H), 3.93(s, 3H), 3.85(m, 1H), 3.81(m, 1H), 3.71(dd, J = 11.3, 8.7 Hz, 1H), 3.65(d, J = 5.0 Hz, 1H), 3.49(m, 1H), 3.15(dd, J = 13.2, 11.6 Hz, 1H), 2.99(d, J = 6.1Hz, 1H), 2.94(m, 1H), 2.28(m, 1H), 1.74(d. J = 6.5 Hz, 3H), 1.65(m, 1H), 1.61(m, 3H), 1.46(m, 1H), 1.45(d, J = 6.5 Hz, 3H), 1.37(d, J = 6.3Hz, 3H), 1.35(d, J = 6.5 Hz, 3H), 1.24(m, 1H), 1.19(d, J = 6.6 Hz, 3H), 1.19(s, 3H), 1.10(m, 1H), 0.99(d, J = 5.9 Hz, 1H), 0.95(t, J = 7.3 Hz, 3H), 0.88(d, J = 6.8 Hz, 3H); HRMS (m/z) [M+H]⁺ calcd. For C₇₃H_{86Cl}N₁₈O₁₉S₅,

1713.4609; found 1713.4605.

2.6. Characterization of methyl quinoline-2-carboxylate and its analogues

Methyl quinoline-2-carboxylate (1.59 g, 85.1%). ¹H NMR(500 MHz, CDCl₃) δ 8.32(d, J = 8.5 Hz, 1H), 8.21(d, J = 8.5 Hz, 1H), 7.89(dd, J = 8.0, 1.0 Hz, 1H), 7.80(ddd, J = 8.5, 7.0, 1.5 Hz, 1H), 7.66(ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 4.10(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 166.0, 147.9, 147.6, 137.4, 130.8, 130.4, 129.4, 128.7, 127.6, 121.1, 53.3; LC-MS (EI⁺) m/z 188.09 [M+H]⁺.

Methyl 5-fluoro-quinoline-2-carboxylate (1.65 g, 80.5%).¹H NMR(500 MHz, CDCl₃) δ 8.59(d, J = 9.0 Hz, 1H), 8.25(d, J = 8.5 Hz, 1H), 8.13(d, J = 9.0 Hz, 1H), 7.75~7.71(m, 1H), 7.34~7.30(m, 1H), 4.11(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 165.58, 157.51(d, J = 255 Hz), 148.74, 148.16(d, J = 2.9 Hz), 130.79(d, J = 3.7 Hz), 129.82(d, J = 8.5 Hz), 126.54(d, J = 4.7 Hz), 121.08(d, J = 2.9 Hz), 120.13(d, J =17.1 Hz), 122.03(d, J = 18.9 Hz), 53.29; ¹⁹F NMR(282 MHz, CDCl₃) δ -122.42(dd, J = 9.3, 6.1 Hz); LC-MS (EI⁺) m/z 206.09 [M+H] ⁺.

Methyl 6-fluoro-quinoline-2-carboxylate (1.66 g, 80.9%).¹H NMR(500 MHz, CDCl₃) δ 8.32(dd, J = 9.5, 5.5 Hz, 1H), 8.26(d, J = 9.0 Hz, 1H), 8.22(d, J = 9.0 Hz, 1H), 7.59~7.55(m, 1H), 7.50(dd, J = 8.5, 3.0 Hz, 1H), 4.09(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 165.7, 161.7(d, J = 251 Hz), 147.4(d, J = 2.9 Hz), 144.6, 136.6(d, J = 5.6Hz), 133.4(d, J = 9.5 Hz), 130.2(d, J = 10.5 Hz), 121.8, 120.9(d, J = 25.6 Hz), 110.6(d, J = 21.7 Hz), 53.2; ¹⁹F NMR(282 MHz, CDCl₃) δ -109.8(d, J = 4.7 Hz); LC-MS (EI⁺) m/z 206.08 [M+H] ⁺.

Methyl 6-chloro-quinoline-2-carboxylate (1.88 g, 85.1%). ¹H NMR(500 MHz, CDCl₃) δ 8.18(d, J = 9.0 Hz, 1H), 8.16(s, 2H), 7.80(d, J = 2.3 Hz, 1H), 7.67(dd, J = 9.0,2.3Hz, 1H), 4.05(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 165.5, 148.0, 145.8, 135.3, 134.6, 132.2, 131.4, 129.8, 125.2, 121.9, 53.2; LC-MS (EI⁺) m/z 222.03 [M+H]⁺. Methyl 6-Bromo-quinoline-2-carboxylate (2.19 g, 82.9%). ¹H NMR(500 MHz, CDCl₃) δ 8.21(s, 2H), 8.17(d, J = 9.0 Hz, 1H), 8.05(d, J = 2.1 Hz, 1H), 7.85(dd, J = 9.0, 2.2 Hz, 1H), 4.09(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 165.6, 148.2, 146.1, 136.3, 133.9, 132.3, 130.3, 129.6, 123.0, 121.9, 53.3; LC-MS (EI⁺) m/z 265.98 [M+H]⁺.

2.7. Characterization of methyl 4-acetyl-quinoline-2-carboxylate and its analogues

Methyl 4-acetyl-quinoline-2-carboxylate (2.03 g, 88.6%). ¹H NMR(500 MHz, CDCl₃) δ 8.52(td, J = 8.6, 2.6 Hz, 1H), 8.42(s, 1H), 8.34(ddd, J = 8.6, 1.2, 0.6 Hz, 1H), 7.83(m, 1H), 7.73(m, 1H), 4.11(s, 3H), 2.80(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 200.6, 165.4, 148.7, 147.5, 143.6, 131.2, 130.7, 130.5, 125.5, 119.9, 53.4, 30.0; LC-MS (EI⁺) m/z 230.08 [M+H]⁺.

Methyl 4-acetyl-5-fluoro-quinoline-2-carboxylate (1) (2.12 g, 85.9%). ¹H NMR(500 MHz, CDCl₃) δ 8.18(d, J = 8.5 Hz, 1H), 8.04(s, 1H), 7.78(tt, J = 11.3, 5.7 Hz, 1H), 7.39(ddd, J = 10.8, 7.8, 0.9 Hz, 1H), 4.09(s, 3H), 2.66(d, J = 2.6 Hz, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 201.9, 164.8, 156.7(d, J = 256.0 Hz), 148.7, 148.5, 146.4, 130.6(d, J = 9.2 Hz), 127.3(d, J = 4.0 Hz), 117.3, 115.2(d, J = 14.7 Hz), 113.8(d, J = 20.4 Hz), 53.5, 30.9(d, J = 7.3 Hz); ¹⁹F NMR(282 MHz, CDCl₃) δ -109.9; LC-MS (EI⁺) m/z 248.14 [M+H]⁺.

