Electronic Supplementary Information

Noble-metal-free Cu₂S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p-n junction structure

Yubin Chen*, Zhixiao Qin, Xixi Wang, Xu Guo, Liejin Guo*

Synthesis of ZnIn₂S₄ and Cu₂S/ZnIn₂S₄ photocatalysts

Zinc sulphate heptahydrate (ZnSO₄·7H₂O), Indium nitrate tetrahydrate (In(NO₃)₃·4H₂O), cetyltrimethylammonium bromide (CTAB), thioacetamide (C₂H₅NS), and ethanol (C₂H₆O) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used as purchased without further purification.

 $ZnIn_2S_4$ photocatalysts were synthesized by a reported hydrothermal method.¹ Briefly, 0.735 g of $ZnSO_4 \cdot 7H_2O$, 1.615 g of $In(NO_3)_3 \cdot 4H_2O$, 0.65 g of CTAB, and a double excess of TAA were respectively dissolved in 50 mL of distilled water. The mixed solution was transferred into a 70-mL Teflon-lined autoclave, which was then sealed and kept at 160 °C for 12 h. After the autoclave cooled naturally in air, the produced $ZnIn_2S_4$ photocatalysts were washed with ethanol and deionized water several times and dried in vacuum at 80°C for 5 h. $Cu_2S/ZnIn_2S_4$

^{*}Yubin Chen and Liejin Guo, International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, P. R. China; E-mail: ybchen@mail.xjtu.edu.cn, lj-guo@mail.xjtu.edu.cn.

photocatalysts were prepared by an in-situ deposition of Cu_2S onto $ZnIn_2S_4$. The preparation process is the same as that for Cu_2S/CdS . The Cu/Zn molar ratio of $Cu_2S/ZnIn_2S_4$ was controlled to be 0.05.

Synthesis of Cu₂S/TiO₂ photocatalysts

TiO₂ photocatalysts used in the present study were commercial P25 TiO₂ (Sigma Aldrich). Cu₂S/TiO₂ photocatalysts were prepared according to the following process. Typically, appropriate amounts of Cu(NO₃)₂ solution were added into 190 mL of 0.25 M Na₂SO₃/0.35 M Na₂S aqueous solution containing 1.0 g of TiO₂ powders. The suspension was stirred for 0.5 h with nitrogen purged. The obtained Cu₂S/TiO₂ photocatalysts were washed with ethanol and deionized water several times and dried in vacuum at 80°C for 5 h. The Cu/Ti molar ratio of Cu₂S/TiO₂ was controlled to be 0.05.

Photocatalytic hydrogen production over ZnIn₂S₄, Cu₂S/ZnIn₂S₄, TiO₂ and Cu₂S/TiO₂ photocatalysts

The reaction conditions for photocatalytic hydrogen production over $ZnIn_2S_4$ and $Cu_2S/ZnIn_2S_4$ photocatalysts were the same as those for CdS and Cu_2S/CdS photocatalyts. Photocatalytic reaction conditions for TiO₂ and Cu_2S/TiO_2 photocatalysts were a little different. The hydrogen production was tested with stirring under white light irradiation in a side irradiation Pyrex cell. 0.2 g of photocatalysts were added into 190 mL of aqueous solution containing 38 mL of methanol as sacrificial reagents. Nitrogen was purged through the cell before reaction to remove oxygen. A 300 W Xe lamp was used as the light source, and the temperature was kept at 35 ± 0.2 °C for the photocatalytic reaction.

References

1 S. Shen, L. Zhao, Z. Zhou and L. Guo, J. Phys. Chem. C, 2008, 112, 16148.

The number of incident photons for the apparent quantum yield test can be calculated by the following equation.

$$n_i = \frac{PSt\lambda}{hc}$$

 n_i —— the number of incident photons;

- P —— light intensity / W·m⁻²;
- S —— irradiation area / m²;
- λ wavelength / nm;
- *h* Planck constant / $J \cdot s$;
- c —— speed of light / m·s⁻¹;
- *t* —— reaction time / s.

Table S1. The Cu/Cd molar ratios determined by EDX of different Cu₂S/CdS samples.

the Cu/Cd molar ratio determined by EDX
0.015
0.028
0.056
0.114
0.248

Fig. S1. The schematic diagram of the photocatalytic reactor for hydrogen production.

Fig. S2. XRD patterns of Cu_xS (Na₂S) sample and Cu_2S (Na₂SO₃/Na₂S) sample (Cu₂S achieved by adding Cu^{2+} into Na₂SO₃/Na₂S solution).

Fig. S3. Illustration of the deposition process of Cu₂S nanoparticles on CdS polyhedrons.

Fig. S4. Cu 2p XPS spectra of Cu₂S/CdS-0.05 sample before and after long-time photocatalytic reaction.

Fig. S5. Mott-Schottky plot of Cu₂S film. The Mott-Schottky measurement was carried out at the frequency of 5 kHz in a conventional three-electrode cell with Ag/AgCl reference electrode and a platinum wire as the counter electrode. A 0.5 M aqueous solution of Na₂SO₄ was used as the electrolyte. The Cu₂S film was prepared by dripping the suspension of 250 μL of water, 250 μL of ethanol, 10 μL of Nafion solution (DuPont), and 1.0 mg of Cu₂S powders onto a platinized-carbon electrode and leaving the solvent evaporating in air.