Supporting Information

A novel AgNPs-based colorimetric sensor for rapid detection of Cu²⁺ or Mn²⁺ via pH control

Genhua Wu,^a Chen Dong,^{a,b} Yonglong Li,^b Zhuqing Wang,^{a,b} Yuexia Gao,^b Zheyu Shen^{*,b} and

Aiguo Wu^{*,b}

^a School of Chemistry and Chemical Engineering, Anqing Normal College, Anqing, Anhui 246001,

China

^bKey Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China

*Corresponding Author

Tel: 0086-574-86685039, or 0086-574-87617278; Fax: 0086-574-86685163

Email: aiguo@nimte.ac.cn or shenzheyu@nimte.ac.cn

Figure S1. FT-IR spectra of $Na_4P_2O_7$ (a) and $P_2O_7^{4-}$ -AgNPs (b).

Figure S2. Influence of $P_2O_7^{4-}$ concentration in the AgNPs-based detection systems on the sensing effect of Cu²⁺ or Mn²⁺. (a): Photographic image and corresponding plot of A_0/A (A is the absorbance value at 414 nm in the UV-vis spectra of the detection systems incubated with 10 µM of Cu²⁺, and A_0 is that of the detection systems without Cu²⁺) of the detection systems with different $P_2O_7^{4-}$ concentrations at pH 1.9. (b) Photographic image and corresponding plot of A_0/A (A is the absorbance value at 395 nm in the UV-vis spectra of the detection systems incubated with 10 µM of Mn²⁺, and A_0 is that of the detection systems without Mn²⁺) of the detection systems with different $P_2O_7^{4-}$ concentrations at pH 12.0. The incubation time is 10 min. The HPMC concentration in the detection systems is 50 mg/L.

Figure S3. Influence of HPMC concentration in the AgNPs-based detection systems on the sensing effect of Cu²⁺ or Mn²⁺. (a) Photographic image and corresponding plot of A_0/A (A is the absorbance value at 414 nm in the UV-vis spectra of the detection systems incubated with 10 µM of Cu²⁺, and A_0 is that of the detection systems without Cu²⁺) of the detection systems with different HPMC concentrations at pH 1.9. (b) Photographic image and corresponding plot of A_0/A (A is the absorbance value at 395 nm in the UV-vis spectra of the detection systems incubated with 10 µM of Mn²⁺, and A_0 is that of the detection systems without Mn²⁺) of the detection systems with different HPMC concentrations at pH 12.0. The incubation time is 10 min. The P₂O₇⁴⁻ concentration in the detection systems is 500 µM.

Figure S4. Influence of the incubation time between the detection system and Cu^{2+} (0.2 µM) at pH 1.9 (a) or between the detection system and Mn^{2+} (5.0 µM) at pH 12.0 (b) on the A/A_0 values. *A* is the absorbance value at 414 nm or 395 nm in the UV-vis spectra of the detection systems incubated with 0.2 µM of Cu^{2+} or 5 µM of Mn^{2+} , and A_0 is that of the detection systems without Cu^{2+} or Mn^{2+} . The $P_2O_7^{4-}$ concentration in the detection systems is 50 mg/L.

Figure S5. Influence of pH values on the UV-vis absorption of the detection systems containing 0.5 μ M of Cu²⁺ (a) and 5.0 μ M of Mn²⁺ (b). The inset shows the photographic image of the corresponding solutions. The P₂O₇⁴⁻ concentration in the detection systems is 500 μ M. The HPMC concentration in the detection systems is 50 mg/L. The incubation time is 10 min.

Figure S6. Change in UV-vis absorption of AgNPs dispersions without Cu^{2+} at pH 1.9 (a) and without Mn^{2+} at pH 12.0 (b) compared with the control (pH 9.0) during storage at room temperature within 30 min. The P₂O₇⁴⁻ concentration in the detection systems is 500 μ M. The HPMC concentration in the detection systems is 50 mg/L. The incubation time is 10 min.