Methyl 4-acetyl-6-fluoro-quinoline-2-carboxylate (**2**) (2.05 g, 82.9%). ¹H NMR(500 MHz, CDCl₃) δ 8.50(s, 1H), 8.34(m, 2H), 7.59(m, 1H), 4.10(s, 3H), 2.80(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 199.9, 165.2, 163.4(d, *J* = 253.7 Hz); 147.0(d, *J* = 3.2 Hz), 146.1, 141.9(d, *J* = 6.4 Hz), 133.8(d, *J* = 9.8 Hz), 126.2(d, *J* = 11.5 Hz), 121.4, 121.4(d, *J* = 26.1 Hz), 109.9(d, *J* = 25.0 Hz), 53.6, 29.7; ¹⁹F NMR(282 MHz, CDCl₃) δ -106.1(dd, *J* = 17.0, 6.8 Hz); LC-MS (EI⁺) m/z 248.12 [M+H]⁺.

Methyl 4-propionyl-quinoline-2-carboxylate (3) (1.95 g, 79.9%). ¹H NMR(500

MHz, CDCl₃) δ 8.35~8.33(m, 2H), 7.82(ddd, *J* =8.3, 6.9, 1.4 Hz, 1H), 7.73~7.70(m, 1H), 4.10(s, 3H), 3.11(q, *J* = 5 Hz, 2 H), 1.29(t, *J* = 5 Hz, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 203.9, 165.4, 148.5, 147.47, 144.6, 131.1, 130.6, 130.2, 128.7, 125.3, 118.9, 53.4, 35.7, 7.9 ; LC-MS (EI⁺) m/z 244.20 [M+H]⁺.

Methyl 4-acetyl-6-chloro-quinoline-2-carboxylate (**4**) (2.28 g, 86.6%). ¹H NMR(500 MHz, CDCl₃) δ 8.56(d, *J* = 2.3 Hz, 1H), 8.41(s, 1H), 8.17 (d, *J* = 9.0 Hz, 1H), 7.69(dd, *J* = 9.0, 2.3 Hz, 1H), 4.06(s, 3H), 2.76(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 199.8, 165.0, 147.6, 146.9, 141.7, 137.0, 132.4, 131.7, 125.3, 124.7, 121.1, 53.5, 29.6; LC-MS (EI⁺) m/z 264.31 [M+H]⁺.

Methyl 4-(hydroxymethyl)quinoline-2-carboxylate (**5**) (1.55 g, 82.3%).¹H NMR(500 MHz, CDCl₃) δ 8.31(s, 1H), 8.25(d, J = 8.5 Hz, 1H), 7.98(d, J = 8.5 Hz, 1H), 7.77(t, J = 7.7 Hz, 1H), 7.65(dd, J = 8.1, 7.2 Hz, 1H), 5.18(s, 2H), 4.04(s, 3H) ; ¹³C NMR(125 MHz, CDCl₃) δ 165.8, 149.7, 147.3, 146.8, 130.4, 130.2, 128.7, 125.9, 122.8, 117.6, 60.5, 52.7 ; LC-MS (EI⁺) m/z 218.10 [M+H]⁺.

Methyl 4-acetyl-6-bromo-quinoline-2-carboxylate (**6**) (2.57 g, 83.7%). ¹H NMR(500 MHz, CDCl₃) δ 8.74(d, J = 2.1 Hz, 1H), 8.41(s, 1H), 8.11(d, J = 9.0 Hz, 1H), 7.84(dd, J = 9.0, 2.2 Hz, 1H), 4.07(s, 3H), 2.77(s, 3H); ¹³C NMR(125 MHz, CDCl₃) δ 199.8, 165.0, 147.7, 147.2, 141.7, 134.3, 132.4, 128.0, 125.7, 121.0, 53.5, 29.7; LC-MS (EI⁺) m/z 308.34 [M+H]⁺.

Methyl 4-butyrylquinoline-2-carboxylate (**7**) (1.75 g, 75.9%).¹H NMR(500 MHz, CDCl₃) δ 8.37(m, 3H), 7.85(ddd, J = 8.5, 5.2, 1.3 Hz, 1H), 7.74(ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 4.13(s, 3H), 3.08(t, J = 7.2 Hz, 2H), 1.85(m, 2H), 1.06(t, J = 7.2 Hz, 3H) ; ¹³C NMR(125 MHz, CDCl₃) δ 203.6, 165.5, 148.5, 147.4, 144.8, 130.2, 130.7, 130.2, 125.3, 125.0, 118.9, 53.4, 44.4, 17.5, 13.7 ; LC-MS (EI⁺) m/z 258.09 [M+H]⁺.

3. Supplementary Tables

 Table S1. ¹H and ¹³C NMR assignments of 5'-F-CmTSR

Position	C ppm	H ppm	HMBC	COSY
Ile 1				
Ile 1-1	C q 174.41			
Ile 1-2	CH 66.66	2.94(d, 8.6)	Ile 1-3	Ile 1-3
Ile 1-3	CH 38.85	1.65(m)	Ile 1-1	Ile 1-6
Ile 1-4	CH2 25.85	a-1.21(m)		
		b-1.43(m)		
Ile 1-5	CH3 11.45	0.91(t, 7.5)	Ile 1-3, Ile 1-4	Ile 1-4
Ile 1-6	CH3 15.70	0.88(d, 6.9)	Ile 1-2, Ile 1-3,	Ile 1-3
			Ile 1-4	
Ala 2				
Ala 2-1	Cq 168.25			
Ala 2-2	CH 48.84	3.67(m)	Ala 2-3	Ala 2-3, Ala 2-NH
Ala 2-3	CH3 19.54	1.16(d, 6.8)	Ala 2-1, Ala 2-2	Ala 2-2

Ala 2-NH		7.61(d, 9.0)		Ala 2-2
Dha 3				
Dha 3-1	Cq 163.29			
Dha 3-2	Cq 132.43			
Dha 3-3	CH2 102.33	Ha: 5.75(s)	Dha 3-1, Dha 3-2	Dha 3-3-Hb
		Hb: 5.18(s)	Dha 3-1	Dha 3-3-Ha
Ala 4				
Ala 4-1	Cq 172.98			
Ala 4-2	CH 52.17	4.74(m)	Dha 3-1, Ala 4-1	Ala 4-3, Ala 4-NH
Ala 4-3	CH3 19.64	1.31(d, 6.9)		Ala 4-2
Ala 4-NH		6.62(d, 9.0)		Ala 4-2
Pip				
Pip-2	Cq 162.10			
Pip-3	CH2 24.88	Ha: 2.90(m)		Pip-4-Hb
		Hb: 3.38(m)		Pip-4-Hb
Pip-4	CH2 28.90	Ha: 2.26(m)		Pip-4-Hb
		Hb:4.06(m)		Pip-3, Pip-4-Ha
Pip-5	Cq 57.29			
Pip-6	CH 64.41	5.27(br)	Pip-2, Pip-5, Thz 13-2	
Thz 6				
Thz 6-1	Cq 161.64			
Thz 6-2	Cq 146.87			
Thz 6-3	CH 124.87	8.03(s)	Thz 6-2, Thz 6-4	
Thz 6-4	Cq 169.59			
Thr 7				
Thr 7-1	Cq 165.53			
Thr 7-2	CH 55.73	4.45(dd, 7.9,3.0)	Thz 6-1	Thr 7-3, Thr 7-NH
Thr 7-3	CH 67.01	1.08(m)		Thr 7-4
Thr 7-4	CH3 19.36	0.95(d, 7.2)	Thr 7-2, Thr 7-3	Thr 7-3

