Electronic Supporting information

Rhodamine Appended Hexaphenylbenzene Derivative: Through Bond Energy Transfer for Sensing of Picric Acid

Radhika Chopra, Vandana Bhalla,* Manoj Kumar* and Sharanjeet Kaur

Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev

University, Amritsar-143005, Punjab, India

Page No. Contents

- S3 Spectral overlap of absorption spectrum of rhodamine B and emission spectrum ofHPB-amine 3 in methanol and UV-vis absorption spectra of derivative 5 in methanol.
- S4 Absorption spectra of derivative 5 in methanol with the addition of 4-nitrophenol (NP), 2,4-dinitrophenol, 4- nitrotoluene (NT), 2,4-dinitrotoluene (DNT), 1,4-benzoquinone (BQ), nitromethane (NM), 1,4-dinitrobenzene (DNB), benzoic acid (BA), 4-nitrobenzoic acid (NBA) and fluorescence emission spectra of derivative 3 and derivative 5 in methanol.
- **S5** Fluorescence emission spectra of derivative **5** in presence of picric acid (PA) and rhodamine hydrazide in methanol and energy transfer efficiency of derivative **5**.
- **S6** Fluorescence lifetime decay profile of derivative **5** with the addition of PA and comparative photophysical properties of derivative **5** and **5** + PA.
- S7 Fluorescence emission spectra of derivative 5 (5 μM) in methanol with the addition of of trifluoroacetic acid (TFA) and reversibility and reusability of the derivative 5 for the sensing of PA by adding sequentially PA and OH⁻ ions in methanol.
- **S8** Fluorescence emission spectra of equimolar mixture of derivative **3** and rhodamine hydrazide in methanol.
- **S9-10** Overlay ¹H NMR spectrum of derivative **5** and titration with PA.
- **S11** Fluorescence emission spectra of derivative **5** in methanol with the addition of 4nitrophenol (NP), 2,4-dinitrophenol (DNP), 4-nitrotoluene (NT), 2,4-dinitrotoluene

(DNT), 1,4-benzoquinone (BQ), nitromethane (NM), 1,4-dinitrobenzene (DNB), benzoic acid (BA), 4-nitrobenzoic acid (NBA) and competitive selectivity of derivative **5** towards PA in presence of various nitroaromatics in methanol.

- S12 Detection limit plot of derivative 5 for PA in methanol.
- S13 Fluorescence emission spectra of derivative 5 in methanol in presence of metal ions (Fe³⁺, Fe²⁺, Pb²⁺, Cd²⁺, Cu²⁺, Zn²⁺, Ni²⁺, Ag⁺, Co²⁺, Mg²⁺, Li⁺, Na⁺ and K⁺) and selectivity graph of derivative 5 towards Hg²⁺ amongst metal ions.
- S14 Fluorescence emission spectra of derivative 5 (5 μ M) in pure methanol with the addition of 20 equiv. of Hg²⁺ ions and fluorescence emission spectra of derivative 5-Hg²⁺ in pure methanol with the addition of OH⁻ ions.
- **S15** Fluorescence emission spectra of derivative **5** at different pH scale in methanol and fluorescence emission spectra of derivative **6** in methanol with the addition of PA.
- **S16-18** ¹H NMR, ¹³C NMR and Mass spectra of derivative **3**.
- **S19-21** ¹H NMR, ¹³C NMR and Mass spectra of derivative 5.
- **S22** Comparison of selectivity, detection limit, sensing mechanism, stokes shift, solvent and reversibility of derivative **5** towards PA with literature reports.

Fig. S1 Spectral overlap of absorption spectrum of rhodamine B and emission spectrum of HPB-amine 3 in methanol.

Fig. S2 UV-vis absorption spectra of derivative 5 (5 μ M) in methanol.

Fig. S3 UV-vis absorption spectra of derivative 5 (5 μ M) in methanol with the addition of 60 equiv. of NP, DNP, NT, DNT, BQ, NM, DNB, BA and NBA.

