Palladium-Catalyzed Highly Practicable Oxygenation of C(sp²)-H and C(sp³)-H Bonds under Assistance of Oxalyl Amied

Pei Liu^a, Jan Han^a, Chang Peng Chen^a, Da Qing Shi^{a*} and Ying Sheng Zhao^{a*}

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

Supporting information

1. Reagents	S2
2. Instruments	S2
3. Preparation of oxalamide substrates	S2
4. Standard procedure for Pd-catalyzed alkoxylation/acetoxylation reaction of amides	
5. Synthesis of compound 6j by sequential C-H alkoxylation/acetoxylation reaction	S4
6. Gram scale reaction	
7. Removal of the Directing Group	
8. Experiments about the mechanism	
9. Selectivity of an un-substituted phenyl derivative	S6
10. Analytic Data of Products	S6
11. References	
12. NMR Spectra	S20

General Information and Procedure for the Reaction

General information:

1. Reagents: Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova-400 MHz, Inova-300 MHz, Bruker DRX-400 or Bruker DRX-500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br = broad singlet, m = multiplet. HRMS analyses were carried out using a Bruker micrOTOF-Q instrument or a TOF-MS instrument.

3. Preparation of oxalamide substrates

3.1. Preparation of N, N-Diisopropyloxamoyl chloride S1^[1,2]

A solution of Diisopropylamine (7.01 mL, 50 mmol, 1.0 equiv) in CH_2Cl_2 (50 mL) was added dropwise to a solution of oxalyl chloride (6.44 ml, 75 mmol, 1.5 equiv) in CH_2Cl_2 (100 mL) at 0 °C, after stirring for 5 min, triethylamine (7.30 mL, 52.5 mmol, 1.05 equiv) was added dropwise. The solution was warmed to room temperature and stirred for 6 hours. The excess of oxalyl chloride and the solvent were removed under reduce pressure and CH_2Cl_2 (30 mL) was added and evaporated. This operation was performed twice to give **S1** as a pale yellow solid. The crude product was used in the next step without any purification.

3.2. General procedures for the preparation of oxalamide substrates (4a-4n, 7a-7f, except 7c-7e)^[3]

A solution of amine (20 mmol, 1.0 eq) in CH_2Cl_2 (40 mL) was added dropwise to a solution of N,N–Diisopropyloxamoyl chloride S1 (25 mmol, 1.25 equiv) in CH_2Cl_2 (50 mL) at 0 °C, after stirring for 5 min, triethylamine (2.92 ml, 21 mmol, 1.05 equiv) was added dropwise and then the mixture was stirred for 6 hours at room temperature before quenched by water (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (20 mL × 2). The combined organic phase was washed with brine (30 mL), and then dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel afforded corresponding amide substrates as white solid with good yields.

3.3. preparation of oxalamide substrates 7c^[4]

$$\stackrel{\text{HO}}{\longrightarrow}_{\text{NH}_2} \xrightarrow{1. \text{ s1}, \text{ Et}_3 \text{N}, \text{ DCM}} \xrightarrow{\text{IBSO}} \xrightarrow{\text{O}}_{\text{N}} \underset{\text{O}}{\overset{\text{O}}{\longrightarrow}} N(iPr)_2$$

The first step using 2-aminobutan-1-ol (1.78 g, 20 mmol, 1.0 eq) as starting material followed the general oxalamide coupling procedure, affording white solid. The solid and Et₃N (5.56 mL, 40 mmol, 2.0 eq) were dissolved in DCM (30 mL) then dropped by TBSCl (3.32g, 22 mmol, 1.1 eq) at room temperature overnight. The reaction was quenched by saturated NH₄Cl(aq) and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **7c** 5.29 g, 74% yield.

3.4. Preparation of oxalamide substrates 7d^[5]

$$\bigvee_{\text{CO}_2\text{H}}^{\text{NH}_2} \underbrace{1. \text{ S1}, \text{ Et}_3\text{N}, \text{ DCM}}_{2. \text{ SOCI}_2, \text{ MeOH}} (i\text{Pr})_2\text{N} \xrightarrow{\text{H}}_{\text{O}} \underbrace{1. \text{ CO}_2\text{Me}}_{\text{O}} \underbrace{1. \text{ CO}_2\text{Me}}_{\text{O}} \underbrace{1. \text{ S1}, \text{ Et}_3\text{N}, \text{ DCM}}_{\text{O}} \underbrace{1. \text{ S1}, \text{ Et}_3\text{N}, \text{ B1}, \text{ Et}_3\text{N}, \text{ B2}, \text{ B2}, \text{ B2}, \text{ B2}, \text{ B3}, \text{ B4}, \text$$

To a solution of 2-aminobutanoic acid (2.06 g, 20 mmol, 1.0 eq) in MeOH (30 mL) was added dropwise $SOCl_2$ (4.35 mL, 60 mmol, 3.0 eq) at 0 °C,. The resulting mixture was allowed to stir from 0 °C to room temperature overnight. The solvent was removed under reduced pressure afford a white solid, which was used directly for next step. The second step followed the general oxalamide coupling procedure, to give compound **7d** 3.69 g, 68% yield.

3.5. Preparation of oxalamide substrates 7e^[5]

The first step using 2-aminobutan-1-ol (1.78 g, 20 mmol, 1.0 eq) as starting material followed the general oxalamide coupling procedure, affording white solid. The solid was dissolved in DCM (30 mL) and treated with AcCl (1.56 mL, 22 mmol, 1.1 eq) and Et₃N (5.56 mL, 40 mmol, 2.0 eq) at room temperature overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **7e** 4.06 g, 71% yield.

Procedure for the Reaction

4. Standard procedure for Pd-catalyzed alkoxylation /acetoxylation reaction of amides 4.1 Standard procedure for Pd-catalyzed C(sp²)-H alkoxylation of Benzylamines

A mixture of benzylamine 4a (87.6 mg, 0.3 mmol), MeOH (0.15 mL), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), and $PhI(OAc)_2$ (145 mg, 0.45 mmol, 1.5 equiv.) in anhydrous toluene (0.9 mL)

in a 25 mL glass vial (sealed with PTFE cap) was heated at 60-110 °C with vigorous stirring for 8-22 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the alkoxylation product **5a** in 83% yield.