Thr 7-NH		7.00(d, 6.9)		Thr 7-2
Dhb 8				
Dhb 8-2	Cq 128.74			
Dhb 8-3	CH 132.20	6.17(q, 7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-4
Dhb 8-4	CH3 16.25	1.60(d, 7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-3
Tzn 9				
Tzn 9-1	Cq 170.90			
Tzn 9-2	СН 79.01	4.95(dd, 12.5, 8.5)	Tzn 9-1, Tzn 9-4	Tzn 9-3
Tzn 9-3	CH2 35.51	Ha: 3.10(t, 12.5)	Tzn 9-2, Tzn 9-4	Tzn 9-2, Tzn 9-3-Hb
		Hb: 3.81(m)	Tzn 9-1, Tzn 9-4	Tzn 9-2, Tzn 9-3-Ha
Tzn 9-4	Cq 172.29			
Ile 10				
Ile 10-2	CH 53.47	5.76(d, 9.0)	Tzn 9-1, Ile 10-3	Ile 10-NH
Ile 10-3	Cq 77.84			
Ile 10-4	CH 67.46	3.85(m)	Ile 10-2, Ile 10-3, Ile 10-5, Ile 10-6	Ile 10-5
Ile 10-5	CH3 15.80	1.40(d, 6.9)	Ile 10-3, Ile 10-4, Ile 10-6	Ile 10-4
Ile 10-6	СНЗ 17.45	1.21(s)		
Ile 10-NH		7.57(d, 8.6)		Ile 10-2
Thz 11				
Thz 11-1	Cq 161.88			
Thz 11-2	Cq 150.41			
Thz 11-3	CH 125.24	8.23(s)	Thz 11-1, Thz 11-2, Thz 11-4	
Thz 11-4	Cq 165.92			
Thr 12				
Thr 12-2	CH 55.73	5.78(d, 9.8)	Thz 11-1, Thz 13-4	Thr 12-NH
Thr 12-3	CH 72.48	6.35(q, 7.2)	Q-1	Thr 12-4

Thr 12-4	CH3 18.99	1.71(d, 7.2)	Thr 12-2, Thr 12-3	Thr 12-3
Thr 12-NH		8.39(d, 9.0)		Thr 12-2
Thz 13				
Thz 13-2	Cq 170.28			
Thz 13-3	CH 117.88	7.42(s)	Pip-6, Thz 13-2, Thz 13-4	
Thz 13-4	Cq 157.52			
Thz 15				
Thz 15-1	Cq 159.49			
Thz 15-2	Cq 168.43			
Thz 15-3	CH 127.80	8.24(s)	Thz 15-1, Thz 15-2, Thz 15-4	
Thz 15-4	Cq 150.18			
Dha 16				
Dha 16-1	Cq 161.99			
Dha 16-2	Cq 134.32			
Dha 16-3	CH2 102.92	Ha: 6.75(d,)	Dha 16-1, Dha 16-2	Dha 16-3-Hb
		Hb: 5.51(s)	Dha 16-1, Dha 16-2	Dha 16-3-Ha
Dha 17				
Dha 17-1	Cq 164.34			
Dha 17-2	Cq 130.52			
Dha 17-3	CH2 109.81	Ha: 6.66(s)	Dha 17-1, Dha 17-2	Dha 17-3-Hb
		Hb: 6.01(s)	Dha 17-1, Dha 17-2	Dha 17-3-Ha
Dha 17-4	CH3 53.30	3.87(s)	Dha 17-1	
Q				
Q-1	Cq 160.56			
Q-2	Cq 144.54			
Q-3	CH 123.32	7.52(s)	Q-1, Q-9, Q-11	
Q-4	Cq 155.60(d, 8.4)			
Q-5	Cq 158.09(d, 312)			
Q-6	CH 107.60(d, 21.8)	5.85(m)	Q-8, Q-9	Q-7

Q-7	CH 58.50(d,	3.42(m)	Q-5, Q-10	Q-6, Q-8
	12.8)			
Q-8	CH 67.14	4.62(d, 6.3)	Q-6, Q-9	Q-7
Q-9	Cq 122.60 (d,			
	29.1)			
Q-10	Cq 156.45(d,			
	10.0)			
Q-11	CH 65.50(d,	5.61(q, 7.2)	Q-9, Q-12	Q-12
	18.9)			
Q-12	CH2 23.35	1.30(d, 7.2)	Q-4, Q-11	Q-11

Position	C ppm	H ppm	НМВС	COSY
Ile 1				
Ile 1-1	C q 174.42			
Ile 1-2	CH 66.49	3.02(d,8.4)	Ile 1-3	Ile 1-3
Ile 1-3	CH 38.89	1.69(m)	Ile 1-1	Ile 1-1
Ile 1-4	CH2 26.17	a-1.25(m)		
		b-1.50(m)		
Ile 1-5	CH3 11.28	0.97(t, 7.2)	Ile 1-3	Ile 1-4
Ile 1-6	CH3 15.61	0.92(d,6.9)	Ile 1-3, Ile 1-4	Ile 1-3
Ala 2				
Ala 2-1	Cq 168.04			
Ala 2-2	CH 48.82	3.82(m)	Ala 2-3	Ala 2-3, Ala 2-NH
Ala 2-3	CH3 19.63	1.20(d,7.0)	Ala 2-1, Ala 2-2	Ala 2-2
Ala 2-NH		7.60(d,9.0)		Ala 2-2
Dha 3				

