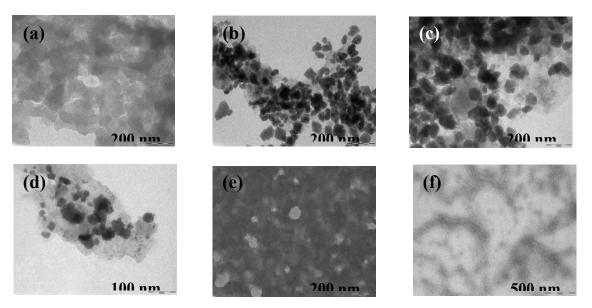
# $Zn^{2+}$ and $Cu^{2+}$ induced nanosheets and nanotubes in six

## different lectins by TEM

Khatija Tabbasum and Chebrolu Pulla Rao\*


Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay,

Powai, Mumbai 400 076, India. E-mail: cprao@iitb.ac.in

### Contents

| <ul> <li>SI 01 TEM micrographs of lectins in absence of metal ions</li> <li>SI 02 TEM micrographs of Plasmid PBR322 as control</li> <li>SI 03 AFM micrographs of Zn<sup>2+</sup> induced nanosheets in PNA</li> </ul> | S2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                       | S2 |
|                                                                                                                                                                                                                       | S3 |
| SI 04 SEM micrographs of Zn <sup>2+</sup> and Cu <sup>2+</sup> induced nanosheets in PNA                                                                                                                              | S4 |

SI 01 TEM micrographs of lectins in absence of metal ions.



**Fig. S01** TEM micrographs for the control experiments carried out with lectins in the absence of  $Zn^{2+}$  or  $Cu^{2+}$  but keeping all the other experimental conditions same: (a) DBL, (b) PSA, (c) ConA, (d) PHA-E, (e) WGA and (f) ASA.

### SI 02 TEM micrographs of Plasmid PBR322 as control.

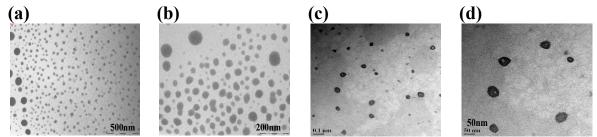



Fig. S02 TEM micrographs of PBR322: (a-d) control showing only PBR322.

# Thin sheets:<br/>made of fibersOpen/spreadRolling of sheets05μm5μm05μmStacked sheetsGrooves & ridgesCrumbled05μm06μm

SI 03 AFM micrographs of Zn<sup>2+</sup> induced nanosheets in PNA.

Fig. S03A AFM micrograph shows  $Zn^{2+}$  induced nanosheets from PNA. Different types are sheets have been marked.

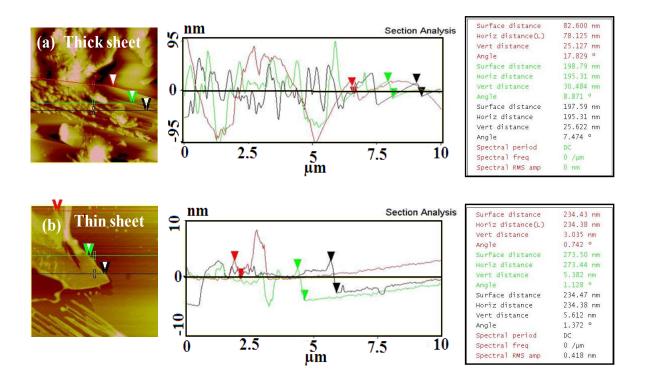



Fig. S03B Height measurements for (a) thick and (b) thin sheets at three positions calculated.

SI 04 SEM micrographs of Zn<sup>2+</sup> and Cu<sup>2+</sup> induced nanosheets in PNA.

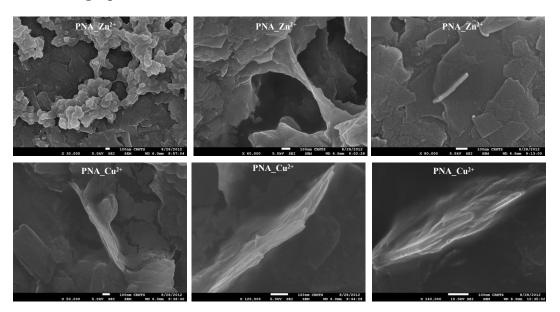



Fig. S04 SEM micrograph shows  $Zn^{2+}$  and  $Cu^{2+}$  induced nanosheets from PNA.