4.2 Standard procedure for Pd-catalyzed C(sp²)-H acetoxylation of Benzylamines

A mixture of benzylamine **4a** (87.6 mg, 0.3 mmol), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), $PhI(OAc)_2$ (193 mg, 0.6 mmol, 2 equiv.) and AcOH (36 mg, 0.6 mmol, 2 equiv.) in anhydrous toluene (0.9 mL) in a 25 mL glass vial (sealed with PTFE cap) was heated at 100 °C with vigorous stirring for 22 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the acetoxylation product **6a** in 58% yield.

4.3 Standard procedure for Pd-catalyzed C(sp³)-H acetoxylation of alkylamides

A mixture of alkylamide **7a** (68.4 mg, 0.3 mmol), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), $PhI(OAc)_2$ (387 mg, 1.2 mmol, 4 equiv.) and AcOH (5.4 mg, 0.9 mmol, 0.3 equiv.) in anhydrous mesitylene (0.9 mL) in a 25 mL glass vial (sealed with PTFE cap) was heated at 140 °C with vigorous stirring for 22 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the acetoxylation product **8a** in 68% yield.

5. Synthesis of compound 6j by sequential C-H alkoxylation/acetoxylation reaction

Compound **5a**: A mixture of m-methyoxy-benzylamine **4a** (87.6 mg, 0.3 mmol), MeOH (0.15mL), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), and $PhI(OAc)_2$ (144.9 mg, 0.45 mmol, 1.5 equiv.) in anhydrous toluene (0.9 mL) in a 25 mL glass vial (sealed with PTFE cap) was heated at 60 °C with vigorous stirring for 8 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the alkoxylation product **5a** in 83% yield.

Compound **6j**: A mixture of Compound **5a** (87.6 mg, 0.3 mmol), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), $PhI(OAc)_2$ (193.2 mg, 0.6 mmol, 2 equiv.) and AcOH (36 mg, 0.6 mmol, 2 equiv.) in anhydrous toluene (0.9 mL) in a 25 mL glass vial (sealed with PTFE cap) was heated at 100 °C

with vigorous stirring for 22 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **6j** in 68% yield.

6. Gram Reaction

A mixture of 4e (8.55 g, 29 mmol, 1.0 equiv.), $Pd(OAc)_2$ (64 mg, 0.01 equiv.), $PhI(OAc)_2$ (1.5 equiv.) and toluene (30 mL) in a 100 mL boiling flask (sealed with vacuum plug) was heated at 100 °C with vigorous stirring for 48 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give 9e as pale yellow solid in 67% yield.

7. Removal of the Directing Group

Compound **4e** (0.16g, 0.5 mmol, 1.0 equiv.) was dissolved in a mixture of THF/MeOH (0.4/0.1 mL); NaOH (80 mg, 2.0 mmol, 4.0 equiv.) was then added. The mixture was heated to 90 °C with vigorous stirring and stirred for 12 hours. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the desired product **9e** in 88% yield.

8. Experiments about the mechanism

8.1 Pd-catalyzed C(sp²)-H acetoxylation of Benzylamines without AcOH

A mixture of benzylamine **4a** (87.6 mg, 0.3 mmol), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 equiv.), $PhI(OAc)_2$ (193 mg, 0.6 mmol, 2 equiv.) in anhydrous toluene (0.9 mL) in a 25 mL glass vial (sealed with PTFE cap) was heated at 100 °C with vigorous stirring for 22 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the acetoxylation product **6a** in 45% yield.

8.2 Pd-catalyzed C(sp²)-H acetoxylation of Benzylamines with PivOH

As predicted by GC-MS, the result gave ratio of 6a:6a:6i was 21:12:1, so acetic acid might be acted as a stabilizer during the catalytic cycle.

9. Selectivity of an un-substituted phenyl derivative

The un-substituted phenyl derivative afforded a mixture mono and di alkoylated products without selectivity. The mono-alkoxylated product was in 56% yield, and di-alkoxylated product in 19% yield.

Analytic Data of Products

Yield: 82% (4.79g). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (br, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.79 (m, 2H), 4.74–4.64 (m, 1H), 4.39 (d, *J* = 6.0 Hz, 2H), 3.76 (s, 3H), 3.52–3.45 (m, 1H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 163.23, 163.17, 163.09, 159.94, 139.17, 139.12, 129.81, 129.79, 120.07, 113.35, 113.22, 55.28, 49.76, 49.75, 46.61, 46.57, 43.30, 43.27, 20.93,20.19, 20.12. HRMS Calcd for C₁₆H₂₄N₂O₃ [M+Na]: 315.1685; Found: 315.1673.

Yield: 93% (4.87g). ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 5H), 7.20 (br, 1H), 4.87–4.80 (m, 1H), 4.46 (d, *J* = 6.0 Hz, 2H), 3.56–3.49 (m, 1H), 1.42 (d, *J* = 6.8 Hz, 6H), 1.24 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.16, 163.04, 137.53, 128.84, 127.90, 127.70, 49.75, 46.69, 43.41, 20.97, 20.15. HRMS Calcd for C₁₅H₂₂N₂O₂ [M+Na]: 285.1579; Found: 285.1579.

Yield: 90% (5.36g). 1H NMR (400 MHz, CDCl3) δ 7.52 (s, 1H), 7.34–7.28 (M, 1H), 6.83–6.75 (m, 2H), 4.71–4.65 (m, 1H), 4.44 (d, J = 6.1 Hz, 2H), 3.52–3.45 (m, 1H), 1.37 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 163.88, 163.76, 163.25, 162.95, 162.34, 162.22, 161.41, 161.29, 159.87, 159.75, 131.17, 131.11, 131.07, 131.01, 120.79, 120.75, 120.64, 120.60, 111.58, 111.54, 111.36, 111.33, 104.26, 104.00, 103.75, 49.78, 46.67, 36.79, 36.75, 20.91, 20.10. HRMS Calcd for C₁₅H₂₀F₂N₂O₄ [M+Na]: 321.1391; Found: 321.1394.

