Supporting Information **TD-DFT CALCULATIONS OF UV ABSOPTION BANDS** AND THEIR INTENSITIES IN THE SPECTRA OF SOME **TETRAHYDROQUINOLINES.**

María Victoria Cooke, a Ivana Malvacio, a Walter José Peláez, Ana Julieta Pepino, a María Rosa Mazzieri, b and Gustavo Alejandro Argüello^a

^aDepartamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina

^bDepartmento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina

waldemar31@fcq.unc.edu.ar

Table of Contents

Characterization for all compounds: S2-S9

Computational Data:

Table S1, Table S2 and Table S3: S10

Cartesian coordinates, energy, excitation energies, oscillator strength and HOMO-LUMO MOs with

planes from TD-DFT B3LyP/6-31+G(d,p): S11-S42

Reference: S43

1-(benzenesulfonyl)-1,2,3,4-tetrahydroquinoline

1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinoline

UV Spectra:

A	CN	Et	OH	DC	CM
λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)
204	32100	205	26600	-	-
219	14200	220	12800	-	-
237	7190	236	7070	238	6400
258	5790	258	6550	255	5200
271	4350	271	5020	276	3800

IR (v_{max}/cm^{-1}): 2916, 2840 (CH sp³), 1342 (SO_{2 as}), 1166 (SO_{2 sim}).

¹H NMR: 7.66 (tt,1H, 7.2 and 1.2 Hz, H15); 7.63 (d,1H, 8.0 Hz, H8); 7.59 (dd, 2H, 8.0 and 1.2 Hz, H11 and H12); 7.54 (td, 2H, 8.0 and 1.2 Hz, H13 and H14); 7.19 (ddd, 1H, 8.8, 6.0 and 2.8 Hz, H7); 7.08 (m,2H, H5 and H6); 3,76 (t, 2H, 6.0 Hz, H2); 2.40 (t,2H, 6.6 Hz,H4); 1.57 (quint, 2H, 6.6 Hz, H3).

¹³C NMR (assigned using HSQC): 139.4 (C10); 136.7 (C8a); 133.8 (C15); 131.05 (C4a); 129.9 (C13 and C14); 129.8 (C5); 127.2 (C11 and C12); 126.7 (C7); 125.3 (C6); 124.3 (C8); 46.7 (C2); 26.4 (C4); 21.9 (C3).

COSY: ${}^{3}J_{vec}$:H2-H3; H3-H4. ${}^{3}J_{ortho}$: H6-H7; H5-H6; H7-H8; H11/12-H13/14; H13/14-H15. ${}^{4}J_{meta}$: H5-H7; H6-H8; H11/12-H15.

HMBC (f₁ =400.16 MHz, f₂ =100.62 MHz) (C \rightarrow H): C4 \rightarrow H5, H3; C3 \rightarrow H2, H4; C2 \rightarrow H4, H3; C6 \rightarrow H8; C7 \rightarrow H5; C8 \rightarrow H6; C5 \rightarrow H7, H4; C4a \rightarrow H8, H6, H4, H3; C8a \rightarrow H7, H5, H2, H4; C10 \rightarrow H13, H14; C11 \rightarrow H15, H13, H14; C12 \rightarrow H15, H13, H14; C13 \rightarrow H11, H12; C14 \rightarrow H11, H12; C15 \rightarrow H11, H12.

1-(4-nitro-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline

1-(4-nitrophenylsulfonyl)-1,2,3,4-tetrahydroquinoline

UV Spectra:

A	CN	Et	OH	DC	CM
λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)
202	39000	204	41000	-	-
238	13240	237	15500	238	14500
253	11630	253	14700	255	13300
257	10910	256	13000	260	12400
294	4590	292	5060	294	4580
302	4540	298	4740	297	4800
305	4440	304	4620	304	4690
310	4300	311	4510	309	4460

IR (u_{max}/cm⁻¹): 2972, 2938 (CH sp³), 1527 (NO_{2 as}), 1347 (SO_{2 as}), 1306 (NO_{2 sim}), 1165 (SO_{2 sim}).

¹H NMR: 8.35 (d, 2H, 8.8 Hz, H13 and H14), 7.86 (d, 2H, 8.8 Hz, H11 and H12); 7.60 (d, 1H, 8.0 Hz, H8); 7.21 (td, 1H, 8.4 and 2.0 Hz, H7); 7.11 (m, 2H, H5 and H6); 3.82 (t, 2H, 6.0 Hz, H2); 2.44(t, 2H, 6.6 Hz, H4); 1.61(quint, 2H, 6.3 Hz, H3).

¹³C NMR (assigned using HSQC): 150.5 (C15); 144.6 (C10); 136.1 (C8a); 131.3 (C4a); 130.0 (C5); 128.8 (C11 and C12); 126.9 (C7); 125.8 (C6); 125.3 (C13 and C14); 124.3 (C8); 47.0 (C2); 26.3 (C4); 21.7 (C3).

COSY: ³J_{vec}:H2-H3; H3-H4. ³J_{ortho}: H6-H7; H5-H6; H7-H8; H11/12-H13/14. ⁴J_{meta}: H5-H7; H6-H8.

HMBC (f₁ =400.16 MHz, f₂ =100.62 MHz) (C \rightarrow H): C4 \rightarrow H5, H3; C3 \rightarrow H2, H4; C2 \rightarrow H4, H3; C6 \rightarrow H8; C7 \rightarrow H5; C8 \rightarrow H6; C5 \rightarrow H7, H4; C4a \rightarrow H8, H6, H4, H3; C8a \rightarrow H7, H5, H2, H4; C10 \rightarrow H11, H12, H13, H14; C11 \rightarrow H13, H14; C12 \rightarrow H13, H14; C13 \rightarrow H11, H12; C14 \rightarrow H11, H12; C15 \rightarrow H11, H12.

S5

1-(4-acetamide-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline

N-(4-(3,4-dihydroquinolin-1(2H)-ylsulfonyl)phenyl)acetamide

UV Spectra:

A	CN	Et	HC	DC	CM
λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)
205	44500	206	51600	-	-
240	13200	240	16500	241	15500
269	21780	270	27200	268	20200

IR (ν_{max}/cm^{-1}): 3346 (NH), 2944, 2839 (CH sp³), 1704 (CO amide), 1329 (SO_{2 as}), 1309 (CN amide), 1152 (SO_{2 sin}). ¹H NMR: 10.32 (s, 1H, H16); 7.69 (d, 2H, 8.8 Hz, H13 and H14); 7.60 (d, 1H, 8.0 Hz, H8); 7.52 (d, 2H, 8.8 Hz, H11 and H12); 7.17 (ddd, 1H, 8.8, 5.2 and 3.6 Hz, H7); 7.07 (m, 2H, H5 and H6); 3.74 (t, 2H, 5.8 Hz, H2); 2.42 (t, 2H, 6.6 Hz, H4); 2.06 (s, 3H, H18); 1.59 (quint, 2H, 6.2 Hz, H3).

¹³C NMR (assigned using HSQC): 169.6 (C17); 143.9 (C15); 136.9(C8a); 132.9 (C10); 131.0 (C4a); 129.7 (C5); 128.8 (C11 and C12); 126.6 (C7); 125.1 (C6); 124.2 (C8); 119.0 (C13 and C14); 46.6 (C2); 26.4 (C4); 24.6 (C18); 21.5 (C3). COSY: ³J_{vec}:H2-H3; H3-H4. ³J_{ortho}: H6-H7; H5-H6; H7-H8; H11/12-H13/14. ⁴J_{meta}: H5-H7; H6-H8.

HMBC (f₁ =400.16 MHz, f₂ =100.62 MHz) (C \rightarrow H): C4 \rightarrow H5, H3; C3 \rightarrow H2, H4; C2 \rightarrow H4, H3; C6 \rightarrow H8; C7 \rightarrow H5; C8 \rightarrow H6; C5 \rightarrow H7, H4; C15 \rightarrow H11, H12; C4a \rightarrow H8, H6, H4, H3; C8a \rightarrow H7, H5, H4, H2; C10 \rightarrow H11, H12, H13, H14; C11 \rightarrow H13, H14; C12 \rightarrow H13, H14; C13 \rightarrow H11, H12, H16; C14 \rightarrow H11, H12, H16; C15 \rightarrow H11, H12, H13, H14, H16; C17 \rightarrow H16, H18; C18 \rightarrow H16.

1-(4-amine-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline

4-(3,4-dihydroquinolin-1(2H)-ylsulfonyl)aniline

UV Spectra:

A	CN	Et	EtOH		
λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)	λ (nm)	ξ (M ⁻¹ cm ⁻¹)
199	40400	-	-	-	-
205	37400	204	40800	-	-
212	27500	211	34500	-	-
244	10460	244	11360	245	12600
271	20600	275	23100	268	20400

IR (u_{max}/cm⁻¹): 3465, 3369 (NH), 2944, 2880 (CH sp³), 1596 (NH), 1321 (SO_{2 as}), 1150 (SO_{2 sim}).

¹H NMR: 7.61 (d, 1H, 8.0 Hz, H8); 7.20 (d, 2H, 8.8 Hz, H11 and H12); 7.14 (ddd, 1H, 9.2, 5.6 and 3.6 Hz, H7); 7.03 (m, 2H, H5 and H6); 6.53 (d, 2H, 8.4 Hz, H13 and H14); 6.02 (s, 1H, H16); 3.67 (t, 2 H, 5.8 Hz, H2); 2.45 (t, 2H, 6.6 Hz, H4); 1.58 (quint, 2H, 6.2 Hz, H3).

¹³C NMR (assigned using HSQC): 153.6 (C15); 137.4 (C8a); 130.7 (C4a); 129.6 (C5); 129.2 (C11 and C12); 126.4 (C7); 124.7 (C6); 124.2 (C8 and C10); 113.2 (C13 and C14); 46.4 (C2); 26.0 (C4); 21.3 (C3).

COSY: ³J_{vec}:H2-H3; H3-H4. ⁴J_{meta}: H5-H7; H6-H8. J with NH₂: H13/14-H16; H11/12-H16.

HMBC (f₁ =400.16 MHz, f₂ =100.62 MHz) (C \rightarrow H): C4 \rightarrow H5, H3; C3 \rightarrow H2, H4; C2 \rightarrow H4, H3; C6 \rightarrow H8, H7; C7 \rightarrow H5; C8 \rightarrow H6, H7; C5 \rightarrow H7, H4; C4a \rightarrow H8, H6, H4, H3; C8a \rightarrow H7, H5, H4, H2; C10 \rightarrow H13, H14; C11 \rightarrow H13, H14; C12 \rightarrow H13, H14; C12 \rightarrow H13, H14; C13 \rightarrow H11, H12, H16; C14 \rightarrow H11, H12, H16; C15 \rightarrow H11, H12.

Theoretical study

Table S1. Total energy, zero-point vibration energy and relative energy of THQ and BSTHQs derivatives conformers, calculated at B3LyP/6-31+G(d,p) theoretical level.

