Supporting Information

terpolymerization of propylene oxide, cyclohexene oxide and CO_2

Joby Sebastian^{†, ‡}, Darbha Srinivas^{†, ‡, *}

[†]Catalysis Division, CSIR-National Chemical Laboratory, Pune-411 008, India.

[‡]Academy of Scientific and Innovative Research (AcSIR), New Delhi- 110 001, India.

E-mail: d.srinivas@ncl.res.in, Tel: +91 20 2590 2018, Fax: +91 20 2590 2633.

- **S1.** ¹H NMR spectrum of PCHC.
- **S2.** ¹H NMR spectrum of PPC.
- **S3.** ¹H NMR spectra of all polycarbonates.
- **S4.** ¹³C inverse gated NMR of the copolymers and terpolymer in the CH and CH₂ regions of PPC.
- **S5.** 13 C inverse gated NMR of the copolymers and terpolymer in the CH₃ region.
- **S6.** Thermograms of PPC, PCHC and terpolymer.
- **S7.** FTIR of Co-Zn DMC catalysts.
- S8. DRIFT spectrum of adsorbed pyridine on DMC-II showing bands due to Lewis acid sites..
- **S9.** NH_3 -TPD of DMC-II.
- **S10** Powder XRD of PCHC and terpolymer produced using DMC-II catalyst.
- **S11** SEM images of PCHC and terpolymer produced over DMC-II
- **S12.** ¹H NMR spectrum of crude terpolymer synthesised over DMC-II.
- **S13.** Reaction time verses reactor pressure at different reaction conditions.
- **S14.** PXRD patterns of fresh and spent DMC-II catalyst.

S1. ¹H NMR spectrum of purified PCHC.

S2. ¹H NMR spectrum of purified PPC.

S3. ¹H NMR spectra of PPC, PCHC, PPC + PCHC physical blend and PO-CHO-CO₂ terpolymer.

S4. Inverse-gated ¹³C NMR of the polycarbonates in the CH (72.07 and 72.30 ppm) and CH₂ (68.93 ppm) regions of PPC. The terpolymer spectrum appeared as broad peaks without considerable splits as in the blend and PPC. It also clear that there is a change in tacticity pattern for the terpolymer as compared to PPC (reversal of intensity distribution of 72.30 ppm in terpolymer as compared to PPC).

S5. ¹³C inverse gated NMR of the polycarbonates in the CH₃ region (16.17 and 16.63 ppm) of PPC and CH₂ region (22.8 and 29.64 ppm) of PCHC. No major difference was observed in the CH₃ region of terpolymer as compared to PPC, but the peaks appeared as merged in case of CH₂ regions of terpolymer as compared to PCHC.

S6. Thermograms of PPC, PCHC and terpolymer synthesized over DMC-II.

S7. FTIR of (a) DMC-I and (b) DMC-II catalysts. Band assignments are given below.

Band position (cm ⁻¹)	Band assignment
3590	-OH stretch
2955	-C-H stretch
2191	-CN stretch
1614	-OH bending (H_2O)
1465	-CH scissoring
1370	-OH bending (tert-butanol)
1190	3°-C-O stretch
475	Co-CN stretch

S8. DRIFT spectra of adsorbed pyridine on DMC-II showing bands due to Lewis acid sites.

89. NH₃-TPD of DMC-II.

S10. PXRD of PCHC and terpolymer produced using DMC-II catalyst.

S11. SEM images of PCHC and PO-CHO-CO $_2$ terpolymer produced over DMC-II.

S12. ¹H NMR spectrum of crude terpolymer synthesised over DMC-II. The assigned peaks correspond to cyclic propylene carbonate (PC).

S13. Reaction time verses reactor pressure at different reaction conditionsusing DMC-II as catalyst. (a) effect of temperature, (b) effect of CO₂ pressure, (c) effect of catalyst quantity and (d) effect of % PO in reactant epoxide mixture.

S14. PXRD patterns of fresh and spent DMC-II catalyst. Reaction conditions: CHO = 5.6 g, PO = 3.5 g, CHO : PO molar ratio = 1:1, catalyst = 0.226 g, toluene = 8.7 g, p_{CO2} = 30 bar, reaction time = 11 h, reaction temperature = 85°C.