Yield: 85% (5.47g). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (m, 2H), 6.43 (m, 2H), 4.80–4.73 (m, 1H), 4.38 (d, *J* = 6.0 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.52–3.45 (m, 1H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.20, 162.85, 160.73, 158.70, 130.50, 118.09, 103.98, 98.59, 55.44, 55.42, 49.59, 46.49, 38.76, 20.90, 20.12. HRMS Calcd for C₁₇H₂₆N₂O₄ [M+Na]: 345.1790; Found: 345.1783.

Yield: 78% (4.56g). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (br, 1H), 7.26 (m, 2H), 6.89 (m, 2H), 4.79– 4.69 (m, 1H), 4.46 (d, *J* = 5.8 Hz, 2H), 3.85 (s, 3H), 3.53–3.45 (m, 1H), 1.41 (d, *J* = 6.6 Hz, 6H), 1.21 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.12, 162.91, 157.63, 129.69, 129.07, 125.49, 120.61, 110.30, 55.37, 49.60, 46.49, 39.13, 20.88, 20.10. HRMS Calcd for C₁₆H₂₄N₂O₃ [M+Na]: 315.1685; Found: 315.1678.

Yield: 91% (5.02g). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.26 (m, 1H), 7.23–7.17 (m, 3H), 7.13 (br, 1H), 4.83–4.76 (m, 1H), 4.47 (d, *J* = 5.7 Hz, 2H), 3.57–3.50 (m, 1H), 2.36 (s, 3H), 1.43 (d, *J* = 6.8 Hz, 6H), 1.26 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.02, 162.98, 136.51, 135.18, 130.65, 128.62, 128.01, 126.38, 49.76, 46.70, 41.59, 20.99, 20.17, 19.12. HRMS Calcd for C₁₆H₂₄N₂O₂ [M+Na]: 299.1735; Found: 299.1729.

Yield: 81% (4.47g). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (br, 1H), 7.22 (m, 1H), 7.09 (m, 3H), 4.81– 4.73 (m, 1H), 4.41 (d, *J* = 5.9 Hz, 2H), 3.55–3.47 (m, 1H), 2.34 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.24 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.10, 163.04, 138.53, 137.38, 128.73, 128.65, 128.45, 124.95, 49.75, 46.66, 43.39, 21.47, 20.96, 20.14. HRMS Calcd for C₁₆H₂₄N₂O₂ [M+Na]: 299.1735; Found: 299.1731.

Yield: 87% (4.87g). 1H NMR (400 MHz, CDCl₃) δ 7.36–7.32 (m, 1H), 7.31–7.26 (m, 2H), 7.13–7.09 (m, 1H), 7.07–7.02 (m, 1H), 4.83–4.76 (m, 1H), 4.52 (d, *J* = 6.2 Hz, 2H), 3.55–3.49 (m, *J* = 13.6, 6.8 Hz, 1H), 1.42 (d, *J* = 6.8 Hz, 6H), 1.23 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.19, 162.76, 135.93, 131.42, 128.36, 127.87,126.18,125.98, 49.77, 46.78, 39.93, 20.97, 20.16. HRMS Calcd for C₁₅H₂₁FN₂O₂ [M+Na]: 303.1485; Found: 303.1485.

Yield: 87% (5.05g). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (br, 1H), 7.08–6.95 (m, 3H), 4.79–4.68 (m, 1H), 4.33 (d, J = 5.7 Hz, 2H), 3.50–3.43 (m, 1H), 2.20 (s, 6H), 1.36 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 163.04, 137.05, 136.02, 134.87, 130.02, 129.26, 125.36, 49.70, 46.66, 43.21, 20.98, 20.16, 19.82, 19.51. HRMS Calcd for C₁₇H₂₆N₂O₂ [M+Na]: 313.1892; Found: 313.1877.

Yield: 92% (5.45g). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (br, 1H), 7.40–7.31 (m, 2H), 7.25–7.18 (m, 2H), 4.73–4.63 (m, 1H), 4.54 (d, *J* = 6.2 Hz, 2H), 3.53–3.44 (m, 1H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.20,162.95. 134.95, 133.68, 129.89, 129.62, 129.08, 127.16, 49.76, 46.61, 41.22, 20.90, 20.11. HRMS Calcd for C₁₅H₂₁ClN₂O₂ [M+Na]: 319.1189; Found: 319.1188.

Yield: 85% (5.78g). 1H NMR (400 MHz, CDCl₃) δ 7.56–7.54 (m, 1H), 7.40–7.37 (m, 1H), 7.35 (br, 1H), 7.31–7.24 (m, 1H), 7.17–7.13 (m, 1H), 4.79–4.73 (m, 1H), 4.54 (d, *J* = 6.3 Hz, 2H), 3.55–3.48 (m, 1H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.22 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.14, 162.82, 136.64, 133.00, 130.15, 129.44, 127.89, 123.85, 49.75, 46.75, 43.70, 20.99, 20.18. HRMS Calcd for C₁₅H₂₁BrN₂O₂ [M+Na]: 363.0684; Found: 363.0677.

Yield: 82% (5.58g). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (br, 1H), 7.42–7.39 (m, 2H), 7.25–7.16 (m, 2H), 4.82–4.75 (m, 1H), 4.42 (d, *J* = 6.1 Hz, 2H), 3.56–3.49 (m, 1H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.24 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 163.01, 140.01, 130.81, 130.77, 130.38, 126.46, 122.81, 49.84, 46.72, 42.70, 20.96, 20.15. HRMS Calcd for C₁₅H₂₁BrN₂O₂ [M+Na]: 363.0684; Found: 363.0677.

Yield: 86% (5.09g). ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.27 (m, 2H), 7.27–7.24 (m, 2H), 7.20–7.16 (m, 1H), 4.87–4.80 (m, 1H), 4.44 (d, *J* = 6.1 Hz, 2H), 3.57–3.50 (m, 1H), 1.43 (d, *J* = 6.8 Hz, 6H), 1.25 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.22, 162.89, 139.69, 134.67, 130.12, 127.92, 127.88, 125.97, 49.82, 46.78, 42.80, 20.98, 20.16. HRMS Calcd for C₁₅H₂₁ClN₂O₂ [M+Na]: 319.1189; Found: 319.1173.

