Comparative supercapacitance performance of CuO nanostructures for energy storage device applications

V. Senthilkumar,¹ Yong Soo Kim,^{1*} S.Chandrasekaran,² Balasubramaniyan Rajagopalan,² Eui Jung Kim,² and Jin Suk Chung²

¹ Department of Physics and Energy Harvest Storage Research Center (EHSRC), University of Ulsan, Ulsan 680-749, South Korea.

²School of Chemical Engineering, University of Ulsan, Ulsan 680-749, South Korea.

*Corresponding Authors: yskim2@ulsan.ac.kr (Y.S. Kim)

Supplementary Information

Fig. S1 Digital photographs of the device structure.

Fig. S2 (a) Cyclic voltammogram results of the prepared Cu/CuO-2 and Ni/CuO symmetrical devices with different scan rates, (b) capacitance and (c) ED-PD values of the devices were derived from the charge/discharge measurements with different current densities.

Fig. S3 Electrochemical performance results of the Cu/CuO-2 and Ni/CuO asymmetrical devices. (a) cyclic voltammogram and (b) capacitance values of the devices were derived from the charge/discharge measurements with different current densities.