Supplementary Information

Energetic stability and photocatalytic activity of SrTiO₃ nanowires: *Ab initio* simulations

Andrei V. Bandura¹, Robert A. Evarestov¹ and Yuri F. Zhukovskii^{2,*}

The band structures of both non-stoichiometric and stoichiometric $SrTiO_3$ nanowires in the vicinity of the energy gaps $\Delta \varepsilon_{gap}$ between the tops of the valence band (VB) and the bottoms of the conduction band (CB) or the Fermi levels (E_F) have been calculated using the hybrid DFT-LCAO *PBE0* method within the formalism of the localized atomic orbitals [1]. The band structures of non-stoichiometric 4×4 STO NWs with SrO and TiO₂ terminations are shown in Figs. *SI*1a,b, respectively. In both cases, the bottoms of the CBs are crossed by the Fermi levels.

Figure SII. Electronic band structure of non-stoichiometric 4×4 SrTiO₃ nanowires along the *k* vector with overall symmetric: (a) SrO-termination and (b) TiO₂-termination.

Obviously, the band structures of non-stoichiometric NWs obtained in the current study can be described as non-direct since the CB bottom is achieved at Γ point of the BZ, whereas the VB top corresponds to Z point for both terminations, analogously to Ref. [2].

Analogously to both types of non-stoichiometric nanowires, the band gaps of stoichiometric nanowires (Fig. *SI*2) remain non-direct since the CB bottom is achieved at Γ point of the Brilluoin zone (BZ), whereas the VB top corresponds to Z point. Values of $\Delta \varepsilon_{gap}$ are noticeably smaller than those for TiO₂terminated SrTiO₃ nanowires and markedly smaller as compared to SrO-terminated STO NWs when comparing those for similar values of d_{NW} :

$$\Delta \varepsilon_{gap}^{stoichiometric} < \Delta \varepsilon_{gap}^{TiO_2_non-stoichiometric} < \Delta \varepsilon_{gap}^{SrO_non-stoichiometric} \,.$$

The widths of band gaps of both nonstoichiometric and stoichiometric STO nanowires consequently decrease with growing values of d_{NW} for the same NW morphology.

Figure SI2. The electronic band structure of stoichiometric 5×5 SrTiO₃ nanowire along the *k* vector.

C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
Q. Fu, T. He, J.L. Li, and G.W. Yang, J. Appl. Phys. 112, 104322 (2012).

¹ St. Petersburg State University, Chemistry Faculty, Petrodvorets (St. Petersburg), Russian Federation

² Institute of Solid State Physics, University of Latvia, Riga, Latvia

^{*} Corresponding author <quantzh@latnet.lv>