Yield: 85% (6.60g). 1H NMR (400 MHz, CDCl₃) δ 7.66 (m, 2H), 7.61 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 6.6 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 4.74–4.67 (m, 1H), 4.39 (d, J = 6.1 Hz, 2H), 3.56–3.49 (m, 1H), 1.41 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.24, 163.07, 140.06, 136.70, 130.52, 127.12, 94.63, 49.86, 46.68, 42.55, 20.95, 20.14. HRMS Calcd for C₁₅H₂₁IN₂O₂ [M+Na]: 411.0545; Found: 411.0551.

Yield: 84% (3.83g). 1H NMR (400 MHz, CDCl₃) δ 6.85 (br, 1H), 4.75-4.68 (m, 1H), 3.89-3.81 (m, 1H), 3.52-3.45 (m, 1H), 1.53 – 1.46 (m, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H), 1.15 (d, *J* = 6.6 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.51, 162.77, 49.71, 46.85,

46.57, 29.49, 20.22, 20.18, 20.13, 10.45. HRMS Calcd for $C_{12}H_{24}N_2O_2$ [M+Na]: 251.1735; Found: 251.1740.

Yield: 87% (4.21g). ¹H NMR (400 MHz, CDCl₃) δ 6.60 (br, 1H), 4.74-4.64 (m, 1H), 3.52-3.42 (m, 1H), 1.76-1.70 (m, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.31 (s, 6H), 1.21 (d, *J* = 6.7 Hz, 6H), 0.85 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.82, 162.76, 54.35, 49.68, 46.45, 32.63, 26.14, 20.91, 20.15, 8.39. HRMS Calcd for C₁₃H₂₆N₂O₂ [M+Na]: 265.1892; Found: 265.1891.

Yield: 74% (5.29g). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, J = 8.8 Hz, 1H), 4.71-4.65 (m, 1H), 3.87 – 3.80 (m, 1H), 3.66-3.59 (m, 2H), 3.55-3.45 (m, 1H), 1.68 – 1.61 (m, 1H), 1.55-1.48 (m, 1H), 1.43-1.41 (m, 6H), 1.22 (t, J = 6.2 Hz, 6H), 0.93 (t, J = 7.5 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.38, 163.17, 64.06, 52.30, 49.75, 46.57, 26.00, 24.29, 21.02, 20.22, 18.42, 10.58, - 5.32, -5.35. HRMS Calcd for C₁₈H₃₈IN₂O₃Si [M+Na]: 381.2549; Found: 381.2555.

Yield: 68% (3.69g). 1H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 7.2 Hz, 1H), 4.65-4.58 (m, 1H), 4.51-4.46 (m, 1H), 3.73 (s, 3H), 3.54–3.45 (m, 1H), 1.94–1.88 (m, 1H), 1.82–1.71 (m, 1H), 1.40 (d, J = 6.8 Hz, 6H), 1.20 (dd, J = 6.6, 2.6 Hz, 6H), 0.93 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.38, 163.67, 163.20, 52.03, 49.80, 46.50, 41.50, 39.36, 20.89, 20.12, 14.93. HRMS Calcd for C₁₃H₂₄N₂O₄ [M+Na]: 295.1634; Found: 295.1638.

Yield: 71% (4.06g). 1H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 7.8 Hz, 1H), 4.73–4.63 (m, 1H), 4.13-4.10 (m, 2H), 4.07–4.01 (m, 1H), 3.54-3.47 (m, 1H), 2.05 (s, 3H), 1.64–1.51 (m, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.21 (dd, J = 6.6, 3.8 Hz, 6H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.02, 163.21, 163.09, 65.39, 49.83, 46.66, 24.47, 20.96, 20.94(-CH₃, -CH₃), 20.91, 20.23, 20.16, 10.43. HRMS Calcd for C₁₄H₂₆N₂O₄ [M+H]: 287.1971; Found: 287.1969.

Yield: 89% (4.31g). 1H NMR (400 MHz, CDCl₃) δ 6.88 (br, 1H), 4.64–4.57 (m, 1H), 3.75–3.66 (m, 1H), 3.51–3.41 (m, 1H), 1.59–1.52 (m, 2H), 1.44–1.37 (m, 8H), 1.19 (d, *J* = 6.7 Hz, 6H), 0.88 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.90, 163.48, 52.35, 49.82, 46.42, 27.39, 20.89, 20.18, 10.40. HRMS Calcd for C₁₃H₂₆N₂O₂ [M+H]: 243.2073; Found: 243.2069.

Yield: 83% (80.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.30 (br, 1H), 6.85 (s, 1H), 6.77 (s, *J* = 1.5 Hz, 2H), 4.76–4.68 (m,1H), 4.42 (d, *J* = 6.1 Hz, 2H), 3.80 (s, 3H), 3.74 (s, 3H), 3.55–3.34 (m, 1H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.19, 162.79, 158.38, 138.48, 128.70, 123.96, 123.01, 108.16, 55.67, 49.66, 46.60, 35.13, 21.01, 20.20, 19.68. HRMS Calcd for C₁₇H₂₆N₂O₄ [M+Na]: 345.1790; Found: 345.1789.

Yield: 87% (84.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 8.4 Hz, 1H), 7.11 (br, 1H), 6.53 (d, J = 8.4 Hz, 2H), 4.82–4.72 (m, 1H), 4.56 (d, J = 5.7 Hz, 2H), 3.82 (s, 6H), 3.52–3.42 (m, 1H), 1.38 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.40, 162.69, 158.72, 129.29, 113.26, 103.80, 55.94, 49.60, 46.49, 32.20, 20.97, 20.17. HRMS Calcd for C₁₇H₂₆N₂O₄ [M+H]: 323.1971; Found: 323.1979.

Yield: 66% (64.9 mg).¹H NMR (400 MHz, CDCl₃) δ 7.18 (br, 1H), 6.48–6.40 (m, 2H), 4.85–4.77 (m, 1H), 4.47 (d, J = 5.9 Hz, 2H), 3.84 (s, 3H), 3.53–3.44 (m, 1H), 1.39 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.58, 164.42, 162.89, 162.83, 162.74, 162.60, 162.12, 161.96, 160.44, 160.28, 160.07, 159.97, 159.84, 109.28, 109.24, 109.09, 109.05, 96.43, 96.42, 95.48, 95.22, 56.40, 49.66, 46.73, 31.44, 31.39, 21.01, 20.19. HRMS Calcd for C₁₆H₂₂F₂N₂O₃ [M+Na]: 351.1496; Found: 351.1497.

