Supporting Information

Synthesis of [POCOP]-Pincer Iron and Cobalt Complexes via C_{sp3}-H Activation and Catalytic Application of Iron Hydride in Hydrosilylation Reactions

Shaofeng Huang,^a Hua Zhao,^a Hongjian Sun, Lin Wang, Xiaoyan Li*

School of Chemistry and Chemical Engineering, Key Laboratory of Special

Functional Aggregated Materials, Ministry of Education, Shandong University,

Shanda Nanlu 27, 250199 Jinan, People's Republic of China

Table of Contents

	Page
IR and NMR spectra of complexes 2, 3, 4, and 5	S2
NMR data for the alcohol products	S8
Magnetic susceptibility of complex 3	S23

 ^{1}H NMR spectrum of complex 2

³¹P{¹H} NMR spectrum of complex $\mathbf{3}$

S6

IR spectrum of complex 5

¹³C NMR spectrum of complex **5**

·NMR data for the alcohol products

¹H NMR (300 MHz, CDCl3, *δ*): 7.35–7.25 (m, *Ar*, 5H), 4.57 (s, C*H*₂, 2H), 2.67 (s br, O*H*, 1H).

¹H NMR (300 MHz, CDCl3, δ): 7.31–7.18 (m, *Ar*, 5H), 3.78 (t, *CH*₂, 2H), 2.81 (t, *CH*₂, 2H), 2.10 (s br, *OH*, 1H).

¹H NMR (300 MHz, CDCl3, *δ*): 7.36–7.26 (m, *Ar*, 2H), 7.07–7.01 (m, *Ar*, 2H), 4.66 (s, *CH*₂, 2H), 1.74 (s, *OH*, 1H).

¹H NMR (300 MHz, CDCl3, δ): 7.26 (d, *Ar*, ³*J*(HH) = 9.0 Hz, 2H), 6.86 (d, *Ar*, ³*J*(HH) = 9.0 Hz, 2H), 4.57 (s, *CH*₂, 2H), 3.79 (s, OCH₃, 3H), 2.11 (s br, OH, 1H).

¹H NMR (300 MHz, CDCl3, δ): 7.34–7.30 (m, *Ar*, 1H), 7.21–7.17 (m, *Ar*, 1H), 7.09–7.03 (m, *Ar*, 1H), 7.00–6.93 (m, *Ar*, 1H), 4.66 (s, CH₂, 2H), 2.05 (s, OH, 1H).

¹H NMR (300 MHz, CDCl3, δ): 3.57–3.48 (m, CHOH, 1H), 2.15 (s, 1H), 1.82–1.79 (m, 2H), 1.68–1.66 (m, 2H), 1.50–1.46 (m, 1H), 1.28–1.07 (m, 5H).

¹H NMR (300 MHz, CDCl3, δ): 7.37 (br s, *Ar*, 1H), 6.25–6.32 (m, *Ar*, 2H), 4.53 (s, CH₂, 2H), 2.98 (s br, OH, 2H).

¹H (300MHZ, CDCl3, δ): 7.47-7.50 (m, *Ar*, 1H), 7.38-7.22 (m, *Ar*, 3H), 4.79 (d, *CH*₂, 2H, ³*J*(HH) =6.0 Hz), 1.97 (t, *OH*, 1H, ³*J*(HH) =7.5 Hz).

¹H (300MHZ, CDCl3, δ): 7.55-7.45 (m, *Ar*, 2H), 7.34-7.15 (m, *Ar*, 2H), 4.72 (s, *CH*₂, 2H), 2.31 (s, *OH*, 1H).

¹H NMR (300 MHz, CDCl3, δ): 8.12–8.09 (d, Ar, 1H), 7.88–7.79 (dd, Ar, 2H), 7.54–7.43 (m, Ar, 4H), 5.12 (s, CH₂, 2H), 1.88 (s, OH, 1H).

¹H NMR (300 MHz, CDCl3, δ): 7.31–7.21 (m, *Ar*, 5H), 4.79 (q, CHOH, ³*J*(HH) = 6.0 Hz, 1H), 2.65 (s br, OH, 1H), 1.42 (d, CH₃, ³*J*(HH)= 6.0 Hz, 3H).

¹H NMR (300 MHz, CDCl3, δ): 7.31–7.27 (m, *Ar*, 2H), 7.26-6.97 (m, *Ar*, 2H), 4.82 (q, *CH*OH, ³*J*(HH) = 6.0 Hz, 1H), 2.54 (s, *OH*, 1H), 1.43 (d, *CH*₃, ³*J*(HH) = 6.0 Hz, 3H).

¹H NMR (300 MHz, CDCl3, δ): 7.85–7.81 (m, *Ar*, 4H), 7.52–7.45 (m, *Ar*, 3H), 5.07 (m, *CH*OH, 1H), 1.92 (s, *OH*, 1H), 1.58 (d, *CH*₃, ³*J*(HH) = 6.0 Hz, 3H).

¹H NMR (300 MHz, CDCl3, δ): 7.35-7.22 (m, *Ar*, 5H), 4.55 (t, *CH*OH, 1H, ³*J*(HH) =6.0Hz), 2.14 (s, OH, 1H), 1.76 (m, *CH*₂CH₃, 2H),0.89 (t, *CH*₂*CH*₃,3H, ³*J*(HH)=7.5 Hz).

¹H NMR (300 MHz, CDCl3, δ): 7.26-7.31 (m, *Ar*,4H), 4.88 (q, *CH*OH, 1H, ³*J*(HH) = 6.0Hz), 1.89 (s, *OH*, 1H), 1.47 (d, *CHCH*₃, 3H, ³*J*(HH) = 3.0Hz).

¹H NMR (300 MHz, CDCl3, *δ*): δ 7.18-7.32 (m, Ar, 10H), 5.78 (s, C*H*(OH), 1H), 2.16 (s br, CH(O*H*), 1H).

¹H NMR (300 MHz, CDCl3, δ): 7.47-7.44 (m, *Ar*, 1H), 7.22-7.07 (m, *Ar*, 3H), 5.03 (q, CHOH, ³*J*(HH)=6.0Hz,1H), 2.29 (s, CH₃, 3H), 1.40 (d, CHCH₃, ³*J*(HH) = 6.0Hz, 3H).

¹H NMR (300 MHz, CDCl3, δ): 8.54 (d, *Ar*, ³*J*(HH) = 3.0 Hz, 1H), 7.72–7.66 (m, *Ar*, 1H), 7.29 (d, *Ar*, ³*J*(HH) = 9.0 Hz, 1H), 7.22–7.18 (m, *Ar*, 1H), 4.89 (q, CHOH, ³*J*(H-H) = 6.0 Hz, 1H), 4.31 (s br, OH, 1H), 1.51(d, CH₃, ³*J*(H-H) = 6.0 Hz, 3H).

Magnetic susceptibility of complex 3

 $\chi_{\rm m} = 20\pi^* 10^{-9} \text{ m}^3 \text{mol}^{-1}$ $\mu_{\rm m} = 3.16^* 10^{-23} \text{ JT}^{-1}$ n = 2.54