Electronic Supplementary Information (ESI) for RSC Advances

Nanostructuring of GNS-V₂O₅/TiO₂ Core/Shell Photocatalyst for Water Remediation Applications under Sun-light Irradiation

R. Ajay Rakkesh, D. Durgalakshmi and S. Balakumar,

National Centre for Nanoscience and Nanotechnology,

University of Madras, Guindy campus, Chennai 600025, India.

Fax: 044-22352494/22353309; Tel: 044-22202749

*E-mail: <u>balasuga@yahoo.com</u>

1. Photocatalytic degradation of Methylene blue (MB) dye

Fig. S1. Photocatalytic degradation of MB using (a) V₂O₅, (b) V₂O₅/TiO₂, (c) GNS-V₂O₅/TiO₂, (d) Initial/residual concentration plot vs time and (e) degradation % of MB vs time.

The UV-Vis-absorption spectra (in Fig. S1 (a-c)) showed the MB degradation plot versus time with V_2O_5 , V_2O_5/TiO_2 , GNS- V_2O_5/TiO_2 nanoarchitecture photocatalysts, respectively. C/C₀ spectra indicate that the 2.5×10^{-5} M concentration of MB dye was decomposed of about 37% for pure V_2O_5 nanorods within 60 minutes, 83% for V_2O_5/TiO_2 core/shell nanorods within 40

minutes and 93% for GNS-V₂O₅/TiO₂ nanoarchitectures within 20 minutes (in Fig. S1 (d and e)) under direct sunlight irradiation. GNS-V₂O₅/TiO₂ nanoarchitectures exhibited higher photocatalytic efficiency than that of the pure and core/shell nanomaterials. This result demonstrates that GNS enhances the photocatalytic activity of V₂O₅/TiO₂ core/shell nanorods under direct sunlight irradiation.

2. Nitrogen adsorption-desorption isotherm

Fig. S2. Nitrogen adsorption – desorption isotherm of V_2O_5 , V_2O_5/TiO_2 and $GNS-V_2O_5/TiO_2$ nanoarchitecture photocatalysts

To explore the specific surface area of V₂O₅, V₂O₅/TiO₂ and GNS-V₂O₅/TiO₂ nanoarchitecture photocatalysts, nitrogen adsorption-desorption investigations have been carried out. The BET surface area characteristic of these nanoarchitecture are shown in Fig. S2. Both adsorption and desorption curves demonstrate type IV curve characteristics. The surface area of GNS-V₂O₅/TiO₂ is determined to be 103.5 m²/g by fitting the isotherms to the BET model. This value is significantly higher than that of V₂O₅/TiO₂ (74.8 m²/g) indicating that graphene nanosheets have a better structure suitability due to their two dimensional nanostructures. Therefore, there are higher contact area between GNS and V₂O₅/TiO₂ core/shell nanostructure. These results

evidently highlight that the V_2O_5/TiO_2 core/shell nanostructures are homogeneously anchored on GNS layers.

3. HRSTEM fringes of V₂O₅/TiO₂ core/shell nanostructures

Fig. S3. HRSTEM lattice fringes of V2O5/TiO2 core/shell nanostructures

The HRSTEM fringes pattern of V_2O_5/TiO_2 core/shell nanorods for better understanding. The V_2O_5/TiO_2 core-shell nanorod interface exhibits a strong alignment of the two different crystal lattices, resulting in the electrostatic interaction of TiO₂ on V_2O_5 nanorods to form a core/shell like structure. The measured lattice distance of 0.43 nm corresponds to the (001) plane of orthorhombic V_2O_5 nanorods. We have also observed the lattice fringes of 0.35 nm, which correspond to the interplanar distance of (101) plane of the anatase TiO₂ (in fig. S3 (a)). The SAED pattern reveals the diffraction rings are polycrystalline nature (in fig. S3 (b)).