			B3LyP/6-31+G(d,p)						
Species		Conformation	Total Energy (in	∆H (in	∆G≠(in	Poblational analysis			
			Hartree)	kJmol ⁻¹)	kJmol ⁻¹)	(%)			
Comp.1	ТНQ		-404.37715243						
	in	-1184.01617774	0.000	-133.328	68.6				
Comp. 2	Inqu	out	-1184.01544242	1.930	-135.259	31.4			
Comp 2	THONO	in	-1388.52648087	0.000	-145.961	91.3			
Comp. 5	InQNO ₂	out	-1388.52425824	5.836	-151.796	8.7			
Comp 4	THOAA	in	-1392.05247788	0.000	-163.199	90.9			
Comp. 4	ПЦАС	out	-1392.05030682	5.700	-168.900	9.1			
Comp. 5	TUONU	in	-1239.38845782	0.000	-146.172	88.2			
	I HQNH ₂	out	-1239.38655597	4.993	-151.166	11.8			

				Occ	upied	MO				Vir	tual N	10		
			H-4	H-3	H-2	H-1	Н	L	L+1	L+2	L+3	L+4	L+5	L+6
Comp.1	1 THQ		-9.02	-8.88	-8.11	-6.74	-5.46	-0.41	-0.04	0.21	0.52	0.54	0.92	1.04
Comp 2	ТНОН-	In	-8.33	-7.66	-7.55	-7.00	-6.39	-1.50	-0.95	-0.64	-0.50	-0.07	0.35	0.40
Comp. 2	ACN	Out	-8.13	-7.63	-7.55	-6.98	-6.49	-1.50	-0.99	-0.69	-0.62	-0.01	0.28	0.39
Comp 2	ТНОН-	In	-8.33	-7.66	-7.55	-7.00	-6.39	-1.50	-0.95	-0.64	-0.50	-0.07	0.35	0.39
Comp. 2	EtOH	Out	-8.13	-7.63	-7.55	-6.98	-6.48	-1.50	-0.98	-0.68	-0.62	-0.01	0.28	0.39
Comp 2	THQH-	In	-8.32	-7.66	-7.56	-6.99	-6.37	-1.49	-0.95	-0.63	-0.49	-0.07	0.33	0.38
Comp. 2	DCM	Out	-8.11	-7.63	-7.55	-6.97	-6.47	-1.50	-0.98	-0.67	-0.61	-0.01	0.27	0.39
Comp 3	THQNO2-	In	-8.59	-8.11	-8.03	-7.00	-6.58	-3.40	-1.42	-1.25	-0.75	-0.61	-0.07	0.31
Comp. 5	ACN	Out	-8.49	-8.12	-7.98	-7.03	-6.56	-3.40	-1.43	-1.20	-0.78	-0.66	-0.07	0.25
Comp 4	THQAc-	In	-7.74	-7.69	-7.02	-6.90	-6.44	-1.67	-1.11	-0.73	-0.60	-0.14	0.02	0.20
Comp. 4	ACN	Out	-7.75	-7.69	-7.03	-6.90	-6.47	-1.67	-1.13	-0.72	-0.64	-0.13	-0.02	0.16
Comp 5	THQNH2-	In	-8.09	-7.51	-6.92	-6.56	-6.10	-1.15	-0.86	-0.65	-0.48	-0.03	0.27	0.38
Comp. 5	ACN	Out	-7.90	-7.53	-6.96	-6.54	-6.16	-1.15	-0.86	-0.64	-0.56	-0.04	0.22	0.40

Table S3. Lowest energy transition (in eV and nm) for compounds 2-5 in different solvents.

			DC	CM	A	CN	Et	ОН
			E (eV)	λ(nm)	E (eV)	λ(nm)	E (eV)	λ(nm)
		Exp.	4.49	276	4.58	271	4.58	271
Comp. 2	ТНQН	B3LYP	4.24	293	4.25	292	4.25	292
		CAM-B3LYP	5.10	243	5.12	242	5.11	242
		Exp.	4.22	294	4.23	293	4.25	292
Comp. 3	THQNO2	B3LYP	2.72	456	2.73	454	2.73	454
		CAM-B3LYP	4.17	297	4.17	297	4.17	297
		Exp.	4.63	268	4.61	269	4.59	270
Comp. 4	THQAc	B3LYP	4.16	298	4.17	297	4.17	297
		CAM-B3LYP	4.94	251	4.95	251	4.94	251
Comp. 5		Exp.	4.63	268	4.58	271	4.51	275
	THQNH2	B3LYP	4.38	283	4.38	283	4.38	283
	C ⁻	CAM-B3LYP	4.84	256	4.84	256	4.84	256

1,2,3,4-tetrahydroquinoline (B3LyP/6-31+G(d,p), energy= -404.37715243 a.u.)

Center	Atomic	Atomic	Coord	inates (Ang	stroms)
Number	Number	туре	X	ľ	Z
1	6	0	1.346377	-1.385954	-0.053781
2	6	0	0.115597	-0.697983	-0.022147
3	6	0	0.114398	0.717071	0.037106
4	6	0	1.342413	1.389614	0.046563
5	6	0	2.562776	0.707978	0.013601
6	6	0	2.554493	-0.691531	-0.034134
7	1	0	1.343082	-2.472717	-0.098743
8	1	0	1.336321	2.477266	0.084304
9	1	0	3.499613	1.256802	0.024620
10	1	0	3.489298	-1.245174	-0.057893
11	6	0	-1.197061	1.481449	0.109262
12	1	0	-1.370480	1.805692	1.145338
13	1	0	-1.125524	2.398297	-0.487423
14	6	0	-2.390471	0.634278	-0.355429
15	1	0	-3.332438	1.125563	-0.090720
16	1	0	-2.372965	0.522893	-1.446729
17	6	0	-2.331299	-0.753169	0.284599
18	1	0	-2.414805	-0.656438	1.380327
19	1	0	-3.162859	-1.377018	-0.056182
20	7	0	-1.082861	-1.409143	-0.102708
21	1	0	-1.012556	-2.381676	0.168224

Excited 35 36	State -> 38 -> 37	1:	Singlet-A -0.14664 0.68439	4.3271 eV	286.53 nm	f=0.0643	<s**2>=0.000</s**2>	
Copying	the exc	ited	state density f	or this state	as the 1-pa	rticle Rho	CI density.	
Excited 36 36	State -> 38 -> 39	2:	Singlet-A 0.57453 -0.38890	4.7138 eV	263.02 nm	f=0.0577	<s**2>=0.000</s**2>	
Excited 35 36 36 36	State -> 37 -> 38 -> 39 -> 41	3:	Singlet-A 0.13523 0.36407 0.54141 0.21291	5.0138 eV	247.29 nm	f=0.1245	<s**2>=0.000</s**2>	
Excited 36 36	State -> 40 -> 41	4:	Singlet-A 0.66885 -0.18921	5.2343 eV	236.87 nm	f=0.0056	<s**2>=0.000</s**2>	
Excited 35 36 36 36	State -> 37 -> 39 -> 40 -> 41	5:	Singlet-A -0.13147 -0.16511 0.19370 0.63366	5.3565 eV	231.47 nm	f=0.0321	<s**2>=0.000</s**2>	
Excited 35 36	State -> 38 -> 42	6:	Singlet-A -0.12087 0.67017	5.6162 eV	220.76 nm	f=0.0286	<s**2>=0.000</s**2>	
Excited 36 36	State -> 43 -> 45	7:	Singlet-A 0.67447 -0.16330	5.7891 eV	214.17 nm	f=0.0007	<s**2>=0.000</s**2>	
Excited	State	8:	Singlet-A	5.8562 eV	211.71 nm	f=0.0165	<s**2>=0.000</s**2>	

			45000 - 40000 - 35000 -			-0.25 0.20 Sc.	
35 -> 39 35 -> 40 35 -> 41 36 -> 49	19:	-0.11371 0.54232 -0.36834 0.16780	- 0.0	UV-VIS S	pectrum	1-0.0104	<u> </u>
Excited State 35 -> 40 36 -> 47	14:	Singlet-2 0.12730 0.67566	A 6.4	618 eV	191.87 nm	f=0.0059	<s**2>=0.000</s**2>
Excited State 36 -> 46 36 -> 48 36 -> 49	13:	Singlet-2 0.66420 -0.13221 -0.12432	A 6.3	810 eV	194.30 nm	f=0.0041	<s**2>=0.000</s**2>
Excited State 34 -> 37 35 -> 37 35 -> 38 35 -> 39 35 -> 40	12:	Singlet-2 -0.15676 -0.19679 0.11549 0.59579 0.16956	A 6.1	899 eV	200.30 nm	f=0.1767	<s**2>=0.000</s**2>
Excited State 35 -> 37 35 -> 38 35 -> 39 36 -> 38 36 -> 43 36 -> 45	11:	Singlet-A 0.40665 0.11690 0.17665 -0.11099 0.11444 0.44218	A 6.0	772 eV	204.01 nm	f=0.2372	<s**2>=0.000</s**2>
Excited State 34 -> 37 35 -> 37 35 -> 38 35 -> 39 36 -> 37	10:	Singlet-2 -0.15787 -0.19467 0.58773 -0.21430 0.10096	A 6.0	319 eV	205.55 nm	f=0.1947	<s**2>=0.000</s**2>
Excited State 35 -> 37 35 -> 38 36 -> 43 36 -> 44 36 -> 45	9:	Singlet-2 -0.36023 -0.12676 0.11234 -0.28445 0.47599	A 5.9	643 eV	207.88 nm	f=0.0792	<s**2>=0.000</s**2>
35 -> 37 35 -> 38 36 -> 42 36 -> 44 36 -> 45		-0.20931 -0.12287 -0.13503 0.62348 0.15082					

1-(benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *in* conformer (B3LyP/6-31+G(d,p), energy= -1184.01617774 a.u.)

Center	Atomic	Atomic	Coor	dinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.258821	-0.224100	-1.386238
2	6	0	-1.614776	-0.263643	-0.139132
3	6	0	-2.005898	0.625468	0.884165
4	6	0	-3.006852	1.565919	0.614018
5	6	0	-3.606129	1.647177	-0.644913
6	6	0	-3.233232	0.741658	-1.642336
7	1	0	-1.988605	-0.941542	-2.149538
8	1	0	-3.318637	2.239304	1.408389
9	1	0	-4.373022	2.391647	-0.836657
10	1	0	-3.713431	0.769412	-2.615974
11	6	0	-1.420556	0.445471	2.262613
12	1	0	-0.423649	0.902379	2.332971
13	1	0	-2.052289	0.938534	3.007226
14	6	0	-0.348569	-1.700447	1.536361
15	1	0	-0.419518	-2.790452	1.559407
16	1	0	0.671648	-1.426277	1.822718
17	6	0	-1.313301	-1.061361	2.532113
18	1	0	-0.935841	-1.265037	3.539408
19	1	0	-2.306641	-1.518052	2.456570

20	7	0	-0.603006	-1.251122	0.127050
21	16	0	0.784131	-1.311500	-0.853045
22	8	0	1.477935	-2.552438	-0.470606
23	8	0	0.367088	-1.113896	-2.249098
24	6	0	1.832451	0.074651	-0.394020
25	6	0	1.552182	1.340535	-0.922662
26	6	0	2.886055	-0.128333	0.503141
27	6	0	2.344975	2.422299	-0.535826
28	1	0	0.742288	1.475205	-1.630632
29	6	0	3.672140	0.964384	0.878335
30	1	0	3.096028	-1.121241	0.883868
31	6	0	3.400732	2.235583	0.363623
32	1	0	2.141076	3.407966	-0.941955
33	1	0	4.497496	0.818473	1.567932
34	1	0	4.015465	3.080643	0.657833

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 4.2508 eV 291.67 nm f=0.1759 <S**2>=0.000 72 -> 73 0.70331 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density.