Yield: 86% (83.2 mg).¹H NMR (400 MHz, CDCl₃) δ 6.99 (br, 1H), 6.10 (s, 2H), 4.82–4.72 (m, 1H), 4.47 (d, J = 5.6 Hz, 2H), 3.81 (d, J = 3.8 Hz, 9H), 3.52–3.42 (m, 1H), 1.39 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.52, 162.72, 161.17, 159.46, 105.96, 90.56, 55.91, 55.50, 49.64, 46.50, 32.07, 21.00, 20.21. HRMS Calcd for C₁₈H₂₈N₂O₅ [M+H]: 353.2076; Found: 353.2079.

Yield: 82% (79.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 8.4 Hz, 1H), 7.11 (br, 1H), 6.53 (d, *J* = 8.4 Hz, 2H), 4.82–4.72 (m, 1H), 4.56 (d, *J* = 5.7 Hz, 2H), 3.82 (s, 6H), 3.52–3.42 (m, 1H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.40, 162.69, 158.72, 129.29, 113.26, 103.80, 55.94, 49.60, 46.49, 32.20, 20.97, 20.17. HRMS Calcd for C₁₇H₂₆N₂O₄ [M+H]: 323.1971; Found: 323.1979.

Yield: 98% (90.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.9 Hz, 1H), 7.09 (br, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 4.84–4.74 (m,1H), 4.53 (d, *J* = 5.8 Hz, 2H), 3.84 (s, 3H), 3.53–3.44 (m,1H), 2.41 (s, 3H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.22 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.19, 162.79, 158.38, 138.48, 128.70, 123.96, 123.01, 108.16, 55.67, 49.66, 46.60, 35.13, 21.01, 20.20, 19.68. HRMS Calcd for C₁₇H₂₆N₂O₃ [M+H]: 307.2022; Found: 307.2024.

Yield: 81% (74.4 mg).¹H NMR (400 MHz, CDCl₃) δ 7.30 (br, 1H), 7.09–7.03 (m, 2H), 6.75 (d, *J* = 8.2 Hz, 1H), 4.79–4.69 (m, 1H), 4.41 (d, *J* = 6.1 Hz, 2H), 3.81 (s, 3H), 3.54–3.43 (m, 1H), 2.25 (s, 3H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.19, 162.90, 155.60, 130.52, 129.86, 129.29, 125.18, 110.29, 55.51, 49.65, 46.54, 39.22, 20.92, 20.47, 20.14, 20.11. HRMS Calcd for C₁₇H₂₆N₂O₃ [M+H]: 307.2022; Found: 307.2027.

Yield: 68% (63.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.25–7.19 (m, 2H), 6.74–6.63 (m, 2H), 4.86–4.80 (m, 1H), 4.54 (d, *J* = 5.9 Hz, 2H), 3.87 (s, 3H), 3.53–3.46 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.93, 162.73, 162.60, 160.28, 159.30, 159.23, 129.68, 129.57,113.12, 112.94, 108.35, 108.12, 106.35, 106.33, 56.18, 49.63, 46.67, 31.77, 31.72, 21.01, 20.20. HRMS Calcd for C₁₆H₂₃FN₂O₃ [M+Na]: 333.1590; Found: 333.1582.

Yield: 81% (84.7 mg).¹H NMR (400 MHz, CDCl₃) δ 7.24 (br, 1H), 7.02 (s, 1H), 6.66 (s, 1H), 4.82–4.72 (m, 1H), 4.39 (d, *J* = 6.1 Hz, 2H), 3.82 (s, 3H), 3.52–3.43 (m, 1H), 2.24 (s, 3H), 2.17 (s, 3H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.16, 162.82, 155.79, 137.34, 131.25, 128.36, 122.60, 112.18, 55.60, 49.66, 46.62, 39.06, 21.00, 20.20, 20.16, 18.79. HRMS Calcd for C₁₈H₂₈N₂O₃ [M+H]: 321.2178; Found: 321.2178.

Yield: 81% (84.7 mg).¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 8.2 Hz, 1H), 7.11 (br, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 4.82–4.72 (m, 1H), 4.66 (d, J = 5.8 Hz, 2H), 3.84 (s, 3H), 3.53–3.42 (m, 1H), 1.38 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.10, 162.64, 159.12, 135.39, 129.64, 129.61, 123.60, 121.90, 109.20, 56.10, 49.67, 46.58, 35.60, 20.96, 20.15. HRMS Calcd for C₁₆H₂₃ClN₂O₃ [M+H]: 327.1475; Found: 327.1487.

Yield: 80% (88.8 mg).¹H NMR (400 MHz, CDCl₃) δ 7.15–7.08 (m, 3H), 6.81 (d, J = 7.9 Hz, 1H), 4.81–4.71 (m, 1H), 4.67 (d, J = 5.7 Hz, 2H), 3.83 (s, 3H), 3.52–3.41 (m, 1H), 1.37 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.11, 162.59, 159.07, 130.06, 125.09, 109.81 , 56.08, 49.66, 46.54, 38.33, 20.96, 20.14. HRMS Calcd for C₁₆H₂₃BrN₂O₃ [M+H]: 371.0970; Found: 371.0970.

Yield: 59% (64.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.34 (m, 2H), 7.32 (br, 1H), 6.74 (d, J = 8.5 Hz, 1H), 4.81–4.72 (m, 1H), 4.41 (d, J = 6.3 Hz, 2H), 3.83 (s, 3H), 3.56–3.45 (m, 1H), 1.41 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.95, 162.88, 156.81, 132.32,

131.73, 127.82, 112.85, 112.14, 55.80, 49.74, 46.74, 38.73, 21.01, 20.21. HRMS Calcd for $C_{16}H_{23}BrN_2O_3$ [M+H]: 371.0970; Found: 371.0975.