(a) Concentration of Cu^{2+} (lake water)			Concentration of Cu^{2+} (tap water)			
Blank	0.05µM	0.1µM	Blank	0.05µM	0.1µM	
(b) Concentration of Mn^{2+} (lake water) Concentration of Mn^{2+} (tap wate						
(b)Concen	tration of Mn ²	+ (lake water)	Concentr	ration of Mn ²⁺	(tap water)	
(b)Concen Blank	tration of Mn ² 0.5µM	+(lake water) 1µM	Concentr Blank	ation of Mn ²⁺ 0.5µM	(tap water) 1µM	
(b)Concen Blank	0.5µM	⁺ (lake water)	Concentr Blank	o.5μM	(tap water) 1µM	
(b)Concen Blank	utration of Mn ²	+ (lake water)	Concentr	ation of Mn ²⁺	(tap water) 1µM	
(b)Concen Blank	tration of Mn ²	⁺ (lake water) 1μΜ	Concentr	ation of Mn ²⁺ 0.5µM	(tap water) 1µM	
(b)Concen Blank	0.5µM	⁺ (lake water)	Blank	ation of Mn ²⁺ 0.5µM	(tap water) 1µM	

Figure S7. Detection of Cu^{2+} (a) or Mn^{2+} (b) in real water samples by our developed colorimetric method.

Potential interfering ions of Cu ²⁺ detection	Tolerance ratios (compared to 5×10^{-8} M) ^a		
Ni ²⁺ , Zn ²⁺ , Na ⁺ , K ⁺ , PO ₄ ³⁻ , SO ₄ ²⁻ , NO ₃ ⁻ ,CO ₃ ²⁻	100000		
Ba ²⁺ , Cd ²⁺ , Al ³⁺ , Fe ³⁺ , Mg ²⁺ , Ca ²⁺ , Fe ²⁺ , Mn ²⁺ , Co ²⁺	10000 1000 100		
$Hg^{2+}, Pb^{2+}, Cr^{3+}$			
Cr(VI)			
Potential interfering ions of Mn ²⁺	Tolerance ratios (compared to 5×10^{-7}		
detection	M) ^b		
Mg ²⁺ , Na ⁺ , K ⁺ , Ca ²⁺ , PO ₄ ³⁻ , SO ₄ ²⁻ , NO ₃ ⁻ ,CO ₃ ²⁻	1000		
Co^{2+}, Cr^{3+}	500		
$A^{1^{3+}}$ Fe ³⁺ Cr(VI)	200		
	200		
Cu ²⁺	200 150		
Cu^{2+} Cd^{2+} , Hg^{2+} , Ni^{2+} , Zn^{2+}	200 150 100		
Cu^{2+} $Cd^{2+}, Hg^{2+}, Ni^{2+}, Zn^{2+}$ Ba^{2+}, Pb^{2+}	200 150 100 50		

Table S1. Influence of potential interfering ions on the detection of Cu^{2+} or Mn^{2+}

^aThe limit of detection of Cu^{2+} is 5×10^{-8} M by the naked eyes;

 $^b The limit of detection of <math display="inline">Mn^{2\scriptscriptstyle +}$ is $5 \times 10^{\text{--}7}\,M$ by the naked eyes.

Method	Probe	Targe t	LOD	Selectivity	Ref.
Colorimetry	Starch-AgNPs	Cu ²⁺	0.632µM	Good	16
Colorimetry	Dopamine-AgNPs	Cu ²⁺	0.05µM	Good	6
Colorimetry	P ₂ O ₇ ⁴⁻ -AgNPs	Cu ²⁺	2nM	Good	This work
Colorimetry	$P_3O_{10}^{5}$ - AgNPs	Mn^{2+}	0.05µM	Good	13
Colorimetry	L-tyrosine-AgNPs	Mn ²⁺	16 nM	Not good	18
Colorimetry	P ₂ O ₇ ⁴⁻ -AgNPs	Mn^{2+}	20nM	Good	This work

Table S2. Comparison of Cu^{2+} or Mn^{2+} detection using AuNPs or AgNPs-based systems.