Dha 3-1	Cq 163.31			
Dha 3-2	Cq 132.50			
Dha 3-3	CH2 101.20	Ha: 5.75(d, 2.0)	Dha 3-1, Dha 3-2	Dha 3-3-Hb
		Hb: 5.11(br)	Dha 3-1	Dha 3-3-Ha
Ala 4				
Ala 4-1	Cq 173.03			
Ala 4-2	CH 52.45	4.76(m)	Dha 3-1, Ala 4-1	Ala 4-3
Ala 4-3	CH3 19.51	1.47(d,7.0)		Ala 4-2
Pip				
Pip-2	Cq 162.16			
Pip-3	CH2 24.89	Ha: 2.94(m)		Pip-4-Hb
		Hb: 3.45(m)		
Pip-4	CH2 29.00	Ha: 2.28(m)		Pip-4-Hb
		Hb: 4.10(m)		
Pip-5	Cq 57.36			
Pip-6	CH 64.50	5.22(m)	Pip-2, Pip-5	
Thz 6				
Thz 6-1	Cq 161.76			
Thz 6-2	Cq 146.91			
Thz 6-3	CH 124.98	8.11(s)	Thz 6-2, Thz 6-4	
Thz 6-4	Cq 169.60			
Thr 7				
Thr 7-1	Cq 165.51			
Thr 7-2	CH 55.84	4.46(dd,8.1, 2.5)	Thz 6-1	Thr 7-3
Thr 7-3	CH 67.08	1.13(m)		Thr 7-2, Thr 7-4
Thr 7-4	CH3 19.84	1.00(d,7.2)	Thr 7-2, Thr 7-3	Thr 7-3
Dhb 8				
Dhb 8-2	Cq 128.81			
Dhb 8-3	CH 132.34	6.22(q, 7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-4
Dhb 8-4	CH3 15.88	1.64(d,7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-3

Tzn 9				
Tzn 9-1	Cq 171.20			
Tzn 9-2	СН 79.04	4.98(dd,12.0,6.5)	Tzn 9-1, Tzn 9-4	Tzn 9-3
Tzn 9-3	CH2 35.70	Ha:3.13(dd,8.3,4.0)	Tzn 9-2, Tzn 9-4	Tzn 9-2
		Hb:3.72(dd,8.9,3.6)	Tzn 9-1, Tzn 9-4	Tzn 9-2
Tzn 9-4	Cq 172.46			
Ile 10				
Ile 10-2	СН 55.76	5.78(d, 8.6)	Tzn 9-1, Ile 10-3	Ile 10-NH
Ile 10-3	Cq 78.01			
Ile 10-4	CH 67.46	3.86(m)	Ile 10-2, Ile 10-3, Ile 10-5, Ile 10-6	Ile 10-5
Ile 10-5	CH3 16.21	1.37(d, 7.2)	Ile 10-3, Ile 10-4, Ile 10-6	Ile 10-4
Ile 10-6	CH3 17.42	1.19(s)		
Ile 10-NH		7.56(d,8.5)		Ile 10-2
Thz 11				
Thz 11-1	Cq 161.50			
Thz 11-2	Cq 150.58			
Thz 11-3	CH 125.20	8.28(s)	Thz 11-2, Thz 11-4	
Thz 11-4	Cq 165.88			
Thr 12				
Thr 12-2	CH 53.44	5.84(d,8.6)	Thz 11-1, Thz 13-4	Thr 12-3
Thr 12-3	CH 72.31	6.40(m)	Q-1	Thr 12-2, Thr 12-4
Thr 12-4	CH3 18.94	1.75(d,7.5)	Thr 12-2, Thr 12-3	Thr 12-3
Thz 13				
Thz 13-2	Cq 170.25			
Thz 13-3	CH 117.85	7.47(s)	Thz 13-2, Thz 13-4	
Thz 13-4	Cq 157.62			
Thz 15				

Thz 15-1	Cq 159.52			
Thz 15-2	Cq 168.48			
Thz 15-3	CH 127.68	8.29(s)	Thz 15-1, Thz 15-2, Thz 15-4	
Thz 15-4	Cq 150.37			
Dha 16				
Dha 16-1	Cq 162.05			
Dha 16-2	Cq 134.48			
Dha 16-3	CH2 102.74	Ha: 6.80(d, 1.5)	Dha 16-1, Dha 16-2	Dha 16-3-Hb
		Hb: 5.52(d,)	Dha 16-1, Dha 16-2	Dha 16-3-Ha
Dha 17				
Dha 17-1	Cq 164.41			
Dha 17-2	Cq 130.55			
Dha 17-3	CH2 109.67	Ha: 6.74(s)	Dha 17-1, Dha 17-2	Dha 17-3-Hb
		Hb: 6.07(s)	Dha 17-1, Dha 17-2	Dha 17-3-Ha
Dha 17-4	СНЗ 53.27	3.92(s)	Dha 17-1	
Q				
Q-1	Cq 160.91			
Q-2	Cq 142.88			
Q-3	CH 122.26	7.52(s)	Q-1, Q-9, Q-11	
Q-4	Cq 153.86(d, 8.9)			
Q-5	CH 100.93(d, 22.5)	6.90(d,13.5)	Q-7, Q-9, Q-10	
Q-6	CF 163.38(d, 274.1)			
Q-7	CH 62.03(d, 27.5)	3.68(d, 7.5)	Q-5, Q-8	Q-8
Q-8	CH 68.15(d, 12.8)	4.75(m)	Q-6, Q-9	Q-7
Q-9	Cq 127.19(d, 12.8)			
Q-10	Cq 152.07			
Q-11	CH 64.61	5.15(q,7.0)	Q-3,Q-9, Q-12	Q-12
Q-12	CH2 22.96	1.34(d,7.0)	Q-4, Q-11	Q-11

Position	C ppm	H ppm	HMBC	COSY
Ile 1				
Ile 1-1	C q 174.95			
Ile 1-2	CH 67.08	2.99(d, 6.1)	Ile 1-3	Ile 1-3
Ile 1-3	СН 38.94	1.60(m)	Ile 1-1	Ile 1-6
Ile 1-4	CH2 26.22	1.25(m)		
		1.47(m)		
Ile 1-5	CH3 11.28	0.96(t, 7.2)	Ile 1-3, Ile 1-4	Ile 1-4
Ile 1-6	CH3 15.62	0.90(d, 6.9)	Ile 1-2, Ile 1-3, Ile 1-4	Ile 1-3
Ala 2				
Ala 2-1	Cq 168.18			
Ala 2-2	CH 48.91	3.82(m)	Ala 2-3	Ala 2-3, Ala 2-NH
Ala 2-3	СНЗ 19.54	1.20(d,7.0)	Ala 2-1, Ala 2-2	Ala 2-3
Ala 2-NH		7.59(d,6.8)		Ala 2-2
Dha 3				