Yield: 73% (71.4 mg).¹H NMR (400 MHz, CDCl₃) δ 7.32 (br, 1H), 7.24–7.19 (m, 2H), 6.78 (d, J = 8.6 Hz, 1H), 4.82–4.72 (m, 1H), 4.41 (d, J = 6.3 Hz, 2H), 3.84 (s, 3H), 3.56–3.46 (m, 1H), 1.41 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.98, 162.90, 156.29, 129.48, 128.69, 127.41, 125.57, 111.61, 55.84, 49.72, 46.72, 38.75, 21.00, 20.20.HRMS Calcd for C₁₆H₂₃ClN₂O₃ [M+H]: 327.1475; Found: 327.1478.

Yield: 85% (85.6 mg).¹H NMR (400 MHz, CDCl₃) δ 7.31 (br, 1H), 6.84 (d, J = 2.5 Hz, 1H), 6.76–6.75 (m, 2H), 4.77–4.69(m, 1H), 4.43 (d, J = 6.1 Hz, 2H), 4.03–3.98 (m, 2H), 3.73 (s, 3H), 3.54–3.44 (m, 1H), 1.42–1.38 (m, 9H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.11, 162.98, 153.51, 151.20, 126.71, 115.66, 113.46, 112.47, 64.29, 55.85, 49.67, 46.60, 39.37, 20.97, 20.15, 15.11. HRMS Calcd for C₁₈H₂₈N₂O₄ [M+H]: 337.2127; Found: 337.2133.

Yield: 69% (72.5 mg).¹H NMR (400 MHz, CDCl₃) δ 7.28 (br, 1H), 6.85 (d, J = 2.5 Hz, 1H), 6.78–6.73 (m, 2H), 4.78–4.68 (m, 1H), 4.44 (d, J = 6.1 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 3.74 (s, 3H), 3.54–3.44 (m,1H), 1.85–1.76 (m,2H), 1.40 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.09, 163.00, 153.50, 151.32, 126.66, 115.65, 113.44, 112.35, 70.22, 55.85, 49.64, 46.58, 39.34, 22.80, 20.96, 20.13, 10.77. HRMS Calcd for C₁₉H₃₀N₂O₄ [M+H]: 351.2284; Found: 351.2282.

Yield: 76% (83.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.28 (br,1H), 6.84 (s, 1H), 6.78–6.73(m, 2H), 4.76–4.68 (m, 1H), 4.43 (d, J = 6.0 Hz, 2H), 3.93 (t, J = 6.4 Hz, 2H), 3.73 (s, 3H), 3.54–3.44 (m, 1H), 1.79–1.72 (m,2H), 1.51–1.45 (m, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.6 Hz, 6H), 0.96 (t, J = 6.6 Hz, 6H), 0.96 (t,

7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.10, 163.02, 153.47, 151.33, 126.63, 115.63, 113.43, 112.30, 68.40, 55.87, 49.68, 46.60, 39.35, 31.53, 20.97, 20.15, 19.48, 13.99. HRMS Calcd for C₂₀H₃₂N₂O₄ [M+H]: 365.2440; Found: 365.2444.

Yield: 58% (73.1 mg).¹H NMR (400 MHz, CDCl₃) δ 7.29 (br, 1H), 6.85 (d, J = 2.4 Hz, 1H), 6.78–6.73 (m, 2H), 4.81–4.71(m,1H), 4.44 (d, J = 6.1 Hz, 2H), 3.93 (t, J = 6.5 Hz, 2H), 3.74 (s, 3H), 3.54–3.44 (m, 1H), 1.81–1.74 (m, 2H), 1.51–1.43 (m, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.33–1.27(m, 8H), 1.21 (d, J = 6.7 Hz, 6H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.01, 162.97, 153.47, 151.36, 126.66, 115.62, 113.44, 112.32, 68.76, 55.88, 49.64, 46.62, 39.36, 31.96, 29.51, 29.36, 26.27, 22.78, 20.99, 20.17, 14.23. HRMS Calcd for C₂₄H₄₀N₂O₄ [M+H]: 421.3066; Found: 421.3066.

Yield: 50% (62.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.33 (br, 1H), 6.88 (s, 1H), 6.76 (d, J = 1.5 Hz, 2H), 4.67–4.58 (m, 1H), 4.47 (d, J = 6.2 Hz, 2H), 4.29 (t, J = 5.8 Hz, 2H), 3.75 (s, 3H), 3.67 (t, J = 5.8 Hz, 2H), 3.54–3.44 (m, 1H), 1.40 (d, J = 6.7 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.29, 163.25, 154.24, 150.32, 127.35, 115.99, 113.62, 112.84, 68.54, 55.89, 49.75, 46.55, 39.32, 30.00, 20.99, 20.18. HRMS Calcd for C₁₈H₂₇BrN₂O₄ [M+H]: 415.1232; Found: 415.1241.

Yield: 65% (71.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 6.85 (s, 1H), 6.76 (d, J = 2.1 Hz, 2H), 4.79–4.69(m, 1H), 4.46 (d, J = 6.0 Hz, 2H), 3.75 (s, 3H), 3.71 (d, J = 6.4 Hz, 2H), 3.53–3.44 (m, 1H), 2.13–2.06 (m,1H), 1.40 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H), 1.03 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.07, 163.04, 153.47, 151.36, 126.54, 115.64, 113.42, 112.19, 75.02, 55.88, 49.66, 46.59, 39.34, 28.48, 20.96, 20.13, 19.48. HRMS Calcd for C₂₀H₃₂N₂O₄ [M+H]: 365.2440; Found: 365.2442.

Yield: 60% (63.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.28(br, 1H), 6.84–6.75(m, 3H), 4.74–4.71(m, 1H), 4.48–4.41(m,1H), 4.42 (d, *J* = 6.1 Hz, 2H), 3.74 (s, 3H), 3.54–3.44(m, 1H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.32 (d, *J* = 6.1 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.12, 163.02, 153.53, 150.02, 127.77, 115.48, 114.56, 113.68, 71.12, 55.84, 49.66, 46.59, 39.47, 22.34, 20.98, 20.15. HRMS Calcd for C₁₉H₃₀N₂O₄ [M+H]: 351.2284; Found: 351.2284.