Excited 71 72 72 72 72	State -> 73 -> 75 -> 74 -> 75 -> 76	2:	Singlet-A 0.35748 0.11573 0.50949 0.13114 0.23899	4.7620 eV	260.36 nm	£=0.0021	<s**2>=0.000</s**2>
Excited 70 71 72 72 72	State -> 73 -> 73 -> 74 -> 75 -> 76	3:	Singlet-A -0.13464 -0.39264 0.44864 -0.22082 -0.23667	4.8395 eV	256.19 nm	f=0.0009	<s**2>=0.000</s**2>
Excited 70 71 71 71 72 72	State -> 73 -> 73 -> 75 -> 76 -> 75 -> 76	4:	Singlet-A 0.14829 -0.41828 0.15531 -0.15286 0.45337 0.16850	5.0671 eV	244.68 nm	f=0.0492	<s**2>=0.000</s**2>
Excited 70 71 71 72 72	State -> 73 -> 73 -> 75 -> 75 -> 76	5:	Singlet-A -0.18931 -0.19225 0.22683 -0.34112 0.46487	5.2027 eV	238.31 nm	f=0.0474	<s**2>=0.000</s**2>
Excited 69 70 70 71 72 72	State -> 73 -> 74 -> 73 -> 74 -> 74 -> 74 -> 75	6:	Singlet-A 0.22429 0.31014 0.48007 -0.13383 0.10430 0.14928 -0.22511	5.2442 eV	236.42 nm	f=0.0455	<s**2>=0.000</s**2>
Excited 71 71	State -> 74 -> 75	7:	Singlet-A 0.68201 -0.12093	5.5279 eV	224.29 nm	f=0.0137	<s**2>=0.000</s**2>
Excited 69 72	State -> 73 -> 77	8:	Singlet-A 0.14673 0.66028	5.6317 eV	220.15 nm	f=0.0166	<s**2>=0.000</s**2>
Excited 69 70 70 71 72 72	State -> 73 -> 73 -> 74 -> 75 -> 75 -> 77	9:	Singlet-A 0.55618 -0.22884 -0.21472 -0.10365 0.11956 -0.18814	5.6652 eV	218.85 nm	f=0.0758	<s**2>=0.000</s**2>

Excited 68 69 71 71 72	State -> 76 -> 76 -> 75 -> 76 -> 76	10:	Singlet-A -0.13789 0.12765 0.52158 -0.14804 -0.31201	5.871	L eV	211.18 nm	f=0.1619	<s**2>=0.000</s**2>
Excited 68 70 71 71 72 72 72	State -> 73 -> 74 -> 75 -> 76 -> 78 -> 79 -> 80	11:	Singlet-A 0.16999 -0.11257 0.13452 0.28895 0.46846 0.30651 0.11833	6.0613	3 eV	204.55 nm	f=0.0498	<s**2>=0.000</s**2>
Excited 68 69 70 71 72	State -> 73 -> 74 -> 74 -> 76 -> 78	12:	Singlet-A 0.47354 -0.16279 -0.17880 0.23634 -0.32381	6.080	L eV	203.92 nm	f=0.0274	<s**2>=0.000</s**2>
Excited 70 71 72 72 72	State -> 75 -> 77 -> 78 -> 79 -> 80	13:	Singlet-A -0.13299 -0.10135 -0.24747 0.56457 -0.23299	6.139	3 eV	201.93 nm	f=0.0144	<s**2>=0.000</s**2>
Excited 68 69 70 70 70 70 70 72 72 72	State -> 73 -> 73 -> 74 -> 73 -> 74 -> 75 -> 76 -> 78 -> 79 -> 80	14:	Singlet-A -0.15599 0.15011 -0.21439 0.16702 0.28278 0.41215 -0.13284 -0.13404 0.19267 0.10751	6.1679	∂ eV	201.02 nm	f=0.0682	<s**2>=0.000</s**2>
Excited 68 71 71 72 72 72 72	State -> 73 -> 75 -> 77 -> 78 -> 79 -> 80	15:	Singlet-A 0.11132 -0.11861 0.15905 -0.16785 0.14392 0.57737	6.198	ōeV	200.02 nm	f=0.0154	<s**2>=0.000</s**2>
				20000 -	/-VIS S	Spectrum		
			Ebsilon	18000			0.16 0.14 0.12 0.12 0.08 0.08 0.06 0.04 0.00 0.06 0.04 0.04 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	
				0	7 <mark>IIIiil</mark>		E 0.02	

100

150 200 250 300 350 Excitation Energy (nm)

400

1-(benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *out* **conformer** (B3LyP/6-31+G(d,p), energy= -1184.01544242 a.u.)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-0.699032	1.727196	-0.337428
2	6	0	-1.365384	0.491515	-0.312586
3	6	0	-2.759613	0.438858	-0.116334
4	6	0	-3.444132	1.649286	0.077575
5	6	0	-2.780938	2.875484	0.088917
6	6	0	-1.398354	2.912904	-0.123268
7	1	0	0.366568	1.756505	-0.532746
8	1	0	-4.520896	1.618686	0.226850
9	1	0	-3.337289	3.793935	0.250175
10	1	0	-0.868326	3.860402	-0.138496
11	6	0	-3.542205	-0.861142	-0.174782
12	1	0	-4.236038	-0.908844	0.671858
13	1	0	-4.168529	-0.834658	-1.077065
14	6	0	-1.423094	-1.849831	-1.079057
15	1	0	-1.711517	-1.554562	-2.094112
16	1	0	-0.779804	-2.724788	-1.152901
17	6	0	-2.655199	-2.111700	-0.214375
18	1	0	-2.329174	-2.388778	0.795014
19	1	0	-3.217181	-2.961918	-0.615088
20	7	0	-0.620105	-0.721671	-0.541302
21	16	0	0.550057	-1.139652	0.639849
22	8	0	0.155544	-0.659652	1.978281
23	8	0	0.822756	-2.578754	0.456690
24	6	0	2.023713	-0.236164	0.147305
25	6	0	2.556573	-0.444943	-1.129083
26	6	0	2.643106	0.602380	1.075636
27	6	0	3.734505	0.214124	-1.480864
28	1	0	2.059901	-1.100705	-1.836231
29	6	0	3.824806	1.254090	0.709938
30	1	0	2.205970	0.744600	2.057174
31	6	0	4.367425	1.062003	-0.563366
32	1	0	4.157365	0.065659	-2.469303
33	1	0	4.315743	1.910969	1.420818
34	1	0	5.283589	1.572509	-0.843564

Excited 72	State -> 73	1:	Singlet-A 0.70023	4.2984 eV	288.44 nm	f=0.0233	<s**2>=0.000</s**2>
This sta	ate for	optimi:	zation and/or sec	ond-order c	orrection.		
Copying	the exc	ited st	tate density for	this state	as the 1-pa	rticle Rho	CI density.
Excited 71 71 72 72 72 72	State -> 75 -> 76 -> 74 -> 75 -> 76	2:	Singlet-A -0.16216 0.10363 0.61630 0.10982 0.21509	4.8106 eV	257.73 nm	f=0.0287	<s**2>=0.000</s**2>
Excited 71	State -> 73	3:	Singlet-A 0.65733	4.9051 eV	252.76 nm	f=0.0050	<s**2>=0.000</s**2>

72 -> 76		-0.20779				
Excited State 69 -> 73 70 -> 73 71 -> 73 71 -> 74 71 -> 75 72 -> 74 72 -> 75 72 -> 76	4:	Singlet-A -0.11375 -0.10773 0.23635 -0.19701 -0.20875 -0.26874 0.17828 0.45981	4.9957 eV	248.18 nm	f=0.0197	<s**2>=0.000</s**2>
Excited State 69 -> 73 70 -> 73 72 -> 75 72 -> 76	5:	Singlet-A -0.21648 -0.14982 0.56477 -0.21605	5.1407 eV	241.18 nm	f=0.1561	<s**2>=0.000</s**2>
Excited State 69 -> 73 69 -> 74 70 -> 73 70 -> 74 71 -> 74 72 -> 74 72 -> 75	6:	Singlet-A 0.30444 0.19875 0.38003 -0.22630 0.10775 -0.18816 0.30404	5.2407 eV	236.58 nm	f=0.0365	<s**2>=0.000</s**2>
Excited State 70 -> 73 71 -> 74 72 -> 76	7:	Singlet-A -0.17850 0.62972 0.18485	5.5082 eV	225.09 nm	f=0.1073	<s**2>=0.000</s**2>
Excited State 68 -> 73 69 -> 73 70 -> 73 70 -> 74 71 -> 74 71 -> 75	8:	Singlet-A -0.14840 0.45119 -0.41905 -0.18104 -0.16018 0.14876	5.5610 eV	222.95 nm	f=0.0974	<s**2>=0.000</s**2>
Excited State 68 -> 76 69 -> 74 70 -> 76 71 -> 75 72 -> 76 72 -> 77 72 -> 78	9:	Singlet-A -0.11183 0.13325 -0.10443 0.44075 0.23161 -0.38250 -0.12622	5.7651 eV	215.06 nm	f=0.0240	<s**2>=0.000</s**2>
Excited State 68 -> 73 68 -> 76 69 -> 74 70 -> 76 71 -> 76 71 -> 76 72 -> 76 72 -> 77	10:	Singlet-A -0.12271 -0.10201 0.11256 -0.10069 0.23261 -0.18609 0.16981 0.53601	5.8391 eV	212.33 nm	f=0.0297	<s**2>=0.000</s**2>
Excited State 68 -> 73 69 -> 75 70 -> 74 70 -> 75 71 -> 76	11:	Singlet-A -0.34781 -0.10031 0.26813 0.14169 0.46537	5.9476 eV	208.46 nm	f=0.1055	<s**2>=0.000</s**2>
Excited State 68 -> 73 69 -> 74 71 -> 75 71 -> 76 72 -> 77	12:	Singlet-A 0.51960 -0.11448 0.18254 0.32096 0.13342	5.9489 eV	208.41 nm	f=0.0859	<s**2>=0.000</s**2>
Excited State 69 -> 74 70 -> 74 70 -> 75 72 -> 77	13:	Singlet-A 0.10631 -0.10481 -0.11124 -0.12545	6.1203 eV	202.58 nm	f=0.0036	<s**2>=0.000</s**2>

Excited State 14: Singlet-A 70 -> 74 70 -> 75 -0.16261 70 -> 75 -0.16870 72 -> 78 72 -> 79 0.52824 Excited State 15: Singlet-A 6.1936 eV 200.18 nm f=0.0816 <s**2>=0.0 6.1936 eV 200.18 nm f=0.0816 <s**2>=0.0 6.2142 eV 199.52 nm f=0.1796 <s**2>=0.0 68 -> 73 0.11576 69 -> 73 0.11576 69 -> 73 0.27446 70 -> 74 0.35297 70 -> 75 0.25938 70 -> 76 0.15625 71 -> 76 -0.15227 71 -> 77 0.14164 72 -> 79 0.27796</s**2></s**2></s**2>	72 -> 72 -> 72 ->	> 78 > 79 > 80	0.55517 0.28829 0.12666				
Excited State 15: Singlet-A 6.2142 eV 199.52 nm f=0.1796 <s**2>=0.0 68 -> 73 0.11576 69 -> 73 0.17657 69 -> 75 0.27446 70 -> 74 0.35297 70 -> 75 0.25938 70 -> 76 0.15625 71 -> 76 -0.15227 71 -> 77 0.14164 72 -> 79 0.27796</s**2>	Excited St 70 -> 70 -> 72 -> 72 ->	cate : > 74 > 75 > 78 > 79	14: Singlet- -0.16261 -0.16870 -0.35118 0.52824	-A 6.1936 eV	200.18 nm	f=0.0816	<s**2>=0.000</s**2>
	Excited St 68 -> 69 -> 70 -> 70 -> 71 -> 71 -> 72 ->	cate : > 73 > 73 > 75 > 74 > 75 > 76 > 76 > 77 > 79	15: Singlet- 0.11576 0.17657 0.27446 0.35297 0.25938 0.15625 -0.15227 0.14164 0.27796	-A 6.2142 eV	199.52 nm	f=0.1796	<s**2>=0.000</s**2>