Fig. S4 Fluorescence emission spectra of derivative 3 (5 μ M, red) and derivative 5 (5 μ M, blue) in methanol; λ_{ex} =314nm.

Fig. S5 Fluorescence emission spectra of derivative **5** (5 μ M, blue) in presence of PA and rhodamine hydrazide (5 μ M, pink) in methanol; $\lambda_{ex} = 314$ nm; equation used (I-I₀/I₀); I₀ = fluorescence intensity of rhodamine hydrazide at 578 nm; I = final fluorescence intensity at 578 nm of receptor **5** after the addition of picric acid.

Energy transfer efficiency of derivative 5

Energy transfer efficiency = [(fluorescence of donor) - (fluorescence of donor in derivative 5)/(fluorescence of donor)] * 100

 $\mathbf{E} = [946.96 - 34.191] / 946.96 * 100$

= 96.39 %

Fig. S6 Fluorescence life time decay profile of derivative 5 on addition of 30 equiv. of PA; $\lambda_{ex} = 314$ nm.

Table S1 Comparative photophysical properties of derivative 5 <u>monitored at corresponding</u> <u>emission spectra</u> on addition of picric acid; ^aA₁, A₂, A₃; fractional amount of molecules in each environment; ^b τ_1 , τ_2 , τ_3 are decay time constants.

S.No.	Biexponential	Triexponential	$\tau_1{}^b$	$ au_2^b$	$ au_3{}^b$	Chi SQ Value
Derivative	A_1/A_2^a		0.82 ns	4.28 ns		1.67034
5	66.46/33.54					
5 +PA		$A_1/A_2/A_3^b$	0.11 ns	0.943 ns	3.3 ns	0.6754582
		-6.29/116.01				
		/-9.73				

Fig. S7a Fluorescence emission spectra of derivative **5** (5 μ M) in methanol with the addition of 50 equiv. of trifluoroacetic acid (TFA); $\lambda_{ex} = 314$ nm.

Fig. S7b Fluorescence emission spectra of derivative **5** (5 μ M) in methanol with the addition of 51-120 equiv. of trifluoroacetic acid (TFA); $\lambda_{ex} = 314$ nm.

Fig. S8 Reversibility and reusability of the derivative 5 for the sensing of PA by adding sequentially PA and OH⁻ ions in methanol; $\lambda_{ex} = 314$ nm.

Fig. S9 Fluorescence emission spectra of equimolar mixture of derivative **3** (5 μ M) and rhodamine hydrazide (5 μ M) in methanol; $\lambda_{ex} = 314$ nm.

Fig. S10a Overlay ¹H NMR spectra (CDCl₃, 300 MHz, ppm) of derivative **5** with the addition of picric acid.

Fig. S10b Zoomed overlay ¹H NMR spectra of aromatic portion of derivative **5** with the addition of picric acid.

Fig. S10c Zoomed overlay ¹H NMR spectra of aliphatic portion of derivative **5** with the addition of picric acid.

Derivative 5 (δ_1 ppm)	5 + PA (δ_2 ppm)	$\Delta \delta_1 = \delta_1 - \delta_2$
7.99 (d, aromatic)	8.08 (d)	0.09
7.47 (d, aromatic)	7.62 (d)	0.15
7.20 (s, aromatic)	7.55 (s)	0.35
7.18 (s, aromatic)	7.51 (d)	0.33
7.13 (d, aromatic)	7.47 (s)	0.34
6.99 (d, aromatic)	7.15 (d)	0.16
6.61-6.83 (m, aromatic)	6.61-6.83 (m)	No change

Fig. S10d Change in chemical shift (δ) value of derivative 5 before and after addition of PA

6.25-6.29 (m, aromatic)	6.60-6.66 (m)	0.36				
3.30 (q, -NCH ₂ -)	3.55 (q)	0.25				
1.14 (t, -NCH ₂ CH ₃)	1.28 (t)	0.14				
A new broad signal appears at 3.02 ppm (-NH-)						

Fig. S11 Fluorescence emission spectra of derivative **5** (5 μ M) in methanol with the addition of 60 equiv. of NP, DNP, NT, DNT, BQ, NM, DNB, BA and NBA; $\lambda_{ex} = 314$ nm.