Yield: 54% (61.6 mg).¹H NMR (400 MHz, CDCl₃) δ 7.23(br, 1H), 6.85 (s, 1H), 6.75 (s, 2H), 4.77–4.68 (m, 1H), 4.47 (d, *J* = 6.0 Hz, 2H), 3.74 (s, 3H), 3.57 (s, 2H), 3.47–3.43 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H), 1.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.10, 163.02, 153.46, 151.47, 126.45, 115.58, 113.37, 112.04, 78.47, 55.88, 49.64, 46.56, 39.31, 32.05, 26.86, 20.95, 20.10. HRMS Calcd for C₂₁H₃₄N₂O₄ [M+H]: 379.2597; Found: 379.2607.

Yield: 58% (60.9 mg).¹H NMR (400 MHz, CDCl₃) δ 7.22 (br, 1H), 6.96 (d, J = 8.8 Hz, 1H), 6.88 (d, J = 3.0 Hz, 1H), 6.83–6.80 (m, 1H), 4.69–4.59 (m, 1H), 4.34 (d, J = 6.1 Hz, 2H), 3.76 (s, 3H), 3.54–3.43 (m, 1H), 2.30 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.05, 163.17, 157.64, 142.38, 130.46, 123.39, 114.92, 114.19, 55.70, 49.78, 46.59, 38.47, 20.96, 20.91, 20.11. HRMS Calcd for C₁₈H₂₆N₂O₅ [M+H]: 351.1920; Found: 351.1927.

Yield: 96% (100.8 mg).¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.3 Hz, 1H), 6.99 (br, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 4.64–4.54 (m, 1H), 4.46 (d, J = 6.1 Hz, 2H), 3.87 (s, 3H), 3.52–3.42 (m, 1H), 2.36 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.89, 163.42, 162.87, 159.04, 149.80, 129.32, 118.41, 115.05, 108.24, 55.96, 49.66, 46.42, 32.22, 21.05, 20.88, 20.13. HRMS Calcd for C₁₈H₂₆N₂O₅ [M+H]: 351.1920; Found: 351.1929.

Yield: 65% (65.1 mg).¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.91–6.86 (m, 2H), 4.68–4.59 (m, 1H), 4.41 (d, J = 5.6 Hz, 2H), 3.52–3.42 (m, 1H), 2.38 (s, 3H), 2.33 (s, 3H), 1.38 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.10,

163.03, 162.99, 149.92, 139.37, 128.95, 128.53, 127.61, 120.20, 49.76, 46.57, 35.11, 21.09, 20.94, 20.13, 19.44. HRMS Calcd for $C_{18}H_{26}N_2O_4$ [M+H]: 335.1971; Found: 335.1972.

Yield: 72% (86.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 1H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.05–7.03 (m, 1H), 6.98 (br, 1H), 4.64–4.57 (m, 3H), 3.53–3.42 (m, 1H), 2.37 (s, 3H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.74, 163.00, 162.85, 150.25, 130.80, 130.14, 129.84, 125.88, 122.50, 49.76, 46.60, 37.74, 21.11, 20.93, 20.16. HRMS Calcd for C₁₇H₂₃BrN₂O₄ [M+H]: 399.0919; Found: 399.0923.

Yield: 72% (75.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 2H), 6.82 (s, 1H), 4.70–4.64 (m, 1H), 4.31 (d, *J* = 6.0 Hz, 2H), 3.51–3.43 (m, 1H), 2.30 (s, 3H), 2.21 (d, *J* = 3.1 Hz, 6H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.99, 163.04, 146.79, 137.86, 135.00, 131.12, 126.38, 123.44, 49.72, 46.56, 38.09, 21.00, 20.92, 20.11, 19.66, 19.24. HRMS Calcd for C₁₉H₂₈N₂O₄ [M+H]: 349.2127; Found: 349.2120.

Yield: 77% (81.8 mg).¹H NMR (400 MHz, CDCl₃) δ 7.68 (br, 1H), 7.34 (d, *J* = 2.3 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 6.99 (d, *J* = 8.6 Hz, 1H), 4.55–4.50 (m, 1H), 4.33 (d, *J* = 6.1 Hz, 2H), 3.50–3.44 (m, 1H), 2.30 (s, 3H), 1.37 (d, *J* = 6.7 Hz, 6H), 1.20 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.28, 163.31, 147.30, 131.62, 129.61, 128.79, 123.93, 49.90, 46.51, 37.74, 20.92, 20.81, 20.05. HRMS Calcd for C₁₇H₂₃ClN₂O₄[M+H]: 355.1425; Found: 355.1438.

Yield: 68% (91.0 mg).¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 2.1 Hz, 1H), 7.62–7.60 (m, 1H), 7.32 (br, 1H), 6.83 (d, J = 8.5 Hz, 1H), 4.70–4.59 (m, 1H), 4.34 (d, J = 6.2 Hz, 2H), 3.55–3.45 (m, 1H), 2.32 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.22, 163.15, 162.88, 148.88, 138.65, 138.07, 132.15, 124.74, 90.54, 49.85, 46.69, 37.77, 21.03, 20.96, 20.15. HRMS Calcd for C₁₇H₂₃IN₂O₄ [M+H]: 447.0781; Found: 447.0783.

Yield: 73% (73.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.16–7.09 (m, 3H), 6.94 (d, J = 8.2 Hz, 1H), 4.73–4.63 (m, 1H), 4.35 (d, J = 6.0 Hz, 2H), 3.54–3.44 (m, 1H), 2.31 (s, 6H), 1.40 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.88, 163.08, 163.00, 146.78, 136.35, 130.60, 129.74, 129.05, 122.36, 49.75, 46.62, 38.37, 21.03, 20.96, 20.93, 20.13. HRMS Calcd for C₁₈H₂₆N₂O₄ [M+H]: 335.1971; Found: 335.1978.

Yield: 54% (61.6 mg).¹H NMR (400 MHz, CDCl₃) δ 6.95–6.88 (m, 2H), 6.83 (br, 1H), 4.52–4.42 (m, 1H), 4.34 (d, *J* = 6.1 Hz, 2H), 3.79 (s, 3H), 3.49–3.40 (m, 1H), 2.32 (d, *J* = 9.4 Hz, 6H), 1.37 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.11, 168.97, 163.23, 162.99, 149.51, 142.63, 139.16, 124.19, 120.28, 111.87, 56.29, 49.73, 46.41, 32.64, 20.96, 20.82, 20.61, 20.08. HRMS Calcd for C₂₀H₂₈N₂O₇[M+H]: 409.1975; Found: 409.1986.

