Electronic Supporting Information

A highly sensitive and selective chemosensors for Cu²⁺ and Al³⁺ based on photoinduced electron transfer (PET) mechanism

Santosh Chemate, Nagaiyan Sekar*

Tinctorial Chemistry Group, Department of Dyestuff Technology, Institute of Chemical Technology (Formerly UDCT), N. P. Marg, Matunga, Mumbai - 400 019. Email: <u>n.sekar@ictmumbai.edu.in, nethi.sekar@gmail.com</u>

Table of contents:

1. Supplementary spectral data

Fig. S1 and Fig. S2	2
Fig. S3 and Fig. S4	3
Fig. S5	4
Fig. S6	5
Fig. S7	6
Fig. S8	7
Fig. S9	8
2. The characterization data of compound 7a and 7b	
2. The characterization data of compound 7a and 7b ¹ H NMR spectra of 7a	9
 2. The characterization data of compound 7a and 7b ¹H NMR spectra of 7a ¹³C NMR spectra of 7a 	9 10
 2. The characterization data of compound 7a and 7b ¹H NMR spectra of 7a ¹³C NMR spectra of 7a ¹H NMR spectra of 7b 	9 10 11
 2. The characterization data of compound 7a and 7b ¹H NMR spectra of 7a ¹³C NMR spectra of 7a ¹H NMR spectra of 7b ¹³C NMR spectra of 7b 	9 10 11 12
 2. The characterization data of compound 7a and 7b ¹H NMR spectra of 7a ¹³C NMR spectra of 7a ¹H NMR spectra of 7b ¹³C NMR spectra of 7b ¹³C NMR spectra of 7b ¹⁴H NMR spectra of 7b	9 10 11 12 13

Fig. S1. Absorption spectra of 7a (20 μ M) upon addition of Zn²⁺, Hg²⁺, Cd²⁺, Fe²⁺, Ba²⁺, Mn²⁺, Ni²⁺, Mg²⁺, Co²⁺, Cu²⁺, Cu²⁺, Ag⁺, Na⁺, K⁺ and Al³⁺ (5 equiv.) in CH₃CN.

Fig. S2. Absorption spectra of **7b** (20 μ M) upon addition of Zn²⁺, Hg²⁺, Cd²⁺, Fe²⁺, Ba²⁺, Mn²⁺, Ni²⁺, Mg²⁺, Co²⁺, Cu²⁺, Cu²⁺, Ag⁺, Na⁺, K⁺ and Al³⁺ (5 equiv.) in CH₃CN.

Fig. S3. Changes in the absorption spectra of probe **7a** (10 μ M) upon titration with 0 to 5.0 eq. of Cu²⁺ in CH₃CN. Inset: Absorbance at 365 nm as a function of Cu²⁺ concentration.

Fig. S4. Changes in the absorption spectra of probe **7b** (10 μ M) upon titration with 0 to 5.0 eq. of Al³⁺ in CH₃CN. Inset: Absorbance at 365 nm as a function of Al³⁺ concentration.

Fig. S5. Change in the fluorescence emission spectra of probe 7a (10 μ M) in CH₃CN/H₂O mixture upon titration with 5.0 eq. of Cu²⁺ at pH 9.0. Inset: The fluorescence intensity (F.I.) at 428 nm as a function of CH₃CN/H₂O mixture. λ ex = 365 nm (Slit widths: 2.5 nm/2.5 nm).

Fig. S6. Fluorescence response of free chemosensor **7a** (10.0 μ M) and after addition of Cu²⁺ (10.0 μ M) and **7b** (10.0 μ M) and after addition of Al³⁺ (10.0 μ M) in ACN-Phosphate buffer (10 mM, 9:1, v/v) as a function of different pH values. $\lambda ex = 365$ nm (Slit widths: 5 nm/5 nm).

Fig. S7. Limit of detection calculation for $7a-Cu^{2+}$ (a) and $7b-Al^{3+}$ (b) complexes from linear curve fit of emission values.

Fig. S8. Job's plot of the (a) $7a-Cu^{2+}$ and (b) $7b-Al^{3+}$ complexes in CH₃CN. The total concentration of L-metal was 1.0 x 10⁻⁴ M.

Fig. S9. Effect of the solvents on the fluorescence intensity of 7a (20 μ M) in the presence or absence of Cu²⁺ ions (5 equiv.). $\lambda ex = 365$ nm (Slit widths: 5 nm/5 nm).

Fig. S10. ¹H NMR spectra of 7a in DMSO-*d6*.

Fig. S11. ¹³C NMR spectra of 7a in DMSO-*d6*.

Fig. S12. ¹H NMR spectra of 7b in DMSO-*d6*.

Fig. S13. ¹³C NMR spectra of 7b in DMSO-*d6*.

Fig. S14. ¹H NMR spectra of 7a-Cu²⁺ (1:1) in DMSO-*d6*.

Fig. S15. ¹H NMR spectra of **7b-Al**³⁺ (1:1) in DMSO-*d6*.