Fig. S12 Competitive selectivity of derivative 5 (5 μ M) towards PA in presence of various nitroaromatics (30 equiv) in methanol; $\lambda_{ex} = 314$ nm. Bars represent the emission intensity ratio (I–I₀/I). I₀ is the initial fluorescence intensity at 578 nm and I is the final fluorescence intensity at 578 nm after the addition of nitroaromatics. The blue bars represent the addition of nitroaromatics, while the red bars represent the change in the emission that occurs upon the subsequent

Fig. S13 Fluorescence intensity at 314 nm as a function of picric acid in methanol.

Fig. S14a Fluorescence emission spectra of derivative **5** (5 μ M) in methanol with the addition of 30 equiv. of metal ions (Fe³⁺, Fe²⁺, Pb²⁺, Cd²⁺, Cu²⁺, Zn²⁺, Ni²⁺, Ag⁺, Co²⁺, Mg²⁺, Li⁺, Na⁺ and K⁺); $\lambda_{ex} = 314$ nm.

Fig. S14b Selectivity graph of derivative **5** (5 μ M) towards Hg²⁺ amongst metal ions with respect to emission band at 314 nm.(1) Hg²⁺, (2) Fe³⁺, (3) Fe²⁺, (4) Pb²⁺, (5) Cd²⁺, (6) Cu²⁺, (7) Zn²⁺, (8) Ni²⁺, (9) Ag⁺, (10) Co²⁺, (11) Mg²⁺, (12) Li⁺, (13)

Fig. S15 Fluorescence emission spectra of derivative 5 (5 μ M) in methanol with the addition of 20 equiv. of Hg²⁺; $\lambda_{ex} = 314$ nm.

Fig. S16 Fluorescence emission spectra of derivative **5-Hg**²⁺ (5 μ M) in methanol with the addition of 12 equiv. of OH⁻ ions; $\lambda_{ex} = 314$ nm.

Fig. S17 Fluorescence emission spectra of derivative 5 (5 μ M) at different pH scale in methanol; $\lambda_{ex} = 314$ nm.

Fig. S18 Fluorescence emission spectra of the rivative 6 (5 μ M) in methanol with the addition of 30 equiv. of PA; $\lambda_{ex} = 314$ nm.

Fig. S20 ¹³C NMR (CDCl₃, 125 MHz, ppm) of derivative 3

Fig. S23 C^{13} NMR (CDCl₃, 125 MHz, ppm) of derivative 5

Publication	Selectivity Towards PA	Detection limit	Response with PA	Sensing Mechanism	Stokes Shift	Solvent	Reversibility with probe
Present manuscript	high	104.9 pg	Turn on	Through bond energy transfer	264 nm	МеОН	Yes
<i>J. Mater. Chem.</i> 2008, 18 , 3143	Low	100 pg	Turn on	Excited state electron transfer	148 nm	Toluene	Not mentioned
<i>Chem. Commun.</i> 2013, 49 , 4764	high	70 nM	Turn on	Intramolecular charge transfer	64 nm	CH ₃ CN:H ₂ O (9 : 1, v/v)	Not mentioned
<i>RSC Advances,</i> 2014, 4 , 7120	high	162 ppb	Turn on	Inhibition of photo-induced electron transfer process	46 nm	CH ₃ CN:H ₂ O (9:1; v/v)	Not mentioned
<i>RSC Advances,</i> 2014, 4 , 30828	high	45 nM	Turn on	Intermolecular hydrogen bonding	77 nm	H ₂ O	Not mentioned
J. Mater. Chem.	high	26 nM	Turn on	photoinduced	187 nm	H ₂ O:EtOH	Not

2014, 2 , 3936		intermolecular	(6:4)	mentioned
		excited state		
		proton transfer		

Table S2 Comparison of selectivity, detection limit, sensing mechanism, stokes shift, solvent and reversibility of derivative **5** towards PA with literature reports.