Yield: 68% (58.4 mg).¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, J = 8.5 Hz, 1H), 4.80–4.70 (m, 1H), 4.13–4.10 (m, 3H), 3.53–3.45 (m, 1H), 2.05 (s, 3H), 1.85–1.80 (m, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.19, 163.06, 162.63, 61.52, 49.73, 46.70, 42.97, 35.21, 21.08, 20.99, 20.94(-CH₃, -CH₃), 20.57, 20.20, 20.15(-CH₃, -CH₃). HRMS Calcd for C₁₄H₂₆N₂O₄ [M+H]: 287.1971; Found: 287.1980.

Yield: 76% (68.4 mg).¹H NMR (400 MHz, CDCl₃) δ 6.99 (br, 1H), 4.78–4.68 (m, 1H), 4.14 (t, *J* = 6.7 Hz, 2H), 3.52–3.44 (m, 1H), 2.10 (t, *J* = 6.7 Hz, 2H), 2.04 (s, 3H), 1.40 (d, *J* = 7.0 Hz, 12H), 1.23 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.18, 163.41, 162.75, 61.24, 53.18, 49.77, 46.70, 38.11, 26.96, 21.11, 20.99, 20.17. HRMS Calcd for C₁₅H₂₈N₂O₄ [M+H]: 301.2127; Found: 301.2131.

Yield: 66% (79.6 mg).¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, J = 9.1 Hz, 1H), 4.76–4.66 (m, 1H), 4.17–4.10 (m, 2H), 4.09–4.03 (m, 1H), 3.65 (t, J = 3.9 Hz, 2H), 3.55–3.45 (m, 1H), 2.04 (s, 3H), 2.00–1.92 (m, 1H), 1.89–1.82 (m, 1H), 1.42–1.39 (m, 6H), 1.23–1.20 (m, 6H), 0.88 (s, 9H), 0.05 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 171.16, 162.95, 162.88, 64.39, 61.56, 49.68, 48.14, 46.65, 30.39, 25.97, 21.07, 20.98, 20.18, 20.13(-CH₃, -CH₃), 18.38, -5.37. HRMS Calcd for C₂₀H₄₀N₂O₅Si [M+H]: 403.2628; Found: 403.2637.

Yield: 78% (77.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.8 Hz, 1H), 4.66–4.58 (m, 2H), 4.17–4.08 (m, 2H), 3.74 (s, 3H), 3.53–3.43 (m, 1H), 2.26–2.20 (m, 1H), 2.13–2.08 (m, 1H), 2.02 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.21–1.18 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.54, 170.87, 163.17, 162.45, 60.46, 52.68, 49.80, 46.63, 30.69, 20.89, 20.87, 20.10, 20.04. HRMS Calcd for C₁₅H₂₆N₂O₆ [M+H]: 331.1869; Found: 331.1860.

Yield: 71% (73.3 mg).¹H NMR (400 MHz, CDCl₃) δ 7.30–7.28 (m, 1H), 4.70–4.60 (m, 1H), 4.32–4.24 (m, 1H), 4.14–4.10 (m, 4H), 3.55–3.44 (m, 1H), 2.04 (d, *J* = 6.3 Hz, 6H), 1.92–1.86 (m, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.20 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.05, 170.85, 163.10, 162.89, 65.51, 60.97, 49.85, 46.64, 45.78, 30.28, 20.99, 20.89, 20.85, 20.14, 20.12(-CH₃, -CH₃). HRMS Calcd for C₁₆H₂₈N₂O₆ [M+H]: 345.2016; Found: 345.2011.

AcO AcO	N(<i>i</i> Pr) ₂
8f	Ŭ J

Yield: 84% (90.2 mg).¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 9.1 Hz, 1H), 4.84–4.71 (m, 1H), 4.17–4.09 (m, 5H), 3.54–3.47 (m, 1H), 2.06 (s, 6H), 1.96–1.90 (m, 2H), 1.86–1.79 (m, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.13, 162.92, 162.69, 61.30, 49.73, 46.79, 44.54, 33.64, 21.08, 20.99, 20.18. HRMS Calcd for C₁₇H₃₀N₂O₆ [M+H]: 359.2182; Found: 359.2183.

Yield: 68% (77.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 6.1 Hz, 1H), 6.84 (d, J = 9.0 Hz, 1H), 6.69 (d, J = 9.0 Hz, 1H), 4.59–4.53 (m, 1H), 4.45 (d, J = 5.9 Hz, 2H), 3.79 (s, 3H), 3.75 (s, 3H), 3.48-

3.41 (m, 1H), 2.34 (s, 3H), 1.37 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.23, 163.39, 162.82, 152.29, 145.77, 139.15, 119.96, 111.87, 107.82, 56.54, 56.04, 49.69, 46.45, 32.41, 20.91, 20.70, 20.16. HRMS Calcd for C₁₉H₂₈N₂O₆ [M+Na]: 403.1845; Found: 403.1851.

Yield: 88% (73.5mg).¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 8.4 Hz, 1H), 6.56 (d, J = 8.4 Hz, 2H), 4.53 (d, J = 5.3 Hz, 2H), 3.84 (s, 6H), 1.94 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.62, 158.75, 129.18, 114.16, 103.96, 55.99, 32.68, 23.59.

10. References

- [1] Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.
- [2] C. Wang.; C. P. Chen.; J. Y. Zhang.; Y. M. Yao and Y. S. Zhao. Angew. Chem. Int. Ed. 2014, 53, 9884.
- [3] Xu, G.; Gilbertson, S. R. Org. Lett. 2005, 7, 4605.
- [4] S.-Y. Zhang, G. He, W. A. Nack, Y. Zhao, Q. Li, G. Chen, J. Am. Chem. Soc. 2013,135, 2124.
- [5] S.-Y. Zhang, G. He, Y. Zhao, K.Wright, W. A. Nack, G. Chen, J. Am. Chem. Soc. 2012, 134, 7313.

NMR Spectra

S31

S34

٢

S52

S55

S62

S73