Dha 3-1	Cq 163.50			
Dha 3-2	Cq 132.56			
Dha 3-3	CH2 101.36	Ha: 5.76(s)	Dha 3-1, Dha 3-2	Dha 3-3-Hb
		Hb: 5.12(s)	Dha 3-1	Dha 3-3-Ha
Ala 4				
Ala 4-1	Cq 173.03			
Ala 4-2	CH 52.41	4.78(m)	Dha 3-1, Ala 4-1	Ala 4-3
Ala 4-3	CH3 19.50	1.47(d,7.2)	Ala 4-2	Ala 4-2
Pip				
Pip-2	Cq 162.06			
Pip-3	CH2 24.92	Ha: 2.95(m)		Pip-4-Hb
		Hb: 3.50(m)		Pip-4-Hb
Pip-4	CH2 29.05	Ha: 2.26(m)		Pip-4-Hb
		Hb: 4.13(m)		Pip-4-Ha
Pip-5	Cq 57.37			*
Pip-6	CH 64.50	5.22(br)	Pip-2, Pip-5	
Thz 6				
Thz 6-1	Cq 161.72			
Thz 6-2	Cq 146.89			
Thz 6-3	CH 125.13	8.15(s)	Thz 6-2, Thz 6-4	
Thz 6-4	Cq 169.51			
Thr 7				
Thr 7-1	Cq 165.63			
Thr 7-2	CH 55.82	4.47(dd,8.0,2.7)	Thz 6-1	Thr 7-3, Thr 7-NH
Thr 7-3	CH 67.36	1.10(m)		Thr 7-4
Thr 7-4	CH3 19.87	1.02(d,7.9)	Thr 7-2, Thr 7-3	Thr 7-3
Thr 7-NH		7.29(d, 3.0)		Thr 7-2
Dhb 8				
Dhb 8-2	Cq 128.85			
Dhb 8-3	CH 132.20	6.20(q, 7.5)	Dhb 8-2	Dhb 8-4
Dhb 8-4	CH3 15.89	1.63(d, 7.5)	Tzn 9-4	Dhb 8-3
-----------	-----------	-----------------------	------------------------------	------------------------
Tzn 9				
Tzn 9-1	Cq 171.12			
Tzn 9-2	CH 79.06	4.95(dd,12.0, 9.0)	Tzn 9-1, Tzn 9-4	Tzn 9-3
Tzn 9-3	CH2 35.68	Ha: 3.15(t,12.0)	Tzn 9-2, Tzn 9-4	Tzn 9-2, Tzn 9-3-Hb
		Hb: 3.72(t,12.0)	Tzn 9-1, Tzn 9-4	Tzn 9-2, Tzn 9-3-Ha
Tzn 9-4	Cq 172.45			
Ile 10				
Ile 10-2	CH 53.47	5.76(d,)	Tzn 9-1, Ile 10-3	
Ile 10-3	Cq 77.90			
Ile 10-4	CH 67.55	3.85(m)	Ile 10-2, Ile 10-3, Ile 10-5	Ile 10-5
Ile 10-5	CH3 16.14	1.37(d, 7.2)	Ile 10-3, Ile 10-4	Ile 10-4
Ile 10-6	CH3 17.39	1.19(s)		
Thz 11				
Thz 11-1	Cq 161.55			
Thz 11-2	Cq 150.57			
Thz 11-3	CH 125.13	8.25(s)	Thz 11-1, Thz 11-2, Thz 11-4	
Thz 11-4	Cq 165.92			
Thr 12				
Thr 12-2	CH 55.81	5.86(d,9.0)	Thz 11-1, Thz 13-4	Thr 12-NH
Thr 12-3	CH 72.18	6.40(m)	Q-1	Thr 12-4
Thr 12-4	CH3 19.05	1.75(d,7.5)	Thr 12-2, Thr 12-3	Thr 12-3
Thr 12-NH		8.31(d,9.0)		Thr 12-2
Thz 13				
Thz 13-2	Cq 170.29			
Thz 13-3	CH 117.80	7.46(s)	Thz 13-2, Thz 13-4	

Thz 13-4	Cq 157.64			
Thz 15				
Thz 15-1	Cq 159.53			
Thz 15-2	Cq 168.49			
Thz 15-3	CH 127.78	8.28(s)	Thz 15-2, Thz 15-4	
Thz 15-4	Cq 150.36			
Dha 16				
Dha 16-1	Cq 162.16			
Dha 16-2	Cq 134.49			
Dha 16-3	CH2 102.74	Ha: 6.80(d,)	Dha 16-1, Dha 16-2	Dha 16-3-Hb
		Hb: 5.52(s)	Dha 16-1, Dha 16-2	Dha 16-3-Ha
Dha 17				
Dha 17-1	Cq 164.42			
Dha 17-2	Cq 130.55			
Dha 17-3	CH2 109.67	Ha: 6.74(s)	Dha 17-1, Dha 17-2	Dha 16-3-Hb
		Hb: 6.07(s)	Dha 17-1, Dha 17-2	Dha 16-3-Ha
Dha 17-4	СНЗ 53.27	3.93(s)	Dha 17-1	
Q				
Q-1	Cq 161.06			
Q-2	Cq 143.32			
Q-3	CH 123.06	7.29(s)	Q-1, Q-9, Q-11	
Q-4	Cq 153.47			
Q-5	CH 123.75	6.84(d,8.4)	Q-7, Q-10	Q-6
Q-6	CH 129.61	6.30(m)	Q-8, Q-9	Q-5, Q-7
Q-7	CH 59.79	3.62(d,7.2)	Q-5, Q-10	Q-6, Q-8
Q-8	CH 66.89	4.69(d,7.0)	Q-6, Q-9	Q-7
Q-9	Cq 127.68			
Q-10	Cq 154.34			
Q-11	CH 69.45	5.09(t,6.6)	Q-3, Q-13	Q-12
Q-12	CU2 21 07	1.50(m)	0.4	0-11 0-13
	CH2 51.07	1.39(111)	Q-4	Q-11, Q-13

Position	C ppm	H ppm	НМВС	COSY
Ile 1				
Ile 1-1	C q 174.79			
Ile 1-2	CH 66.74	2.99(d, 8.6)	Ile 1-3	Ile 1-3
Ile 1-3	CH 38.90	1.65(m)	Ile 1-1	Ile 1-6
Ile 1-4	CH2 26.04	a-1.24(m)		
		b-1.46(m)		
Ile 1-5	CH3 11.38	0.93(t, 7.5)	Ile 1-3, Ile 1-4	Ile 1-4
Ile 1-6	CH3 15.59	0.86(d, 6.9)	Ile 1-2, Ile 1-3, Ile 1-4	Ile 1-3
Ala 2				
Ala 2-1	Cq 168.22			
Ala 2-2	CH 48.88	3.83(m)	Ala 2-3	Ala 2-3, Ala 2-NH
Ala 2-3	СНЗ 19.44	1.19(d, 6.8)	Ala 2-1, Ala 2-2	Ala 2-2
Ala 2-NH		7.61(d, 9.0)		Ala 2-2
Dha 3				

