Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Benzamide [1]

ethyl acetate/hexane (2:1); yield: (79 mg, 65%); ¹H NMR (300 MHz, DMSO-d₆): δ = 7.43 (s, 1H), 7.45 - 7.63 (m, 9H), 7.85 -7.98 (m, 7H), 8.03 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ = 128.4 (2CH₂), 129.1 (2CH₂), 132.1 (CH), 135.2 (C), 168.8 (CO); GC-MS (EI, 70 eV): m/z (%) [M+]121 (81), 105 (100), 77 (95), 51 (40), 50 (23), 44 (10).

4-Methylbenzamide[1]

ethyl acetate/hexane (2:1); yield: (90 mg, 67%); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 2.38$ (s, 3H, CH₃), 7.26 – 7.31 (m, 2H), 7.32 (s, 1H), 7.78 – 7.85 (m, 2H), 7.94 (s, 1H, NH₂); ¹³C NMR (DMSO- d_6): δ = 21.8 (CH₃), 128.4 (2CH), 129.6 (2CH), 132.4 (C), 141.9 (C), 168.7 (CO); GC-MS (EI, 70 eV): m/z (%)[M⁺] 135 (58), 119 (100), 91 (84), 89 (22), 65 (45), 44 (43).

4-Methoxybenzamide [1]

ethyl acetate/hexane (2:1); yield: (126 mg, 83%); ¹H NMR (300 MHz, DMSO-d₆): δ = 3.83 (s, 3H), 6.99-7.03 (m, 2H), 7.27 (s, 1H), 7.85-8.00 (m, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ = 56.2 (OCH₃), 114.3 (2CH), 127.4 (C), 130.3 (2CH), 162.5 (C), 168.5 (CO); GC-MS (EI, 70 eV): m/z (%) [M⁺] 151 (51), 135 (100), 107 (11), 92 (17), 77 (24).

4-(Methylthio)benzamide [2]

ethyl acetate; yield: (90 mg, 54%); ¹H NMR (400 MHz, DMSO-*d*₆) δ = 3.30 (s, 3H), 7.70 (s, 1H), 8.02 – 8.09 (m, 2H), 8.09 - 8.19 (m, 2H), 8.26 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 44.2.3 (SCH₃), 127.9 (2CH), 129.3 (2CH), 12 139.7 (C), 143.8 (C), 167.5 (CO); GC-MS (EI, 70 eV): *m/z* (%)[M⁺] 167 (89), 151 (100), 108 (24), 82 (11), 69 (17), 45 (35) 44 (34).

3-Methoylbenzamide [3]

ethyl acetate/hexane (2:1); yield: (130 mg, 86%); ¹H NMR (300 MHz, DMSO-d₆): δ = 3.83 (s, 3H, OCH₃), 7.11 (ddd, J = 8.1, 2.6, 1.0 Hz, 1H), 7.32 - 7.56 (m, 4H), 8.03 (s, 1H); 13 C NMR (75 MHz, DMSO- d_{θ}) $\delta = 56.1$ (OCH₃), 113.6, 117.9, 120.6, 130.2 (CH), 136.6 (C), 160.0 (C), 168.58. (CO); GC-MS (EI, 70 eV): m/z (%)[M+] 151 (86), 150 (18), 135 (100), 107 (47), 92 (48), 77 (56), 63 (48), 44 (46), 38 (14).

3,5-Dimethylbenzamide[4]

ethyl acetate/hexane (2:1); yield: (130 mg, 87%); ¹H NMR (300 MHz, DMSO-d₆): δ = 2.33 (S, 3H, CH₃), 2.34 (s, 3H, CH₃), 7.16-7.18 (m, 1H), 7.31 (s, 1H), 7.52-7.53 (m, 2H), 7.91 (s, 1H); 13 C NMR (75 MHz, DMSO-*d*₆): δ = 21.7 (CH₃), 21.8 (CH₃), 126.2 (2CH), 133.3 (C), 135.2 (CH), 138.1 (2C), 169.1 (CO); GC-MS (EI, 70 eV): m/z (%) [M⁺] 149 (59), 133 (100), 105 (60), 103 (24), 77 (42), 44 (44).

4-(tert-Butyl)benzamide[1]

ethyl acetate/hexane (2:1); yield: (80 mg, 45%); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.33$ (S, 9H, CH₃), 7.31 (s, 1H), 7.45-7.52 (m, 2H), 7.80-7.87 (m, 2H), 7.94 (s, 1H); 13 C NMR (75 MHz, DMSO- d_6) δ = 31.8 (3CH₃), 35.4 (CCH₃), 125.8 (2CH), 128.2 (2CH), 132.4 (C), 154.8 (C), 168.7 (CO); GC-MS (EI, 70 eV): m/z (%) [M⁺] 177 (17), 163 (11), 162 (100), 115 (14), 91 (42), 44 (26).

