Naked-eye and fluorescent detection of basic pH and F⁻ with a 1,8-naphthalimide-based multifunctional probe

Weiwei Du, Jie Xu, Haixia Li, Chengcheng Feng, Mingming Yu,*

Zhanxian Li* and Liuhe Wei

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China. E-mail: lizx@zzu.edu.cn; yumm@zzu.edu.cn; Fax/Tel: +86 371 67781205

Scheme S1 Synthetic route of compound 1.

Fig. S1 Absorption (left) and emission (right) spectra change of probe 1 (1.0×10^{-5} M, acetonitrile) upon addition of 60 µL water (red line).

Fig. S2 Photographs of compound 1 $(1.0 \times 10^{-5} \text{ M}, \text{ acetonitrile})$ upon addition of different anions (1 only, tetrabutyl ammonium chloride, t, Na₂SO₄, KNO₃, Na₂SO₃, NaHSO₄, NaHSO₃, and . from left to right) in aqueous solution in daylight (up) and under a UV lamp (365 nm, down).

Fig. S3 pH reversibility study of **1** between pH 3 and 13 with absorption and emission spectra. The excitation wavelength was 460 nm.

Fig. S4 F^- reversibility study of 1 with absorption and emission spectra (Black line, compound 1 in 3 mL CH₃CN; red line, compound 1 and 4 equiv F^- in 3 mL CH₃CN and 12 μ L water; green line, compound 1 and 4 equiv F^- in 3 mL CH₃CN and 80 μ L water; blue line, compound 1 in 3 mL CH₃CN and 72 μ L water.). The excitation wavelength was 460 nm.

Fig. S5 Absorption spectrum of probe 1 in different conditions.

Fig. S6 Absorption spectra change of probe 1 (1.0×10^{-5} M, acetonitrile) upon addition of F⁻ from toothpaste 1 and 2.

Fig. S7 Images of chromatography plates for the detection of F^- at various concentrations (0, 1.0×10^{-6} M, 1.0×10^{-5} M, 1.0×10^{-4} M, 1.0×10^{-3} M, 5.0×10^{-3} M, 1.0×10^{-2} M, 3.0×10^{-2} M, 5.0×10^{-2} M, 0.1 M, 0.2 M, from left to right) in water solutions