Dha 3-1	Cq 163.29			
Dha 3-2	Cq 132.39			
Dha 3-3	CH2 101.45	Ha: 5.71(d,)	Dha 3-1, Dha 3-2	Dha 3-3-Hb
		Hb: 5.09(s)	Dha 3-1	Dha 3-3-Ha
Ala 4				
Ala 4-1	Cq 173.17			
Ala 4-2	CH 52.32	4.78(m)	Dha 3-1, Ala 4-1	Ala 4-3, Ala 4-NH
Ala 4-3	CH3 19.44	1.46(d, 6.9)		Ala 4-2
Ala 4-NH		6.62(d, 9.0)		Ala 4-2
Pip				
Pip-2	Cq 161.98			
Pip-3	CH2 24.91	Ha: 2.94(m)		Pip-4-Hb
-		Hb: 3.45(m)		Pip-4-Hb
Pip-4	CH2 29.09	Ha: 2.25(m)		Pip-4-Hb
		Hb:4.09(m)		Pip-3, Pip-4-Ha
Pip-5	Cq 57.46			
Pip-6	CH 64.42	5.19(br)	Pip-2, Pip-5, Thz 13-2	
Thz 6				
Thz 6-1	Cq 161.19			
Thz 6-2	Cq 147.16			
Thz 6-3	CH 124.53	8.10(s)	Thz 6-2, Thz 6-4	
Thz 6-4	Cq 169.89			
Thr 7				
Thr 7-1	Cq 165.56			
Thr 7-2	CH 55.75	4.46(dd, 7.9,3.0)	Thz 6-1	Thr 7-3, Thr 7-NH
Thr 7-3	CH 67.10	1.12(m)		Thr 7-4
Thr 7-4	CH3 19.69	0.98(d, 7.2)	Thr 7-2, Thr 7-3	Thr 7-3
Thr 7-NH		7.00(d, 6.9)		Thr 7-2
Dhb 8				

Dhb 8-2	Cq 128.77			
Dhb 8-3	CH 132.21	6.20(q, 7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-4
Dhb 8-4	CH3 15.86	1.62(d, 7.2)	Dhb 8-2, Tzn 9-4	Dhb 8-3
Tzn 9				
Tzn 9-1	Cq 171.05			
Tzn 9-2	CH 79.00	4.94(m)	Tzn 9-1, Tzn 9-4	Tzn 9-3
Tzn 9-3	CH2 35.63	Ha: 3.12(t, 12.5)	Tzn 9-2, Tzn 9-4	Tzn 9-2, Tzn 9-3-Hb
		Hb: 3.71(t, 12.5)	Tzn 9-1, Tzn 9-4	Tzn 9-2, Tzn 9-3-Ha
Tzn 9-4	Cq 172.40			
Ile 10				
Ile 10-2	CH 53.41	5.77(d, 9.0)	Tzn 9-1, Ile 10-3	Ile 10-NH
Ile 10-3	Cq 77.81			
Ile 10-4	CH 67.54	3.82(m)	Ile 10-2, Ile 10-3, Ile 10-5, Ile 10-6	Ile 10-5
Ile 10-5	CH3 16.08	1.35(d, 6.9)	Ile 10-3, Ile 10-4, Ile 10-6	Ile 10-4
Ile 10-6	CH3 17.38	1.18(s)		
Ile 10-NH		7.57(d, 8.6)		Ile 10-2
Thz 11				
Thz 11-1	Cq 161.55			
Thz 11-2	Cq 150.46			
Thz 11-3	CH 125.15	8.26(s)	Thz 11-1, Thz 11-2, Thz 11-4	
Thz 11-4	Cq 165.90			
Thr 12				
Thr 12-2	CH 55.72	5.85(d, 9.8)	Thz 11-1, Thz 13-4	Thr 12-NH
Thr 12-3	CH 72.25	6.39(q,)	Q-1	Thr 12-4
Thr 12-4	СНЗ 19.19	1.75(d, 7.2)	Thr 12-2, Thr 12-3	Thr 12-3
Thr 12-NH		8.39(d, 9.0)		Thr 12-2

Thz 13				
Thz 13-2	Cq 170.22			
Thz 13-3	CH 117.94	7.47(s)	Pip-6, Thz 13-2,	
			Thz 13-4	
Thz 13-4	Cq 157.54			
Thz 15				
Thz 15-1	Cq 159.50			
Thz 15-2	Cq 168.42			
Thz 15-3	CH 127.72	8.28(s)	Thz 15-1, Thz	
	G 150 0 6		15-2, Thz 15-4	
Thz 15-4	Cq 150.26			
Dha 16				
Dha 16-1	Cq 162.13			
Dha 16-2	Cq 134.39			
Dha 16-3	CH2 102.80	Ha: 6.79(s)	Dha 16-1, Dha 16-2	Dha 16-3-Hb
		Hb: 5.51(s)	Dha 16-1, Dha 16-2	Dha 16-3-Ha
Dha 17				
Dha 17-1	Cq 164.36			
Dha 17-2	Cq 130.48			
Dha 17-3	CH2 109.66	Ha: 6.72(s)	Dha 17-1, Dha 17-2	Dha 17-3-Hb
		Hb: 6.05(s)	Dha 17-1, Dha 17-2	Dha 17-3-Ha
Dha 17-4	CH3 53.26	3.91(s)	Dha 17-1	
Q				
Q-1	Cq 160.94			
Q-2	Cq 143.17			
Q-3	CH 124.43	7.51(s)	Q-1, Q-9, Q-11	
Q-4	Cq 154.59			
Q-5	CH 123.84	6.92(d, 9.0)	Q-7, Q-10	Q-6
Q-6	CH 130.24	6.31(m)	Q-8,Q-9	Q-5, Q-7
Q-7	CH 59.94	3.62(d, 6.6)	Q-5, Q-10	Q-6, Q-8
Q-8	CH 65.00	4.66(d, 6.3)	Q-6, Q-9	Q-7
Q-9	Cq 128.94			

Q-10	Cq 148.23			
Q-11	CH 68.30	5.33(m)	Q-3, Q-9	

Position	H ppm	COSY
Ile 1		
Ile 1-1		
Ile 1-2	2.99(d, 6.1)	Ile 1-3
Ile 1-3	1.65(m)	Ile 1-6
Ile 1-4	a-1.24(m)	
	b-1.46(m)	
Ile 1-5	0.95(t, 7.3)	Ile 1-4
Ile 1-6	0.88(d, 6.8)	Ile 1-3
Ile 1-NH	8.51(s)	
Ala 2		
Ala 2-1		
Ala 2-2	3.85(m)	Ala 2-3, Ala
		2-NH
Ala 2-3	1.19(d, 6.8)	Ala 2-2
Ala 2-NH	7.62(d, 9.0)	Ala 2-2