4-Trifluoromethylbenzamide [1]

ethyl acetate/hexane (2:1); yield: (110 mg, 58%); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 7.68$ (s, 1H), 7.86 (dt, J = 8.2, 0.7Hz, 2H), 8.11 (dt, J = 8.2, 0.7 Hz, 2H), 8.25 (s, 1H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ = 124.8 (q, ¹J_{CF3} = 272.2 Hz, CF₃) 126.15 (q, ⁴J_{CF3}, = 3.8 Hz, CH), 129.2 (CH), 132.08 (q, ³J_{CF3} = 32.0 Hz), 138.9 , 167.62 (CO); ¹⁹F NMR (282 MHz, DMSO-*d*₆); δ = -61.03 (F). GC-MS (EI, 70 eV): *m/z* (%) [M⁺] 189 (61), 173 (100), 145 (98), 95 (15), 75 (14).

Nicotinamide[1]

ethyl acetate; yield: (112 mg, 92%); ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.52-7.55 (m, 1H), 7.66 (s, 1H), 8.03 - 8.51 (m, 2H), 8.76 (s, 1H), 9.10 (s, 1H). ¹³CNMR (DMSO-d₆): δ =124.5 (CH), 130.7 (C), 136.1 (CH), 149.6 (CH), 152.8 (CH), 163.7 (CO); GC-MS (EI, 70 eV): m/z (%)[M+] 122 (100), 106 (60), 78 (75), 51 (36), 50 (18), 44 (10).

```
Isonicotinamide [1]
```


ethyl acetate; yield: (115 mg, 94%); ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.76 (s, 1H), 7.73 – 7.89 (m, 2H), 8.29 (s, 1H), 8.47 - 8.89 (m, 2H); 13 C NMR (100 MHz, DMSO-d₆) δ = 122.3 (2CH), 142.2 (C), 151.1 (2CH), 167.3 (CO); GC-MS (EI, 70 eV): *m/z* (%)[M⁺] 122 (100), 106 (43), 79 (11), 78 (56), 50 (19), 44 (11).

Thiophene-2-carboxamide. [1]

ethyl acetate; yield: (60 mg, 47%); ¹H NMR (300 MHz, DMSO- d_0) δ = 7.16 (dd, J = 4.9, 3.7 Hz, 1H), 7.42 (s, 1H), 7.51 - 7.92 (m, 2H), 8.00 (s, 1H).; ¹³CNMR (75 MHz, DMSO-d₆): δ = 128. (CH), 129.5 (CH), 131.8 (CH), 141.2 (C), 163.7 (CO). GC-MS (EI, 70 eV): *m/z* (%) [M⁺] 127 (51), 111 (100), 83 (13), 58 (10), 39 (36).

Quinoline-3-carboxamide [5]

ethyl acetate; yield: (168 mg, 97%); ¹H NMR (300 MHz, DMSO- d_6) δ = 7.74 (ddd, J = 8.0, 6.9, 1.2 Hz, 2H), 7.91 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H), 8.00 – 8.19 (m, 2H), 8.37 (s, 1H), 8.91 (d, *J* = 2.2 Hz, 1H), 9.36 (d, *J* = 2.2 Hz, 1H); ¹³CNMR (75 MHz, DMSO-*d*₆); δ = 127.5 (CH), 127.7 (C), 128.3 (CH), 129.5 (CH), 130.0 (C), 132.1 (CH), 136.8 (CH), 149.2 (CH), 149.9 (C), 167.3 (CO); GC-MS (EI, 70 eV): m/z (%)[M⁺] 172 (85), 156 (69), 155 (20), 129 (12), 128 (100), 127 (19), 101 (54), 75 (37), 44 (40).

2-Naphthamide [2]

ethyl acetate/hexane (2:1); yield: (60 mg, 35%); ¹H NMR (300 MHz, DMSO-d₆): δ = 7.54 (s, 1H), 7.57-7.70 (m, 2H), 7.93-8.10 (m, 4H), 8.20 (s, 1H), 8.54 (s, 1H); ¹³CNMR (DMSO-d₆): $\delta = 125.3$, 127.5, 128.5, 128.7, 129.8, 132.5, 133.1 135.1, 168.9 (CO); GC-MS (EI, 70 eV): m/z (%)[M+] 171 (80), 156 (12), 155 (99), 127 (100), 75 (10).

1-Naphthamide [1]

ethyl acetate/hexane (2:1); yield: (100 mg, 58%); ¹H NMR (300 MHz, DMSO- d_{δ}): $\delta = 7.49-7.78$ (m, 5H), 7.99-8.06 (m, 3H), 8.32-8.42 (m, 1H); ¹³C NMR (DMSO-d₆): δ = 125.8, 126.0, 126.5, 127.0, 127.5, 129.1, 130.6 (CH), 130.7, 134.1, 135.5 (C), 171.5 (CO); GC-MS (EI, 70 eV): *m/z* (%)[M⁺] 171 (86), 170 (31), 156 (9), 155 (82), 127 (100), 126 (25) 77 (11).