1-(4-nitro-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *in* **conformer** (B3LyP/6-31+G(d,p), energy= 1388.52648087 a.u.)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.965356	0.507532	-1.280748
2	6	0	-2.367813	0.245848	-0.034661
3	6	0	-2.300669	1.257054	0.946675
4	6	0	-2.799297	2.528340	0.619844
5	6	0	-3.348437	2.804074	-0.630464
6	6	0	-3.437434	1.782375	-1.582581
7	1	0	-3.052857	-0.292203	-2.003977
8	1	0	-2.750335	3.312231	1.371784
9	1	0	-3.719085	3.799699	-0.855073
10	1	0	-3.888574	1.970875	-2.552052
11	6	0	-1.792033	1.003655	2.354230
12	1	0	-1.110493	1.809054	2.649020
13	1	0	-2.651519	1.070591	3.035117
14	6	0	-1.864966	-1.421951	1.723142
15	1	0	-2.911085	-1.487282	2.042690
16	1	0	-1.425963	-2.412561	1.831432
17	6	0	-1.117112	-0.360497	2.528193
18	1	0	-0.074155	-0.319159	2.197690
19	1	0	-1.105070	-0.646221	3.585021

20 21 22 23 24 25 26 27 28 29 30 31		7 16 8 6 6 6 1 6 1 6		-1.900654 -0.726229 -0.550604 -1.126563 0.844981 1.044141 1.825528 2.248895 0.281533 3.034801 1.650763 3.221134	-	1.084368 1.815294 3.179615 1.612551 0.948989 0.268473 1.511160 0.944843 0.678288 0.840764 2.461507 0.377076	0.275262 -0.707881 -0.188645 -2.106623 -0.494539 -1.154929 0.327896 -0.980300 -1.806221 0.499119 0.817835 -0.155546	
32 33 34 35 36		1 1 7 8 8	0 0 0 0	2.435667 3.817081 4.497239 5.352029 4.648824	-	1.887494 -1.253242 1.087460 0.571688 2.164421	-1.478107 1.123017 0.023949 0.747948 -0.557497	
Excitatio	on ener	gies	and oscillator s	strengths:				
Excited 83	State -> 84	1:	Singlet-A 0.70592	2.7287	eV	454.37 nm	f=0.0640	<s**2>=0.000</s**2>
This sta Copying	te for the ex	opt: cited	imization and/or d state density :	second-orde for this sta	er c ate	as the 1-p	article Rhc	CI density.
Excited 82	State -> 84	2:	Singlet-A 0.70634	3.1577	eV	392.64 nm	f=0.0059	<s**2>=0.000</s**2>
Excited 77 78 78	State -> 84 -> 84 -> 86	3:	Singlet-A -0.14619 0.67471 -0.11421	3.7056	eV	334.59 nm	f=0.0000	<s**2>=0.000</s**2>
Excited 80 81	State -> 84 -> 84	4:	Singlet-A 0.53064 0.44609	3.9854	eV	311.09 nm	f=0.0245	<s**2>=0.000</s**2>
Excited 80 81	State -> 84 -> 84	5:	Singlet-A -0.44624 0.53741	4.1775	eV	296.79 nm	f=0.2299	<s**2>=0.000</s**2>
Excited 73 75 75	State -> 84 -> 84 -> 86	6:	Singlet-A 0.18162 0.66136 -0.10700	4.2957	eV	288.63 nm	f=0.0007	<s**2>=0.000</s**2>
Excited 83	State -> 85	7:	Singlet-A 0.69957	4.5471	eV	272.67 nm	f=0.0226	<s**2>=0.000</s**2>
Excited 79	State -> 84	8:	Singlet-A 0.69605	4.6749	eV	265.21 nm	f=0.1257	<s**2>=0.000</s**2>
Excited 83	State -> 86	9:	Singlet-A 0.69405	4.7429	eV	261.41 nm	f=0.0976	<s**2>=0.000</s**2>
Excited 77 82 82 82 82 83 83	State -> 84 -> 85 -> 86 -> 87 -> 88 -> 87 -> 88	10:	Singlet-A 0.13964 -0.34020 -0.24587 -0.11816 0.19488 0.43383 0.23505	4.8612	eV	255.05 nm	f=0.0016	<s**2>=0.000</s**2>
Excited 77 78	State -> 84 -> 84	11:	Singlet-A 0.66604 0.14404	4.8771	eV	254.22 nm	f=0.0026	<s**2>=0.000</s**2>
Excited 82 82 82 83	State -> 85 -> 86 -> 88 -> 87	12:	Singlet-A 0.60549 -0.22487 0.12122 0.23365	5.0736	eV	244.37 nm	f=0.0033	<s**2>=0.000</s**2>
Excited 76	State -> 84	13:	Singlet-A 0.68816	5.1673	eV	239.94 nm	f=0.0197	<s**2>=0.000</s**2>

Excited 82 82 83 83	State -> 86 -> 88 -> 87 -> 88	14:	Singlet-A 0.50485 0.14163 0.38480 -0.23059	5.2756 e	V 235.01 nr	n f=0.0516	<\$**2>=0.000
Excited 82 83 83	State -> 86 -> 87 -> 87 -> 88	15:	Singlet-A 0.34712 -0.26737 -0.13759 0.50976	5.3515 e	V 231.68 nr	n f=0.0370	<\$**2>=0.000
Excited 72 73 75	State -> 84 -> 84 -> 84	16:	Singlet-A 0.43021 0.52176 -0.18175	5.4457 e	V 227.67 nr	n f=0.0025	<s**2>=0.000</s**2>
Excited 72 73	State -> 84 -> 84	17:	Singlet-A 0.54618 -0.43311	5.4714 e	V 226.60 nr	n f=0.0003	<s**2>=0.000</s**2>
Excited 71	State -> 84	18:	Singlet-A 0.69200	5.7052 e	V 217.32 nr	n f=0.0035	<s**2>=0.000</s**2>
Excited 74 79 80 80 81 81	State -> 84 -> 85 -> 85 -> 86 -> 85 -> 86	19:	Singlet-A 0.27303 0.15895 -0.32463 -0.26695 0.34086 -0.28276	5.7501 e	V 215.62 nr	n f=0.0065	<s**2>=0.000</s**2>
Excited 82 83 83 83 83 83	State -> 87 -> 88 -> 87 -> 88 -> 89 -> 91	20:	Singlet-A -0.42568 0.12454 -0.10356 -0.21143 0.42937 0.11982	5.8129 e	V 213.29 nr	n f=0.0825	<s**2>=0.000</s**2>
Excited 74 80 80 81	State -> 84 -> 85 -> 86 -> 86	21:	Singlet-A 0.61612 0.13757 0.18906 0.16106	5.8197 e	V 213.04 nr	n f=0.0514	<s**2>=0.000</s**2>
Excited 70 82 83	State -> 84 -> 87 -> 89	22:	Singlet-A 0.58750 0.11342 0.29170	5.8768 e	V 210.97 nr	n f=0.0239	<s**2>=0.000</s**2>
Excited 70 82 83 83 83 83 83	State -> 84 -> 87 -> 88 -> 87 -> 88 -> 89 -> 90	23:	Singlet-A -0.33761 0.17579 -0.28773 0.12366 0.17694 0.39445 0.10584	5.8922 e	V 210.42 nr	n f=0.0756	<s**2>=0.000</s**2>
Excited 81 82 82 83 83	State -> 85 -> 86 -> 87 -> 88 -> 89 -> 91	24:	Singlet-A 0.14920 0.27613 0.32176 0.43520 0.16030 0.10023	5.9547 e	V 208.21 nr	n f=0.1758	<s**2>=0.000</s**2>
Excited 68 69 80 80 81 81 82 82	State -> 84 -> 84 -> 85 -> 86 -> 85 -> 86 -> 87 -> 88	25:	Singlet-A -0.13962 0.32556 0.10947 -0.10163 0.36171 0.30710 -0.13112 -0.15134	6.1300 e	V 202.26 nr	n f=0.1566	<s**2>=0.000</s**2>

83 -> 90 0.12074 83 -> 91 -0.14886

1-(4-nitro-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *out* **conformer** (B3LyP/6-31+G(d,p), energy= 1388.52425824 a.u.)

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z				
1	6	0	-1.279290	1.750257	-0.136266				
2	6	0	-2.099740	0.622036	-0.290793				
3	6	0	-3.501533	0.756410	-0.311303				
4	6	0	-4.040935	2.042189	-0.147025				
5	6	0	-3.231147	3.161148	0.041326				
6	6	0	-1.839889	3.012608	0.043726				
7	1	0	-0.201216	1.640054	-0.164134				
8	1	0	-5.122088	2.157012	-0.163610				
9	1	0	-3.679207	4.141200	0.174245				
10	1	0	-1.193093	3.875450	0.169418				
11	6	0	-4.429456	-0.417707	-0.568506				
12	1	0	-5.251733	-0.399175	0.155207				
13	1	0	-4.891246	-0.270276	-1.554359				
14	6	0	-2.346508	-1.663477	-1.197664				
15	1	0	-2.428974	-1.296805	-2.226688				
16	1	0	-1.822385	-2.617068	-1.219257				
17	6	0	-3.721565	-1.778071	-0.542765				
18	1	0	-3.596253	-2.132203	0.487198				
19	1	0	-4.321789	-2.527002	-1.069956				
20	7	0	-1.500279	-0.675987	-0.477975				
21	16	0	-0.529676	-1.279074	0.782583				
22	8	0	-0.911451	-0.695083	2.078958				
23	8	0	-0.491677	-2.744463	0.633401				
24	6	0	1.127022	-0.672652	0.392741				
25	6	0	1.688297	-0.974696	-0.852166				
26	6	0	1.836068	0.022658	1.373320				
27	6	0	2.988387	-0.562639	-1.127351				
28	1	0	1.123427	-1.515724	-1.602622				
29	6	0	3.140139	0.436601	1.102534				
30	1	0	1.375785	0.243107	2.328848				
31	6	0	3.690119	0.136242	-0.142372				
32	1	0	3.451126	-0.776466	-2.081974				