Dha 3		
Dha 3-1		
Dha 3-2		
Dha 3-3	Ha: 5.78(d,)	Dha 3-3-Hb
	Hb: 5.15(s)	Dha 3-3-Ha
Dha 3-NH	7.81(s)	
Ala 4		
Ala 4-1		
Ala 4-2	4.78(m)	Ala 4-3, Ala 4-NH
Ala 4-3	1.46(d, 6.5)	Ala 4-2
Ala 4-NH	6.62(d, 7.4)	Ala 4-2
Pip		
Pip-2		
Pip-3	Ha: 2.94(m)	Pip-4-Hb
	Hb: 3.49(m)	Pip-4-Hb
Pip-4	Ha: 2.28(m)	Pip-4-Hb
	Hb:4.11(m)	Pip-3, Pip-4-Ha
Pip-5		
Pip-6	5.22(s)	
Pip -NH	9.85(s)	
Thz 6		
Thz 6-1		
Thz 6-2		
Thz 6-3	8.11(s)	
Thz 6-4		
Thr 7		
Thr 7-1		
Thr 7-2	4.45(dd, 7.9,3.1)	Thr 7-3
Thr 7-3	1.10(m)	Thr 7-4
Thr 7-4	0.99(d, 5.9)	Thr 7-3
Dhb 8		

Dhb 8-2		
Dhb 8-3	6.21(q, 7.0)	Dhb 8-4
Dhb 8-4	1.61(m)	Dhb 8-3
Dhb 8-NH	8.12(s)	
Tzn 9		
Tzn 9-1		
Tzn 9-2	4.96(dd, 13.2, 8.8)	Tzn 9-3
Tzn 9-3	Ha: 3.15(dd, 13.2, 11.6)	Tzn 9-2, Tzn 9-3-Hb
	Hb: 3.71(dd, 11.3, 8.7)	Tzn 9-2, Tzn 9-3-Ha
Tzn 9-4		
Ile 10		
Ile 10-2	5.77(d, 8.6)	Ile 10-NH
Ile 10-3		
Ile 10-4	3.81(m)	Ile 10-5
Ile 10-5	1.37(d, 6.3)	Ile 10-4
Ile 10-6	1.19(s)	
Ile 10-NH	7.56(d, 10.1)	Ile 10-2
Thz 11		
Thz 11-1		
Thz 11-2		
Thz 11-3	8.28(s)	
Thz 11-4		
Thr 12		
Thr 12-2	5.85(d, 9.1)	Thr 12-NH
Thr 12-3	6.39(q, 6.3)	Thr 12-4
Thr 12-4	1.74(d, 6.5)	Thr 12-3
Thr 12-NH	8.39(d, 9.0)	Thr 12-2
Thz 13		

Thz 13-2		
Thz 13-3	7.47(s)	
Thz 13-4		
Thz 15		
Thz 15-1		
Thz 15-2		
Thz 15-3	8.29(s)	
Thz 15-4		
Dha 16		
Dha 16-1		
Dha 16-2		
Dha 16-3	Ha: 6.81(d, 2.2)	Dha 16-3-Hb
	Hb: 5.53(s)	Dha 16-3-Ha
Dha 16-NH	9.96(s)	
Dha 17		
Dha 17-1		
Dha 17-2		
Dha 17-3	Ha: 6.73(s)	Dha 17-3-Hb
	Hb: 6.07(s)	Dha 17-3-Ha
Dha 17-4	3.93(s)	
Dha 17-NH	8.57(s)	
Q		
Q-1		
Q-2		
Q-3	7.31(s)	
Q-4		
Q-5	6.90(s)	
Q-6(Cl)		
Q-7	3.65(d, 5.0)	Q-8
Q-8	4.76(m)	Q-7
Q-9		

Q-10		
Q-11	5.33(q, 6.6)	Q-12
Q-12	1.35(d, 6.5)	Q-11

	TSR	CmTSR	5'-F-CmTS	6'-F-CmTS	12'-Me-C	12'-de-M	6'-Cl-Cm	VAN
			R	R	mTSR	e-CmTS	TSR	
						R		
PRSP-	0.001	0.000125	< 0.000125	< 0.000125	< 0.000125	0.000125	0.5	0.25
1063								
PRSP-	0.001	0.000125	< 0.000125	< 0.000125	< 0.000125	0.000125	0.25	0.25
2831								
PRSP-	0.008	0.002	< 0.000125	< 0.000125	< 0.000125	0.001	0.5	0.25
224588								
MRSA	0.032	0.008	0.00025	0.0005	0.004	0.008	1	0.5
-s1								
MRSA	0.064	0.008	0.00025	0.0005	0.002	0.004	2	0.5
-SAU3								
MRSA	0.064	0.008	0.0005	0.001	0.004	0.008	1	1.0
- SAUS	0.022	0.000	0.00025	0.0005	0.000	0.000	1	
VRE-3	0.032	0.008	0.00025	0.0005	0.008	0.008	1	> 256
VRE-7	0.064	0.016	0.0005	0.001	0.008	0.016	1	> 256
J VDE 9	0.064	0.016	0.00025	0.0005	0.008	0.008	1	> 256
VKE-0	0.004	0.010	0.00023	0.0003	0.008	0.008	1	> 250
CD-70	0.05	0.0125	0.00025	0.001	0.0125	0.008	0.5	0.4
057	0.05	0.0125	0.00025	0.001	0.0125	0.000	0.5	0.4
CD-10	0.05	0.008	0.00025	0.001	0.008	0.008	0.5	0.4
070702								
CD-10	0.025	0.008	0.0005	0.001	0.004	0.008	0.5	0.4
071903								
CD-10	0.05	0.008	0.00025	0.002	0.008	0.004	1	0.4
070701								
CD-10	0.025	0.008	0.0005	0.001	0.008	0.016	0.5	0.4
072001								
CD-10	0.025	0.008	0.00025	0.001	0.008	0.008	0.5	0.2
072905								
CD-10	0.025	0.008	0.000125	0.001	0.008	0.008	0.5	0.4
072904								
CD-10	0.05	0.0125	0.0005	0.002	0.008	0.008	1	0.4
081001								
CD-10	0.025	0.008	0.00025	0.001	0.004	0.004	0.5	0.4
081207								
CD-10	0.05	0.008	0.0005	0.001	0.008	0.004	1	0.4
081604	0.025	0.000	0.0005	0.001	0.004	0.000	0.5	0.2
10306	0.025	0.008	0.0005	0.001	0.004	0.008	0.5	0.2