6-Methoxy-2-naphthamide[6]

ethyl acetate/hexane (2:1); yield: (70 mg, 35%); ¹H NMR (300 MHz, DMSO-d₆): ¹H NMR (300 MHz, DMSO*d*₆) δ = 3.93 (s, 3H, OCH₃), 7.26 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.41 (d, *J* = 2.7 Hz, 2H), 7.82 - 8.03 (m, 3H), 8.09 (s, 1H), 8.45 (s, 1H); ¹³CNMR (75 MHz, DMSO-*d*₆): δ = 56.2 (OCH₃), 106.7 (CH), 120.2 (CH), 125.8 (CH), 127.4 (CH), 128.3 (CH), 128.6 (CH), 130.2 (C), 136.6 (C), 159.4 (C), 168.9 (CO); GC-MS (EI, 70 eV): m/z (%)[M⁺] 201 (15), 84 (34), 66 (42), 43 (100), 42 (24), 42 (36).

[1,1'-Biphenyl]-4-carboxamide[7]

ethyl acetate/hexane (2:1); yield: (91 mg, 46%); ¹H NMR (300 MHz, DMSO-d₆): δ = 7.35-7.58 (m, 4H), 7.70-7.87 (m, 4H), 7.97-8.06 (m, 2H), 8.09 (s, 1H); ¹³CNMR (75 MHz, DMSO- d_{δ}): $\delta = 127.3$ (2CH), 127.7 (2CH), 128.9 (CH), 129.1 (2CH), 129.9 (2CH), 134.0 (C), 140.1 (C), 143.6 (C), 168.5 (CO); GC-MS (EI, 70 eV): m/z (%)[M⁺] 197 (71), 181 (100), 153 (34), 152 (66), 151 (20), 76 (14).

1H-Indole-6-carboxamide[8]

ethyl acetate; yield: (140 mg, 87%); ¹H NMR (300 MHz, DMSO- d_6): ¹H NMR (300 MHz, CDCl₃) $\delta = 6.57$ (ddd, J = 3.0, 1.9, 0.9 Hz, 1H), 7.13 – 7.28 (m, 2H), 7.32 – 7.48 (m, 2H), 7.65 (dd, J = 8.6, 1.8 Hz, 1H), 8.15 (s, 1H); ¹³C NMR (75 MHz, DMSO. d_6) $\delta = 102.9, 111.6, 121.2, 121.7, 126.1, 127.4, 127.8, 138.3, 169.9$ (CO); GC-MS (EI, 70 eV): m/z (%)[M⁺] 160 (89), 144 (100), 143 (13), 89 (49), 63 (28), 44 (30).

Anthracene-9-carboxamide[9]

ethyl acetate; yield: (60 mg, 27%);¹H NMR (400 MHz, DMSO- d_6) δ 7.51 – 7.78 (m, 5H), 8.03 – 8.21 (m, 5H), 8.31 (s, 1H), 8.68 (s, 1H). ¹³C NMR (75 MHz, DMSO- d_6) δ = 126.3 (CH), 126.4 (CH), 127.2 (CH), 127.7 (CH), 129.2 (CH), 131.6 (C), 134.6 (C), 171.1 (CO).

- 1. X. -F. Wu, H. Neumann, M. Beller, Chem. Eur. J. 2010, 16, 9750 9753.
- 2. X.-F. Wu, M. Sharif, J.-B. Feng, H. Neumann, A. Pews-Davtyan, P. Langer, M. Beller, Green Chem., 2013, 15, 1956–1961.
- 3. X. -F. Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf, M. Beller, Chem. Commun., 2012, 48, 12237-12239.
- 4. W. Wang, X. Zhao, J. Wang, X. Geng, J. Gong, X. Hao, M. Song, Tetrahedron Lett. 2014, 55, 3192-3194.
- 5. T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Commun., 2009, 3258–3260.
- 6. L. Cao, J. Ding, M. Gao, Z. Wang, J. Li, A. Wu, Org. Lett., 2009, 11, 3810-3813.
- 7. B. Tao, D. W. Boykin, J. Org. Chem., 2004, 69, 4330-4335.
- 8. L. Burgdore, D. Kuhn, T. Ross, C. Deutsch, Patent: WO2014/23385 A1, 2014
- 9. R. García-Álvarez, A. E. Díaz-Álvarez, J. Borge, P. Crochet, V. Cadierno, Organometallics, 2012, 31, 6482-6490.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

____2.34

____1.33

- 167.62 - 138.99 - 132.70 - 132.70 - 132.27 - 132.06 - 123.06 - 123.06

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 f1 (ppm)

¹⁹ F NMR (282 MHz, DMSO) δ -61.03.

NH2

тт (ррш

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)