Supporting information

Novel biodegradable poly(propylene fumarate)-*co*-poly(Llactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications

Xifeng Liu,^{ab} A. Lee Miller II,^{ab} Brian E. Waletzki,^{ab} Michael J. Yaszemski,^{ab} and Lichun Lu^{*ab}

^aDepartment of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. ^bDepartment of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA Corresponding Author: *Email: Lu.Lichun@mayo.edu

1. Experimental

Synthesis of PPF polymer

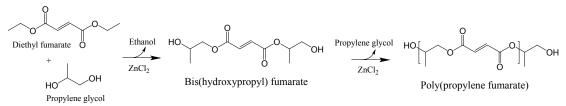


Figure S1. The synthesis route of PPF polymer for further copolymerization with L-lactide monomers.

2. Supplementary results

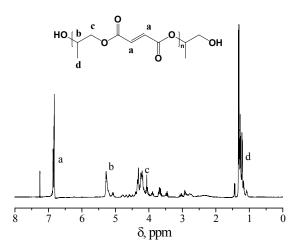


Figure S2. ¹H NMR for synthesized PPF polymer for further reaction with L-lactide monomers.

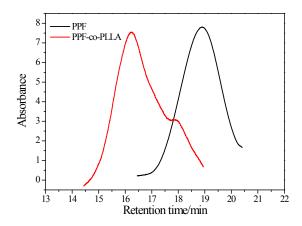
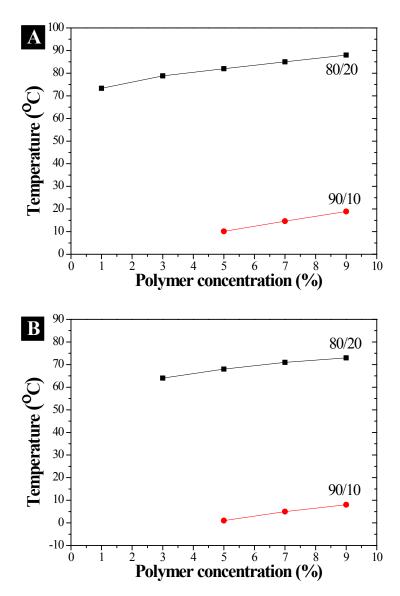



Figure S3. GPC chromatographs for PPF and PPF-co-PLLA polymers in THF eluent.

Figure S4. a) Cloud points, b) gelation temperature for PPF-*co*-PLLA polymer in dioxane/water with wt/wt ratios of 80/20 and 90/10.