33 34 35 36		1 7 8 8	0 0 0 0	3.716333 5.064783 5.674219 5.539509		0.980520 0.574841 1.192325 0.302863	1.839700 -0.432154 0.444107 -1.537346	
Excitatio	on ener	gies	and oscillator	strengths:				
Excited 83	State -> 84	1:	Singlet-A 0.70498	2.7016	eV	458.93 nm	f=0.0251	<s**2>=0.000</s**2>
Copying	the ex	cited	d state density	for this sta	te	as the 1-pa	article Rho	CI density.
Excited 82	State -> 84	2:	Singlet-A 0.70581	3.2053	eV	386.81 nm	f=0.0042	<s**2>=0.000</s**2>
Excited 78 78	State -> 84 -> 86	3:	Singlet-A 0.68862 0.11866	3.7069	eV	334.47 nm	f=0.0000	<s**2>=0.000</s**2>
Excited 80 81	State -> 84 -> 84	4:	Singlet-A 0.58068 0.38120	3.9910	eV	310.66 nm	f=0.0320	<s**2>=0.000</s**2>
Excited 80 81	State -> 84 -> 84	5:	Singlet-A -0.38016 0.58959	4.1344	eV	299.89 nm	f=0.1903	<s**2>=0.000</s**2>
Excited 74 74 75	State -> 84 -> 86 -> 84	6:	Singlet-A 0.65357 0.10663 0.20888	4.2951	eV	288.66 nm	f=0.0005	<s**2>=0.000</s**2>
Excited 79 83	State -> 84 -> 85	7:	Singlet-A 0.16854 0.66812	4.5158	eV	274.56 nm	f=0.0241	<s**2>=0.000</s**2>
Excited 79 83	State -> 84 -> 85	8:	Singlet-A 0.67007 -0.17681	4.5683	eV	271.40 nm	f=0.1806	<s**2>=0.000</s**2>
Excited 83	State -> 86	9:	Singlet-A 0.67653	4.7594	eV	260.50 nm	f=0.0210	<s**2>=0.000</s**2>
Excited 82 82 82 83 83 83	State -> 85 -> 87 -> 88 -> 86 -> 87 -> 88	10:	Singlet-A -0.21308 -0.24203 -0.20539 -0.14517 -0.39170 0.40270	4.9402	eV	250.97 nm	f=0.0116	<s**2>=0.000</s**2>
Excited 76 77	State -> 84 -> 84	11:	Singlet-A 0.28037 0.63312	5.0030	eV	247.82 nm	f=0.0136	<s**2>=0.000</s**2>
Excited 76 82 83	State -> 84 -> 85 -> 87	12:	Singlet-A 0.12099 0.60212 -0.32290	5.0858	eV	243.78 nm	f=0.0159	<s**2>=0.000</s**2>
Excited 76 77 82	State -> 84 -> 84 -> 85	13:	Singlet-A 0.62140 -0.28557 -0.11473	5.0918	eV	243.50 nm	f=0.0017	<s**2>=0.000</s**2>
Excited 82 82 82 83 83	State -> 85 -> 86 -> 87 -> 87 -> 88	14:	Singlet-A 0.26538 0.11765 -0.20779 0.40714 0.42949	5.2079	eV	238.07 nm	f=0.1613	<s**2>=0.000</s**2>
Excited 82	State -> 86	15:	Singlet-A 0.69244	5.3225	eV	232.94 nm	f=0.0212	<s**2>=0.000</s**2>
Excited	State	16:	Singlet-A	5.5065	eV	225.16 nm	f=0.0015	<s**2>=0.000</s**2>

72 -> 84 74 -> 84 75 -> 84		-0.31385 -0.14308 0.60910				
Excited State 72 -> 84 74 -> 84 75 -> 84	17:	Singlet-A 0.59965 -0.18468 0.28666	5.5255 eV	224.39 nm	f=0.0106	<s**2>=0.000</s**2>
Excited State 73 -> 84 79 -> 85 80 -> 85 80 -> 86 81 -> 86 81 -> 86 82 -> 87 83 -> 88 83 -> 89	18:	Singlet-A 0.24191 0.16376 -0.23617 0.28214 0.41144 0.16775 0.15688 0.11372 -0.10567	5.7437 eV	215.86 nm	f=0.0219	<s**2>=0.000</s**2>
Excited State 70 -> 84 71 -> 84 82 -> 87 83 -> 89	19:	Singlet-A 0.40547 0.48968 0.14931 -0.12879	5.7807 eV	214.48 nm	f=0.0086	<s**2>=0.000</s**2>
Excited State 70 -> 84 71 -> 84 73 -> 84 81 -> 86 81 -> 88 82 -> 87 83 -> 88 83 -> 89 83 -> 90	20:	Singlet-A -0.16619 -0.21021 -0.19406 -0.10757 -0.11192 0.38109 0.21291 -0.32205 0.11577	5.7934 eV	214.01 nm	f=0.0624	<s**2>=0.000</s**2>
Excited State 73 -> 84 80 -> 85 80 -> 86 81 -> 85 81 -> 86	21:	Singlet-A 0.60004 0.13313 -0.22111 -0.11952 -0.13161	5.8245 eV	212.87 nm	f=0.0553	<s**2>=0.000</s**2>
Excited State 70 -> 84 71 -> 84 83 -> 89	22:	Singlet-A 0.52910 -0.42891 -0.10892	5.8592 eV	211.61 nm	f=0.0044	<s**2>=0.000</s**2>
Excited State 81 -> 86 81 -> 88 82 -> 87 82 -> 88 83 -> 88 83 -> 89	23:	Singlet-A -0.12731 -0.11276 0.18291 0.24578 0.17833 0.51997	5.8721 eV	211.14 nm	f=0.0734	<s**2>=0.000</s**2>
Excited State 81 -> 87 81 -> 88 82 -> 87 82 -> 88 83 -> 89 83 -> 91	24:	Singlet-A 0.14842 0.11481 -0.28621 0.51884 -0.15966 0.15849	5.9834 eV	207.21 nm	f=0.2534	<s**2>=0.000</s**2>
Excited State 79 -> 85 80 -> 85 81 -> 85 81 -> 86 82 -> 88 83 -> 90 83 -> 91	25:	Singlet-A -0.21723 0.10609 0.45428 -0.38662 -0.12958 -0.10975 -0.10188	6.0783 eV	203.98 nm	f=0.0690	<s**2>=0.000</s**2>

1-(4-acetamide-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *in* **conformer** (B3LyP/6-31+G(d,p), energy=1392.05247788 a.u.)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-3.387679	0.414453	-1.288425
2	6	0	-2.772063	0.234694	-0.036126
3	6	0	-2.717625	1.302832	0.884080
4	6	0	-3.248017	2.542619	0.491906
5	6	0	-3.816853	2.735339	-0.765076
6	6	0	-3.891647	1.659232	-1.656716
7	1	0	-3.462822	-0.426629	-1.964706
8	1	0	-3.207792	3.368856	1.197779
9	1	0	-4.212500	3.708184	-1.041178
10	1	0	-4.356400	1.782403	-2.630353
11	6	0	-2.185630	1.142787	2.296554
12	1	0	-1.524750	1.982742	2.537476
13	1	0	-3.038231	1.221984	2.984977
14	6	0	-2.202096	-1.314188	1.802933
15	1	0	-3.239291	-1.388418	2.149508
16	1	0	-1.734542	-2.285211	1.959573
17	6	0	-1.468864	-0.189810	2.533671
18	1	0	-0.433966	-0.138482	2.180476
19	1	0	-1.430221	-0.415096	3.604527
20	7	0	-2.275958	-1.066281	0.339434
21	16	0	-1.071756	-1.810911	-0.614252
22	8	0	-0.871930	-3.145819	-0.025226
23	8	0	-1.501550	-1.697150	-2.016680
24	6	0	0.470122	-0.908326	-0.460168
25	6	0	0.656634	0.269848	-1.193224
26	6	0	1.463988	-1.379942	0.400832
27	6	0	1.854313	0.964968	-1.069480
28	1	0	-0.109380	0.627775	-1.871470
29	6	0	2.657870	-0.672810	0.531228
30	1	0	1.306025	-2.286627	0.973377
31	6	0	2.870317	0.496507	-0.216351
32	1	0	2.013758	1.868909	-1.648972
33	1	0	3.403561	-1.026424	1.231298
34	7	0	4.048417	1.264774	-0.115927
35	1	0	3.937961	2.262261	-0.266482
36	6	0	5.370070	0.903462	0.029893
37	8	0	6.221757	1.794726	0.107879
38	6	0	5.753201	-0.557454	0.062823
39	1	0	5.727249	-0.929385	1.092391
40	1	0	5.099510	-1.184013	-0.546867
41	1	0	6.780274	-0.637043	-0.295772

Excited 87	State -> 88	1:	Singlet-A 0.70139	4.1715	eV	297.22 nm	f=0.2971	<s**2>=0.000</s**2>
This sta Copying	ate for the ex	r optin kcited	nization and/or state density :	second-orde for this sta	er c ate	correction. as the 1-p	article Rho	CI density.
Excited 83 86 87	State -> 88 -> 88 -> 89	2:	Singlet-A -0.19696 0.17549 0.62060	4.6484	eV	266.72 nm	f=0.0025	<s**2>=0.000</s**2>
Excited 85 86 87 87 87	State -> 88 -> 88 -> 89 -> 90 -> 91	3:	Singlet-A 0.19191 0.58048 -0.19742 -0.15398 -0.17980	4.6863	eV	264.57 nm	f=0.0624	<s**2>=0.000</s**2>
Excited 85 86 87	State -> 88 -> 88 -> 90	4:	Singlet-A 0.54924 -0.30179 -0.25523	4.7949	eV	258.58 nm	f=0.3705	<s**2>=0.000</s**2>
Excited 83 85 85 86 86 86 86 87 87 87	State -> 88 -> 89 -> 91 -> 89 -> 89 -> 90 -> 90 -> 91	5:	Singlet-A -0.17771 0.34643 -0.12265 0.13588 0.11539 0.30943 -0.10398 -0.12667 0.31780 0.22897	4.9413	eV	250.91 nm	f=0.0276	<s**2>=0.000</s**2>
Excited 83 84 85 85 86 86 87 87 87 87	State -> 88 -> 88 -> 89 -> 89 -> 90 -> 90 -> 91	6:	Singlet-A 0.23233 -0.13808 0.12546 0.34988 -0.31051 -0.16260 0.20290 0.22473 0.21573	4.9896	eV	248.48 nm	f=0.0060	<s**2>=0.000</s**2>
Excited 83 84 84 84	State -> 88 -> 88 -> 92 -> 93	7:	Singlet-A 0.20347 0.60431 0.15608 0.18087	5.0352	eV	246.23 nm	f=0.0059	<s**2>=0.000</s**2>
Excited 86 86 87 87	State -> 89 -> 90 -> 90 -> 91	8:	Singlet-A -0.17328 0.16780 0.44744 -0.43770	5.1595	eV	240.30 nm	f=0.0851	<s**2>=0.000</s**2>
Excited 85 86 86 87	State -> 89 -> 89 -> 90 -> 91	9:	Singlet-A 0.49673 0.44412 0.10019 -0.16571	5.3268	eV	232.76 nm	f=0.0108	<s**2>=0.000</s**2>
Excited 83 85 85 85 85 86 87	State -> 88 -> 89 -> 90 -> 91 -> 90 -> 91	10:	Singlet-A -0.12486 0.11618 -0.21742 -0.17134 0.51548 0.25698	5.6161	eV	220.76 nm	f=0.0748	<s**2>=0.000</s**2>
Excited 83 85 85 85	State -> 88 -> 89 -> 90 -> 91	11:	Singlet-A -0.21639 0.13930 -0.32078 0.15727	5.7025	eV	217.42 nm	f=0.0308	<s**2>=0.000</s**2>

