Synthesis and Biological Evaluation of Copper(II)

Pyrenethiosemicarbazone

Suwarna A. Ingle, Anup N. Kate,^a Anupa A. Kumbhar,* Ayesha A. Khan, Soniya S. Rao and

Shridhar P. Gejji

Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India.

Supporting Information

Figure Captions:

Fig. S1 Changes in the electronic absorption spectra of (**A**) PyTSC and (**B**) CuPyTSC (20 μ M) with increasing concentrations (0-300 μ M) of CT-DNA (phosphate buffer, pH 7.2); the inset shows a fitting of the absorbance data at 360 nm for PyTSC and CuPyTSC used to obtain the binding constants.

Fig. S2 Photograph of 1% Agarose gel showing cleavage of plasmid pBR 322 DNA by PyTSC (A) and its copper complex (B) incubated at 37 $^{\circ}$ C for 30 min. [DNA] = 200 ng, (A) Lane 1 DNA control, Lanes 2-6, DNA + 10, 20, 30, 40, 50 μ M PyTSC; (B) Lane 1: DNA control, Lanes 2 to 7, DNA + 5, 10, 20, 30, 40, 50 μ M CuPyTSC

Fig. S3 Photograph of 1% Agarose gel showing cleavage of plasmid pBR 322 DNA by PyTSC incubated at 37° C for 30 min followed by irradiation for 60 min. [DNA] = 200 ng, Lane 1 and 8, DNA control; Lanes 2-7, DNA + 5, 10, 15, 20, 25, 30 μ M PyTSC.

Fig. S4 ESI-mass spectrum of PyTSC.

Fig. S5 ESI-mass spectrum of CuPyTSC.

Fig. S6 Frontier orbitals in (a) TSC, (b) Py and (c) PyTSC (isovalue of ±0.54 eV). See text for details.

Fig. S7 Double-log plot to calculate the binding constant and number of binding site(s) for BSA - PyTSC (A) and BSA- CuPyTSC (B) interactions. the formation constant, K_a , was determined by the slope and number of binding sites from the intercept.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S7

	1-pyrenecarboxaldehyde	1-pyrenecarboxaldehyde thiosemicarbazone
C ₁₇ -H ₃₃	1.112	1.089
$C_{17}-O_{10}$		1.212
C ₁₇ -N ₁₈	1.280	
$N_{19}-H_{22}$	1.013	
C_{20} - S_{21}	1.666	
H ₃₃ -C ₁₇ -N ₁₈	114	
H ₃₃ -C ₁₇ -O ₁₈		119

Table S1: Selected bond- distances (in Å) and -angles (in $^{\circ}$) of (a) 1-pyrenecarboxaldehyde and (b) 1-pyrenecarboxaldehyde thiosemicarbazone optimized at wB97x/6-31G (d, p).

Table S2: Selected vibrational frequencies (v = Stretching) of 1-pyrenecarboxaldehyde and 1-pyrenecarboxaldehyde thiosemicarbazone.

Assignments	1-pyrenecarboxaldehyde	1-pyrenecarboxaldehyde thiosemicarbazone
v C-H	2948 (175)	
v C=O	1849(280)	
v NH2		3812(112), 3655(83)
v N-H		3626(51)
v C-N		1652(395)

Table S3: Electrochemical data for PyTSC and CuPyTSC.

Compound	Oxidation peaks (V)	Assignment	Reduction peaks (V)	Assignment	Ref.
2-Pyrenylacetylene- thiophene(MeCN)	0.02,0.9	Irrversible oxidation of pyrene	-2.11, -1.56, -1.81	One electron reduction of pyrene moiety	1
2-Bromo, 5- pyrenylacetylene-thiophene (MeCN)	0.95,1.07	"	-1.84, -1.22	"	1
(5-(1-Pyrenylacetylene)-2- thiophene) carboxaldehyde(MeCN)	1.02	"	-	"	1
(5-(1-Pyrenylacetylene)-2- thiophene)ethylene Malonitrile	0.48,1.03	"	-1.64, -1.36, -1.10	"	1
2-Pyrenylacetylene- thiopheneDicobaltHexacarbo nyl (MeCN)	0.56,0.92	"	-1.91, -1.71	"	1
2-Bromo, 5- pyrenylacetylene- thiopheneDicobaltHexacarbo nyl(MeCN)	0.67,0.95, 1.02	"	-1.07,- 1.19, -1.88,	"	1
(5-(1-Pyrenylacetylene)-2- thiophene) carboxaldehydeDicobaltHex acarbonyl(MeCN)	0.56,0.69	"	-1.48, -1.18, -1.09	"	1
(5-(1-Pyrenylacetylene)-2- thiophene)ethylene MalonitrileDicobaltHexacarb	0.92,0.71,	"	-1.37	"	1

onyl(MeCN)	0.56,0.36				
2MP ([2]metacyclo[2](2,7)pyreno phane) (MeCN)	1.18	"	-2.41	"	2
7P ([7](2,7)pyrenophane) (MeCN)	1.24	''	-2.32	''	2
4OP (4- oxa[7](2,7)pyrenophane) (MeCN)	1.26	"	-2.29	"	2
Pyrene (1:1 MeCN/PhH)	1.28	"	-2.16	"	2
1Nitro pyre (DMF)			-0.61	''	3
Buckminsterfullerene Ester (BE1) (THF)			-0.26	Pyrene radical anion	4
Buckminsterfullerene Ester (BE1)(CH ₂ Cl ₂)	0.89	Radical cation of pyrene chromophore	-	-	4
PyTSC (DMF)	0.23	Radical cation of pyrene chromophore	-1.95, -1.65	One electron reduction of pyrene moiety	Present Work
CuPyTSC (DMF)	0.75,0.09	Metal-based oxidation- reduction peaks	-0.73, -1.1, -1.45	"	Present Work

All potentials are referenced against Ag/AgCl, MeCN = Acetonitrile, DMF = Dimethylformamide, THF = Tetrahydrofuran, PhH = Benzene, CH_2Cl_2 = Dichloromethane

References :

- 1. A. Coleman and M. T. Pryce, Inorg. Chem., 2008, 47, 10980-10990.
- 2. R. Y. Lai, J. F. Fleming, B. L. Merner, R. J. Vermeij, G. J. Bodwell, and A. J. Bard, J.

Phys. Chem. A, 2004, 108, 376-383.

3. W. A. Lopes, P. D. de Paula Pereira, H. Viertler and J. B. de Andrade, J. Braz. Chem. Soc.,

2005, 16, 1099-1103.

4. T. Gareis, O. Köthe, and J. Daub, Eur. J. Org. Chem., 1998, 1549-1557.