Table S6. Antibacterial activity of CmTSRs

Table S7. Strains and plasmids used in this study

Strains/	Characteristic(s)	Source/	
plasmids		reference	
SL1051	tsrB mutant, intermediate CmTSR producing	[1]	
SL1201	Derivative of SL1051, <i>tsrB/T</i> double mutant	This study	
Streptococcus pneumoniae PRSP1063	Penicillin resistance and for MIC test	Clinical isolates	
Streptococcus pneumoniae PRSP2831	Penicillin resistance and for MIC test	Clinical isolates	
Streptococcus pneumoniae PRSP224588	Penicillin resistance and for MIC test	Clinical isolates	
Staphylococcus aureus MRSA-s1	Methicillin resistance and for MIC test	Clinical isolates	
Staphylococcus aureus MRSA-SAU3	Methicillin resistance and for MIC test	Clinical isolates	
Staphylococcus aureus MRSA-SAU5	Methicillin resistance and for MIC test	Clinical isolates	
Enterococcus	Vancomycin resistance and for MIC test	Clinical isolates	

faecium		
VRE3		
Enterococcus	Vancomycin resistance and for MIC test	Clinical isolates
faecium		
VRE73 ^a		
Enterococcus	Vancomycin resistance and for MIC test	Clinical isolates
faecium		
VRE83 ^a		
Clostridium difficile	for MIC test	Clinical isolates
CD-70057		
Clostridium	for MIC test	Clinical isolates
difficile CD-10070702		
Clostridium		
difficile	for MIC test	Clinical isolates
CD-10071903		
Clostridium difficile	for MIC test	Clinical isolates
Clostridium		
<i>difficile</i> CD-10070701		
Clostridium		~~
difficile	for MIC test	Clinical isolates
CD-10072001		
Clostridium difficile	for MIC test	Clinical isolates
CD-10072905		
Clostridium	for MIC test	Clinical isolates
<i>difficile</i> CD-10072904		
Clostridium		
difficile	for MIC test	Clinical isolates
CD-10081001		

<i>Clostridium difficile</i> CD-10081207	for MIC test	Clinical isolates
<i>Clostridium difficile</i> CD-10081604	for MIC test	Clinical isolates
<i>Clostridium difficile</i> CD-11110306	for MIC test	Clinical isolates

E. coli

DH5a	Host for general cloning	Invitrogen
ET12567	Donor strain for conjugation between E. coli and	[1]
(pUZ8002)	Streptomyces	

Plasmids

pMD19-T	E. coli subcloning vector	TaKaRa
pKC1139	E. coli-Streptomyces shuttle vector containing the	[2]
	aac(3)IV gene, and a temperature-sensitive replicon	
pSL12011	pMD19-T derivative carrying the upstream fragment	This study
	of <i>tsrT</i>	
pSL12012	pMD19-T derivative carrying the downstream	This study
	fragment of <i>tsrT</i>	
pSL1201	pKC1139 derivative for in-frame deletion within <i>tsrT</i>	This study

Name	Sequence	Description		
pTLf	CG GAA TTC GCG GTG ATC GAG TGG GTA CGG (EcoRI)	Cloning of the upstream region		
pTLr	GC TCT AGA GGG TGG ATC TGG TTG GGG TTG (XbaI)	of <i>tsrT</i> for in-frame deletion		
pTRf	GC TCT AGA GGG ATA CAC GGG CGC TTT CTG (XbaI)	Cloning of the downstream		
pTRr	C CCC AAG CTT CCC GTA CGT ATC TGG ACC ACC (HindIII)	region of <i>tsrT</i> for in-frame		
		deletion		

4. Supplementary Figures

Figure S1. Structures of thiostrepton-series thiopeptides

Figure S3. Construction and genotype verification of the double mutant, *Streptomyces laurentii* SL1201 ($\Delta tsrB/T$). A) *Streptomyces laurentii* $\Delta tsrB/T$ with a 1650 bp deletion within tsrT was constructed via a double-crossover event. B) Gel electrophoresis analysis of the PCR products were amplified from the genomic DNAs of S. sioyaensis SL1201 (lane 1, 1.19 kb), SL1051 (lane 2, 2.83 kb), using primer pair pTf/pTr.

Figure S5. 1D and 2D NMR spectra of 5'-F-CmTSR

¹H NMR of 5'-F-CmTSR

¹³C NMR of 5'-F-CmTSR

¹⁹F NMR of 5'-F-CmTSR

gCOSY of 5'-F-CmTSR

gHSQC of 5'-F-CmTSR

gHMBC of 5'-F-CmTSR

Figure S6. 1D and 2D NMR spectra of 6'-F-CmTSR

¹H NMR of 6'-F-CmTSR

¹³C NMR of 6'-F-CmTSR

¹⁹F NMR of 6'-F-CmTSR

gCOSY of 6'-F-CmTSR

gHMBC of 6'-F-CmTSR

Figure S7. 1D and 2D NMR spectra of 12'-Me-CmTSR

¹H NMR of 12'-Me-CmTSR

¹³C NMR of 12'-Me-CmTSR

gCOSY of 12'-Me-CmTSR

gHSQC of 12'-Me-CmTSR

gHMBC of 12'-Me-CmTSR

Figure S8. 1D and 2D NMR spectra of 12'-de-Me-CmTSR

¹H NMR of 12'-de-Me-CmTSR

¹³C NMR of 12'-de-Me-CmTSR

gHMBC of 12'-de-Me-CmTSR

Figure S9. 1D and 2D NMR spectra of 6'-Cl-CmTSR

¹H NMR of 6'-Cl-CmTSR

gCOSY of 6'-Cl-CmTSR

Figure S10. NMR analysis of methyl quinoline-2-carboxylates and its analogues

Methyl quinoline-2-carboxylate

Methyl 5-fluoro-quinoline-2-carboxylate

Methyl 6-fluoro-quinoline-2-carboxylate

Methyl 6-chloro-quinoline-2-carboxylate

Methyl 6-Bromo-quinoline-2-carboxylate

Figure S11. NMR analysis of methyl 4-acetyl-quinoline-2-carboxylate and its

analogues

Methyl 4-acetyl-quinoline-2-carboxylate

Methyl 4-acetyl-5-fluoro-quinoline-2-carboxylate (1)

Methyl 4-acetyl-6-fluoro-quinoline-2-carboxylate (2)

Methyl 4-propionyl-quinoline-2-carboxylate (3)

Methyl 4-acetyl-6-chloro-quinoline-2-carboxylate (4)

Methyl 4-acetyl-6-bromo-quinoline-2-carboxylate (6)

Methyl 4-butyrylquinoline-2-carboxylate (7)

Figure S12. NMR analysis of methyl 4-(hydroxymethyl)quinoline-2-carboxylate(5)

5. Reference

[1]. R. Liao, and W. Liu, J. Am. Chem. Soc., 2011, 133, 2852.

[2]. M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner, *Gene*, 1992, **116**, 43.

[3]. S. Wang, Q. Zheng, J. Wang, Z. Zhao, Q. Li, Y. Yu, R. Wang, and W. Liu, *Org. Chem. Front.*, 2015, **2**, 106.

[4]. E. Reigadas, L. Alcalá, M. Mar n, T. Pelaéz, A. Martin, C. Iglesias, E. Bouza, J. Antimicrob. Chemother., 2015, **70**, 2311.

[5]. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute. 2011.