86 -> 89 86 -> 90 86 -> 91 87 -> 92 87 -> 93 87 -> 94		-0.10095 -0.10744 -0.25016 0.37040 -0.14029 0.13417				
Excited State 82 -> 88 83 -> 88 84 -> 88 85 -> 89 85 -> 91 86 -> 89 86 -> 90 86 -> 91 87 -> 92 87 -> 93 87 -> 94	12:	Singlet-A -0.13102 0.30092 -0.10624 -0.17171 -0.12246 0.12400 0.14264 0.11365 0.46172 -0.13230 0.11983	5.7134 eV	217.01 nm	f=0.0623	<s**2>=0.000</s**2>
Excited State 83 -> 88 85 -> 89 85 -> 90 85 -> 91 86 -> 89 86 -> 91 87 -> 91 87 -> 92	13:	Singlet-A 0.34756 -0.14883 -0.33090 0.21788 0.11914 -0.27629 -0.10032 -0.21339	5.7773 eV	214.60 nm	f=0.1106	<s**2>=0.000</s**2>
Excited State 82 -> 88 85 -> 91	14:	Singlet-A 0.64096 -0.19807	5.8469 eV	212.05 nm	f=0.0266	<s**2>=0.000</s**2>
Excited State 84 -> 89 85 -> 91 85 -> 92 86 -> 90 86 -> 91 87 -> 92 87 -> 93 87 -> 94 87 -> 96	15:	Singlet-A 0.11502 0.20044 -0.10518 0.10129 0.14642 0.19400 0.50344 -0.19159 -0.13419	5.9293 eV	209.10 nm	f=0.0172	<s**2>=0.000</s**2>
Excited State 85 -> 90 85 -> 91 86 -> 91 86 -> 92 87 -> 92 87 -> 94 87 -> 98	16:	Singlet-A -0.36595 -0.11079 0.40323 -0.17922 -0.12055 0.26403 0.10228	5.9432 eV	208.62 nm	f=0.1042	<s**2>=0.000</s**2>
Excited State 83 -> 89 84 -> 89	17:	Singlet-A 0.16957 0.66318	5.9594 eV	208.05 nm	f=0.0043	<s**2>=0.000</s**2>
Excited State 85 -> 92 85 -> 93 86 -> 91 86 -> 92 86 -> 93 87 -> 93 87 -> 94	18:	Singlet-A 0.20632 -0.13312 -0.27451 -0.15962 0.10618 0.32819 0.40461	6.0222 eV	205.88 nm	f=0.0699	<s**2>=0.000</s**2>
Excited State 82 -> 88 83 -> 89 85 -> 90 85 -> 91 86 -> 90 87 -> 93 87 -> 94 87 -> 95 87 -> 96	19:	Singlet-A 0.16784 0.14264 0.17554 0.43281 0.23690 -0.12061 0.15928 -0.14974 0.18253	6.0342 eV	205.47 nm	f=0.2770	<s**2>=0.000</s**2>

Excited State 84 -> 93 85 -> 92 86 -> 91 86 -> 92 87 -> 94 87 -> 95 87 -> 96	20:	Singlet-A 0.10396 -0.10486 0.11835 0.18359 0.14254 0.50367 0.28290	6.1242 eV	202.45 nm	f=0.0316	<s**2>=0.000</s**2>
Excited State 83 -> 89 84 -> 88 84 -> 90 84 -> 92 84 -> 93 85 -> 92 86 -> 92 87 -> 92 87 -> 95 87 -> 96	21:	Singlet-A 0.18409 0.14371 0.10284 -0.18872 -0.20587 0.10826 -0.17558 0.10344 0.39471 -0.28250	6.1578 eV	201.35 nm	f=0.0766	<s**2>=0.000</s**2>
Excited State 85 -> 94 86 -> 92 86 -> 93 87 -> 92 87 -> 94 87 -> 94 87 -> 96 87 -> 98	22:	Singlet-A 0.10420 0.42620 -0.16300 -0.10728 0.25114 -0.37188 0.13776	6.1823 eV	200.55 nm	f=0.0218	<s**2>=0.000</s**2>
Excited State 81 -> 88 84 -> 88 84 -> 90 84 -> 91 84 -> 92 84 -> 93 86 -> 92 87 -> 93 87 -> 96	23:	Singlet-A 0.27118 -0.17261 -0.12306 0.12375 0.25397 0.25990 -0.23955 -0.12805 -0.25303	6.1949 eV	200.14 nm	f=0.0502	<s**2>=0.000</s**2>
Excited State 80 -> 88 81 -> 88 84 -> 92 84 -> 93 85 -> 92 86 -> 94 87 -> 96	24:	Singlet-A 0.14928 0.57245 -0.10099 -0.10318 0.18086 0.10231 0.11040	6.2508 eV	198.35 nm	f=0.0034	<s**2>=0.000</s**2>
Excited State 81 -> 88 83 -> 89 83 -> 90 84 -> 92 84 -> 93 85 -> 92 86 -> 93 86 -> 94 86 -> 95 87 -> 94 87 -> 96	25:	Singlet-A -0.16091 0.33000 -0.13400 0.12089 0.11857 0.35820 -0.12495 0.18789 -0.10364 -0.14276 0.14496	6.2599 eV	198.06 nm	f=0.2176	<s**2>=0.000</s**2>
		60000 50000 40000 20000 10000 0	UV-VIS S	Spectrum	- 0.40 - 0.35 OSC - 0.25 OSC - 0.25 OSC - 0.20 Streng - 0.15 Feng - 0.10 ggt - 0.00 gtt - 0.00 gtt - 0.00 gtt	

1-(4-acetamide-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *out* **conformer** (B3LyP/6-31+G(d,p), energy= 1392.05030682 a.u.)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-1.527142	1.743802	-0.277014
2	6	0	-2.436640	0.674314	-0.298414
3	6	0	-3.813324	0.907041	-0.110154
4	6	0	-4.232812	2.226312	0.123964
5	6	0	-3.328801	3.285970	0.181657
6	6	0	-1.966503	3.041454	-0.023924
7	1	0	-0.476706	1.556495	-0.466781
8	1	0	-5.293986	2.415878	0.267329
9	1	0	-3.683408	4.294249	0.373283
10	1	0	-1.250661	3.857582	-0.003853
11	6	0	-4.849268	-0.197743	-0.219907
12	1	0	-5.547764	-0.129669	0.621508
13	1	0	-5.445425	-0.008493	-1.123127
14	6	0	-2.972264	-1.574454	-1.151231
15	1	0	-3.178902	-1.187672	-2.155363
16	1	0	-2.524978	-2.561229	-1.256193
17	6	0	-4.243026	-1.604240	-0.303492
18	1	0	-3.995485	-1.981412	0.695692
19	1	0	-4.965489	-2.302168	-0.739768
20	7	0	-1.958157	-0.659735	-0.566291
21	16	0	-0.922787	-1.354223	0.610992
22	8	0	-1.229726	-0.846302	1.962001
23	8	0	-0.956646	-2.811181	0.377258
24	6	0	0.710746	-0.766660	0.169431
25	6	0	1.229613	-1.057999	-1.097118
26	6	0	1.469552	-0.075109	1.113377
27	6	0	2.523259	-0.660080	-1.409356
28	1	0	0.637329	-1.592975	-1.831530
29	6	0	2.762403	0.337470	0.790530
30	1	0	1.048020	0.163006	2.082994
31	6	0	3.306970	0.032475	-0.466007
32	1	0	2.936754	-0.893105	-2.385611
33	1	0	3.323677	0.917028	1.511680
34	7	0	4.597461	0.441070	-0.859541
35	1	0	4.719452	0.625835	-1.849961
36	6	0	5.783394	0.532733	-0.163568
37	8	0	6.784966	0.948491	-0.754859
38	6	0	5.844328	0.100658	1.282568
39	1	0	5.609343	0.946121	1.937652
40	1	0	5.156967	-0.715514	1.512569
4⊥	Ţ	U	6.869076	-0.209447	1.491182

Excited 87	State -> 88	1:	Singlet-A 0.69809	4.1797 eV	296.63 nm	f=0.0826	<s**2>=0.000</s**2>		
This state for optimization and/or second-order correction.									
Copying	the exc	ited s	state density for	this state	as the 1-pa	rticle Rho	CI density.		
Excited 83	State -> 88	2:	Singlet-A -0.18627	4.6581 eV	266.17 nm	f=0.0084	<s**2>=0.000</s**2>		

86 86 87	-> 88 -> 89 -> 89		0.13058 0.14058 0.63188				
Excited 86 87	State -> 88 -> 89	3:	Singlet-A 0.67441 -0.13430	4.7162 eV	262.89 nm	f=0.4625	<s**2>=0.000</s**2>
Excited 85	State -> 88	4:	Singlet-A 0.68647	4.8317 eV	256.61 nm	f=0.1703	<s**2>=0.000</s**2>
Excited 83 85 85 86 86 86 86 87 87	State -> 88 -> 90 -> 91 -> 88 -> 89 -> 90 -> 90 -> 91	5:	Singlet-A -0.22518 -0.17206 0.14272 -0.11477 0.37329 -0.10717 0.26565 0.36665	4.8868 eV	253.71 nm	f=0.0230	<s**2>=0.000</s**2>
Excited 83 84 85 86 86 86 87 87 87	State -> 88 -> 88 -> 89 -> 89 -> 90 -> 89 -> 90 -> 91	6:	Singlet-A 0.18348 0.24505 0.27399 -0.27384 -0.19073 0.23900 0.10575 0.34843	5.0077 eV	247.59 nm	f=0.0081	<s**2>=0.000</s**2>
Excited 83 84 84 84 84 86	State -> 88 -> 88 -> 92 -> 93 -> 89	7:	Singlet-A -0.22623 0.57724 -0.15246 -0.18387 0.11578	5.0317 eV	246.41 nm	f=0.0075	<s**2>=0.000</s**2>
Excited 85 86 87 87	State -> 88 -> 89 -> 90 -> 91	8:	Singlet-A 0.10716 -0.16581 0.59357 -0.25866	5.1170 eV	242.30 nm	f=0.1149	<s**2>=0.000</s**2>
Excited 85 86 87	State -> 89 -> 89 -> 91	9:	Singlet-A 0.56473 0.35333 -0.17358	5.3742 eV	230.70 nm	f=0.0514	<s**2>=0.000</s**2>
Excited 82 83 85 85 85 86 86 86 87	State -> 88 -> 91 -> 88 -> 89 -> 91 -> 89 -> 90 -> 91	10:	Singlet-A 0.18108 -0.10704 -0.21893 0.18160 -0.19301 -0.15878 0.47006 0.23236	5.5690 eV	222.63 nm	f=0.0296	<s**2>=0.000</s**2>
Excited 82 85 86	State -> 88 -> 90 -> 90	11:	Singlet-A 0.63750 0.12964 -0.21739	5.6996 eV	217.53 nm	f=0.0065	<s**2>=0.000</s**2>
Excited 85 86 87 87 87	State -> 90 -> 91 -> 91 -> 92 -> 94	12:	Singlet-A 0.40513 0.37651 0.11955 -0.31266 0.11355	5.7280 eV	216.45 nm	f=0.0039	<s**2>=0.000</s**2>
Excited 83 85 86 86 86 86 87	State -> 88 -> 91 -> 89 -> 90 -> 91 -> 91	13:	Singlet-A 0.23477 -0.15242 0.10609 0.12939 0.23518 0.10715	5.7635 eV	215.12 nm	f=0.0494	<s**2>=0.000</s**2>

87 -> 92 87 -> 93 87 -> 94		0.45857 -0.18041 -0.14883				
Excited State 82 -> 88 83 -> 88 85 -> 89 86 -> 89 86 -> 90 86 -> 91 87 -> 92 87 -> 94	14:	Singlet-A 0.17180 0.39719 -0.17458 0.20475 0.24037 -0.22978 -0.20924 0.12616	5.7893 eV	214.16 nm	f=0.1521	<s**2>=0.000</s**2>
Excited State 82 -> 88 85 -> 90 85 -> 91 86 -> 91 87 -> 91 87 -> 93 87 -> 96	15:	Singlet-A 0.11419 -0.28618 0.12975 0.12105 0.37114 -0.10955 0.37205 -0.10199	5.9145 eV	209.63 nm	f=0.0873	<s**2>=0.000</s**2>
Excited State 84 -> 89 85 -> 90 85 -> 91 86 -> 91 86 -> 92 87 -> 92 87 -> 93 87 -> 94	16:	Singlet-A 0.45734 0.20186 0.11492 -0.14087 0.15292 0.18777 0.28841 0.14202	5.9405 eV	208.71 nm	f=0.0923	<s**2>=0.000</s**2>
Excited State 83 -> 89 84 -> 89 85 -> 90 85 -> 91 86 -> 91 86 -> 92 87 -> 92 87 -> 93 87 -> 94	17:	Singlet-A -0.14869 0.49177 -0.18400 -0.11312 0.11934 -0.11533 -0.18677 -0.27890 -0.13457	5.9585 eV	208.08 nm	f=0.0538	<s**2>=0.000</s**2>
Excited State 82 -> 89 82 -> 90 85 -> 91 85 -> 92 86 -> 91 86 -> 92 86 -> 93 87 -> 93 87 -> 94	18:	Singlet-A -0.11343 0.12745 0.34033 -0.12537 0.18225 0.20119 -0.16663 -0.27484 0.34636	5.9830 eV	207.23 nm	f=0.1157	<s**2>=0.000</s**2>
Excited State 82 -> 91 85 -> 90 85 -> 91 86 -> 90 86 -> 92 87 -> 94 87 -> 95	19:	Singlet-A -0.12291 0.20170 0.39812 0.16774 -0.18904 -0.33437 -0.20087	6.0346 eV	205.45 nm	f=0.1463	<s**2>=0.000</s**2>
Excited State 83 -> 89 85 -> 92 86 -> 92 87 -> 92 87 -> 94 87 -> 95 87 -> 96 87 -> 97	20:	Singlet-A 0.11123 -0.14068 0.39613 -0.15892 -0.35098 0.30060 -0.10094 0.11590	6.1451 eV	201.76 nm	f=0.0343	<s**2>=0.000</s**2>
Excited State 82 -> 89 83 -> 89	21:	Singlet-A -0.15744 0.22285	6.1638 eV	201.15 nm	f=0.0433	<s**2>=0.000</s**2>

84 -> 93 85 -> 93 86 -> 92 86 -> 93 86 -> 94 87 -> 95 87 -> 96		0.10038 -0.14165 -0.16701 0.26468 -0.10286 0.37345 0.24658				
Excited State 83 -> 89 84 -> 88 84 -> 92 84 -> 93 85 -> 93 86 -> 92 86 -> 93 87 -> 93 87 -> 93	22:	Singlet-A -0.17775 -0.16481 -0.24381 -0.26108 0.10600 -0.13391 -0.22150 0.10188 0.37679	6.1750 ev	200.78 nm	f=0.0149	<s**2>=0.000</s**2>
Excited State 81 -> 88 82 -> 89 83 -> 90 84 -> 92 84 -> 92 84 -> 93 85 -> 91 85 -> 92 85 -> 94 86 -> 92 87 -> 95	23:	Singlet-A -0.10008 -0.28620 0.29199 -0.10488 -0.12142 -0.21621 -0.22021 -0.10745 0.14536 -0.10546 0.19836 -0.19019	6.2359 eV	198.82 nm	f=0.1249	<s**2>=0.000</s**2>
Excited State 81 -> 88 82 -> 89 83 -> 89 83 -> 90 84 -> 92 84 -> 93 85 -> 92 85 -> 94 86 -> 93 86 -> 94 87 -> 96	24:	Singlet-A -0.17552 0.33035 0.30498 -0.12176 -0.12886 -0.13027 -0.26415 0.10391 0.13154 0.17245 -0.14305	6.2756 eV	197.57 nm	f=0.1331	<s**2>=0.000</s**2>
Excited State 81 -> 88 82 -> 89 83 -> 89 84 -> 92 85 -> 92 85 -> 94 86 -> 94 86 -> 93 86 -> 94 87 -> 96 87 -> 97 87 -> 98	25:	Singlet-A 0.32777 -0.11819 -0.10750 -0.10798 -0.29824 0.10343 0.20076 0.14861 0.29049 0.13254 -0.16933	6.2938 eV	196.99 nm	f=0.0040	<s**2>=0.000</s**2>

1-(4-amine-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *in* **conformer** (B3LyP/6-31+G(d,p), energy= 1239.38845782 a.u.)

-

Center Atomic Atomic Coordinates (Angst							
Number	Number	Туре	Х	Y	Z		
1	 6	0	2.515614	-0.115210	-1.342016		
2	6	0	1.932665	0.041782	-0.070684		
3	6	0	2.103241	-0.959382	0.910047		
4	6	0	2.823860	-2.113459	0.562001		
5	6	0	3.364308	-2.288950	-0.710003		
6	6	0	3.212190	-1.276970	-1.664659		
7	1	0	2.412025	0.679029	-2.069233		
8	1	0	2.956805	-2.886810	1.314922		
9	1	0	3.910920	-3.195986	-0.950355		
10	1	0	3.648488	-1.383092	-2.653459		
11	6	0	1.607899	-0.802075	2.335879		
12	1	0	1.127386	-1.730959	2.662598		
13	1	0	2.485967	-0.671445	2.983613		
14	6	0	1.162398	1.577472	1.701037		
15	1	0	2.179499	1.853623	2.003420		
16	1	0	0.534492	2.458639	1.823760		
17	6	0	0.663753	0.388467	2.521992		
18	1	0	-0.351189	0.127221	2.205902		
19	1	0	0.609193	0.669846	3.578909		
20	7	0	1.236684	1.261646	0.251774		
21	16	0	-0.127225	1.714165	-0.688491		
22	8	0	-0.558503	3.011997	-0.136670		
23	8	0	0.295754	1.641226	-2.097745		
24	6	0	-1.449025	0.543775	-0.458495		
25	6	0	-1.451732	-0.657209	-1.183310		
26	6	0	-2.471767	0.817077	0.460550		
27	6	0	-2.469537	-1.580780	-0.985515		
28	1	0	-0.672432	-0.861996	-1.908876		
29	6	0	-3.491100	-0.105597	0.654425		
30	1	0	-2.474134	1.752248	1.009316		
31	6	0	-3.507052	-1.324685	-0.060368		
32	1	0	-2.472628	-2.506701	-1.553144		
33	1	0	-4.287221	0.113086	1.360026		
34	7	0	-4.490215	-2.261285	0.171032		
35	1	0	-5.341312	-1.952477	0.619653		
36	1	0	-4.627853	-2.984717	-0.520797		

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 4.3825 eV 282.91 nm f=0.3163 <S**2>=0.000 75 -> 77 -0.15249 76 -> 77 0.66273 76 -> 78 0.14632 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 4.5542 eV 272.24 nm f=0.0817 <S**2>=0.000 73 -> 77 0.18543 76 -> 77 -0.12888

76	-> 78		0.64135				
Excited 74 74 75 76 76	State -> 77 -> 80 -> 79 -> 79 -> 80	3:	Singlet-A -0.25608 -0.17237 -0.25103 0.53351 -0.15259	4.7404 eV	261.55 nm	f=0.0099	<s**2>=0.000</s**2>
Excited 75 76 76 76	State -> 77 -> 77 -> 79 -> 80	4:	Singlet-A 0.60447 0.10538 0.19618 0.27331	4.8686 eV	254.66 nm	f=0.0473	<s**2>=0.000</s**2>
Excited 74 75 75 75 76 76 76	State -> 77 -> 77 -> 78 -> 79 -> 78 -> 79 -> 80	5:	Singlet-A -0.13215 0.19049 0.45258 -0.20371 -0.16435 -0.14372 -0.33794	5.0182 eV	247.07 nm	f=0.0845	<s**2>=0.000</s**2>
Excited 74 75 75 75 76 76	State -> 77 -> 77 -> 78 -> 79 -> 79 -> 80	6:	Singlet-A 0.17654 -0.18321 0.49530 0.15311 0.29459 0.19382	5.0599 ev	245.03 nm	f=0.0877	<s**2>=0.000</s**2>
Excited 74 75 75 76 76	State -> 77 -> 78 -> 79 -> 79 -> 80	7:	Singlet-A -0.34298 0.10145 -0.29613 -0.20799 0.44748	5.1525 eV	240.63 nm	f=0.0464	<s**2>=0.000</s**2>
Excited 74 75 75 75 76 76 76	State -> 77 -> 79 -> 80 -> 81 -> 80 -> 81 -> 82	8:	Singlet-A -0.11604 0.16512 0.14452 0.11909 -0.11516 0.58756 0.18213	5.3228 eV	232.93 nm	f=0.0202	<s**2>=0.000</s**2>
Excited 74 74 74 75 76	State -> 77 -> 78 -> 80 -> 79 -> 81	9:	Singlet-A 0.46786 -0.11007 -0.21210 -0.39527 0.20695	5.3443 eV	231.99 nm	f=0.0309	<s**2>=0.000</s**2>
Excited 74 74 74 75 76	State -> 77 -> 78 -> 79 -> 80 -> 81	10:	Singlet-A 0.12844 -0.22451 -0.19901 0.58093 -0.14092	5.4648 eV	226.88 nm	f=0.0210	<s**2>=0.000</s**2>
Excited 74 74 74 75	State -> 78 -> 79 -> 80 -> 80	11:	Singlet-A 0.64872 -0.15441 -0.10799 0.16503	5.5424 eV	223.70 nm	f=0.0053	<s**2>=0.000</s**2>
Excited 74 75 76 76	State -> 79 -> 81 -> 81 -> 82	12:	Singlet-A 0.13996 0.26091 -0.21110 0.57896	5.6648 eV	218.87 nm	f=0.0015	<s**2>=0.000</s**2>
Excited 73 75 76	State -> 77 -> 78 -> 78	13:	Singlet-A 0.65133 -0.10220 -0.15332	5.8053 eV	213.57 nm	f=0.1137	<s**2>=0.000</s**2>

Excited 72 74 75 75 75 75 76 76 76 76 76	State -> 79 -> 79 -> 80 -> 79 -> 80 -> 81 -> 82 -> 82 -> 83 -> 83 -> 85	14:	Singlet-A 0.10281 0.31118 0.22919 -0.14310 0.15192 0.16423 -0.11309 -0.10644 0.40413 0.18389 -0.10703	5.8344 eV	212.51 nm	f=0.0588	<s**2>=0.000</s**2>
Excited 74 75 76 76 76 76	State -> 79 -> 81 -> 83 -> 84 -> 85	15:	Singlet-A -0.15373 0.16168 -0.14282 0.60646 -0.11074	5.8797 eV	210.87 nm	f=0.0176	<\$**2>=0.000
Excited 72 74 74 75 76	State -> 79 -> 79 -> 80 -> 80 -> 83	16:	Singlet-A -0.10648 -0.27935 -0.17449 -0.17073 0.52278	5.9346 eV	208.92 nm	f=0.1090	<s**2>=0.000</s**2>
Excited 72 74 74 75 75 76	State -> 77 -> 79 -> 79 -> 80 -> 79 -> 81 -> 82	17:	Singlet-A 0.17252 0.10985 -0.27891 0.44046 -0.15379 -0.29457 0.16088	5.9615 eV	207.98 nm	f=0.2129	<\$**2>=0.000
Excited 72 74 75 75 76 76 76	State -> 77 -> 79 -> 80 -> 81 -> 82 -> 82 -> 84 -> 86	18:	Singlet-A 0.19143 -0.22408 0.17969 0.47877 -0.12154 -0.20493 -0.19054 -0.11537	6.0014 ev	206.59 nm	f=0.0815	<\$**2>=0.000
Excited 75 76 76	State -> 84 -> 84 -> 85	19:	Singlet-A -0.22867 0.13720 0.59455	6.1215 eV	202.54 nm	f=0.0243	<s**2>=0.000</s**2>
Excited 75 75 75 76 76	State -> 81 -> 82 -> 84 -> 82 -> 86	20:	Singlet-A 0.13819 0.39629 0.14408 -0.13104 0.49250	6.1406 eV	201.91 nm	f=0.0054	<s**2>=0.000</s**2>
Excited 72 73 73 73 74 74 74 74 75 76	State -> 77 -> 78 -> 79 -> 80 -> 81 -> 82 -> 84 -> 84 -> 85	21:	Singlet-A 0.41128 -0.18000 -0.24172 -0.10459 -0.32241 0.18133 0.11302 0.10039 0.10703	6.2284 eV	199.06 nm	f=0.0311	<s**2>=0.000</s**2>
Excited 73 73 73 74 74 74 74	State -> 78 -> 79 -> 80 -> 81 -> 82 -> 84	22:	Singlet-A 0.32359 0.43864 0.18615 -0.28953 0.15744 0.11001	6.2522 eV	198.31 nm	f=0.0839	<\$**2>=0.000

Excited Sta 72 -> 73 -> 74 -> 74 -> 74 -> 74 -> 74 -> 74 -> 74 -> 75 ->	ate 2 77 79 80 81 82 84 82	3: Singlet-A 0.43019 0.18916 0.14160 -0.10267 0.36263 -0.14695 -0.12215 -0.10016	6.2696 eV	197.75 nm	f=0.1313	<s**2>=0.000</s**2>
Excited Sta 72 -> 75 -> 75 -> 76 -> 76 -> 76 -> 76 -> 76 ->	ate 2 77 82 83 84 86 87 88 91	4: Singlet-A -0.10881 -0.20293 0.48143 0.27937 0.18186 -0.15399 -0.12425 -0.11430	6.2944 eV	196.97 nm	f=0.0297	<s**2>=0.000</s**2>
Excited Sta 73 -> 75 -> 75 -> 75 -> 76 -> 76 -> 76 -> 76 ->	ate 2 78 79 82 83 84 85 86 89	5: Singlet-A 0.12828 -0.15410 0.31321 0.37833 -0.11891 -0.11921 -0.23199 -0.28339	6.3471 eV	195.34 nm	f=0.0234	<s**2>=0.000</s**2>

1-(4-amine-benzenesulfonyl)-1,2,3,4-tetrahydroquinoline *out* **conformer** (B3LyP/6-31+G(d,p), energy= 1239.38655597 a.u.)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	1 6 1 1 6 1 1 7 16 8 8 6 6 6 1 6 1 6 1 1 7 1 1 7		-0.564248 -3.910709 -4.575590 -4.555573 -1.985820 -2.250126 -1.483956 -3.224681 -2.92355 -3.918427 -1.005837 0.062646 -0.358450 0.170313 1.627540 2.255642 2.252456 3.499817 1.773715 3.500941 1.761224 4.147472 3.983716 3.983261 5.359847 5.910113 5.906465		3.850415 0.420602 0.388437 0.274083 1.684856 1.315112 2.643439 1.788874 2.147951 2.529508 0.710038 1.344160 0.943171 2.787936 0.573081 0.785743 0.192508 0.224778 1.382126 0.751688 0.349546 0.556154 0.386295 1.345914 1.151762 1.480443 0.792788	-0.145213 -0.170443 0.699970 -1.047815 -1.162543 -2.159769 -1.282354 -0.273589 0.717326 -0.685554 -0.618802 0.578296 1.937563 0.279518 0.240713 -0.995012 1.231529 -1.240531 -1.762740 0.986888 2.185101 -0.253601 -2.199274 1.757368 -0.519160 0.261786 -1.289251	
Excitation ene Excited State 75 -> 77 76 -> 77 76 -> 78	ergies and e	nd oscillator s Singlet-A 0.19508 0.59764 -0.26960	trengths: 4.4533	eV	278.41 nm	f=0.1273	<s**2>=0.000</s**2>
This state for Copving the e	or optime excited a	ization and/or state density f	second-orde	er c ate	orrection. as the 1-pa	rticle Rho	CI density.
Excited State 73 -> 77 75 -> 77 76 -> 77 76 -> 78 76 -> 80	2:	Singlet-A 0.15571 0.36987 0.14199 0.53122 0.13356	4.6036	eV	269.32 nm	f=0.0610	<s**2>=0.000</s**2>
Excited State 74 -> 79 75 -> 77 75 -> 78 75 -> 80 76 -> 77 76 -> 78	3: 3: 3: 3: 3: 3: 3: 3:	Singlet-A -0.12618 0.49227 -0.14363 0.11875 -0.30444 -0.29207	4.7819	eV	259.28 nm	f=0.3044	<s**2>=0.000</s**2>
Excited State 75 -> 80 76 -> 78 76 -> 79	4: 3	Singlet-A -0.11828 -0.10220 0.65385	4.8854	eV	253.78 nm	f=0.0481	<s**2>=0.000</s**2>
Excited State 74 -> 79 75 -> 77 75 -> 78 75 -> 80 76 -> 80	5:))	Singlet-A -0.19070 -0.24815 -0.28824 0.24563 0.47775	4.9105	eV	252.49 nm	f=0.0240	<s**2>=0.000</s**2>
Excited State 74 -> 77 75 -> 78 75 -> 80 76 -> 79 76 -> 80	e 6:	Singlet-A -0.11016 0.60087 0.13389 0.10054 0.27173	5.0922	eV	243.48 nm	f=0.0268	<s**2>=0.000</s**2>
Excited State 74 -> 77 74 -> 78 74 -> 79 75 -> 79	e 7:	Singlet-A 0.34157 -0.11357 0.17198 0.22285	5.2134	eV	237.82 nm	f=0.0169	<s**2>=0.000</s**2>

75 -> 8 76 -> 7 76 -> 8	0 9 0	-0.33980 -0.16937 0.35831				
Excited Stat 74 -> 7 74 -> 7 74 -> 7 75 -> 7 75 -> 8 76 -> 7 76 -> 8	e 8: 7 8 9 9 0 8 0	Singlet-A 0.40148 0.14080 -0.12379 0.37722 0.31793 0.10957 -0.16215	5.2451 eV	236.38 nm	f=0.0147	<s**2>=0.000</s**2>
Excited Stat 74 -> 7 75 -> 7 75 -> 8 76 -> 8 76 -> 8	e 9: 7 9 1 2	Singlet-A -0.27622 0.26003 -0.11601 0.53175 0.17398	5.3285 eV	232.68 nm	f=0.0482	<s**2>=0.000</s**2>
Excited Stat 74 -> 7 74 -> 7 74 -> 8 75 -> 7 76 -> 8	e 10: 7 8 0 9 1	Singlet-A -0.31804 -0.12720 0.10169 0.42984 -0.37104	5.3543 eV	231.56 nm	f=0.0667	<s**2>=0.000</s**2>
Excited State 74 -> 7 74 -> 7 75 -> 8	e 11: 8 9 0	Singlet-A 0.63595 0.16570 -0.19006	5.5868 eV	221.92 nm	f=0.0688	<s**2>=0.000</s**2>
Excited State 75 -> 8 76 -> 8 76 -> 8 76 -> 8 76 -> 8	e 12: 1 2 4 5	Singlet-A -0.29311 -0.22396 0.51896 0.18586 0.13319	5.7181 eV	216.83 nm	f=0.0018	<s**2>=0.000</s**2>
Excited Stat 72 -> 7 72 -> 8 73 -> 7 74 -> 7 75 -> 8 76 -> 8 76 -> 8	e 13: 7 0 7 9 0 2 4	Singlet-A -0.24459 -0.18192 0.24751 0.44288 0.29046 0.11072 0.10743	5.8158 eV	213.18 nm	f=0.0615	<s**2>=0.000</s**2>
Excited Stat 73 -> 7 73 -> 7 74 -> 7 74 -> 8 76 -> 7	e 14: 7 8 9 0 8	Singlet-A 0.58065 0.10176 -0.17927 -0.10237 -0.13719	5.8566 eV	211.70 nm	f=0.2107	<s**2>=0.000</s**2>
Excited Stat 72 -> 7 75 -> 8 75 -> 8 76 -> 8 76 -> 8 76 -> 8 76 -> 8	e 15: 7 1 2 2 3 4	Singlet-A 0.14438 0.46938 -0.17528 0.17476 -0.35496 0.10512	5.9118 eV	209.72 nm	f=0.0160	<s**2>=0.000</s**2>
Excited Stat. 72 -> 7 74 -> 8 75 -> 8 76 -> 8 76 -> 8 76 -> 8	e 16: 9 0 1 3 4 6	Singlet-A 0.11315 0.45566 0.12839 0.37023 0.22775 0.11077	5.9752 eV	207.50 nm	f=0.0992	<s**2>=0.000</s**2>
Excited Stat 74 -> 8 75 -> 8 76 -> 8 76 -> 8 76 -> 8 76 -> 8	e 17: 0 2 2 4 5 6	Singlet-A -0.27429 -0.17754 -0.19049 0.52533 -0.10071 0.10185	6.0097 eV	206.31 nm	f=0.0546	<s**2>=0.000</s**2>

Excited 72 73 74 75 75 76 76 76 76 76 76	State -> 79 -> 78 -> 80 -> 81 -> 82 -> 82 -> 83 -> 84 -> 85	18:	Singlet-A -0.12327 -0.10190 -0.30041 0.32212 0.11774 0.24563 0.36265 -0.12210 -0.10040	6.0330 eV	205.51 nm	f=0.0831	<s**2>=0.000</s**2>
Excited 72 74 75 76	State -> 77 -> 79 -> 80 -> 85	19:	Singlet-A 0.60355 0.20868 0.10568 -0.14521	6.0870 eV	203.69 nm	f=0.0457	<s**2>=0.000</s**2>
Excited 72 75 76 76 76	State -> 77 -> 82 -> 83 -> 85 -> 88	20:	Singlet-A 0.11677 -0.28405 0.17524 0.53085 -0.11741	6.1001 eV	203.25 nm	f=0.0200	<s**2>=0.000</s**2>
Excited 73 73 73 74	State -> 78 -> 79 -> 80 -> 81	21:	Singlet-A 0.50992 -0.34936 -0.16507 -0.15342	6.2099 eV	199.66 nm	f=0.1210	<s**2>=0.000</s**2>
Excited 74 74 75 75 75 76 76 76 76 76	State -> 81 -> 82 -> 81 -> 82 -> 83 -> 82 -> 84 -> 85 -> 86	22:	Singlet-A 0.17513 -0.10020 0.11330 0.39527 0.32187 -0.10155 0.20408 0.17190 -0.20734	6.2327 eV	198.92 nm	f=0.0128	<s**2>=0.000</s**2>
Excited 75 75 75 76 76	State -> 82 -> 83 -> 84 -> 85 -> 86	23:	Singlet-A -0.32504 0.43595 0.12709 -0.25360 -0.24392	6.2599 eV	198.06 nm	f=0.0269	<s**2>=0.000</s**2>
Excited 72 73 74 74 74 75 75 75 75 76 76 76	State -> 78 -> 79 -> 81 -> 82 -> 83 -> 82 -> 84 -> 85 -> 86 -> 88	24:	Singlet-A 0.16957 -0.16146 0.38088 -0.16543 -0.16344 -0.12562 -0.18790 0.11016 0.31752 0.14948	6.2967 eV	196.90 nm	f=0.0067	<s**2>=0.000</s**2>
Excited 74 74 75 75 75 75 76 76 76 76	State -> 81 -> 82 -> 83 -> 83 -> 84 -> 85 -> 83 -> 86 -> 88	25:	Singlet-A 0.35310 -0.14175 -0.11734 -0.30606 0.24696 -0.18325 0.14642 -0.20843 -0.20843	6.3293 eV	195.89 nm	f=0.0039	<s**2>=0.000</s**2>

5-*out* 11.8%

88.2%

Reference

Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Ioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2010**.