Fluorescence Chemosensors Based on

Functionalized SBA-15 for Detection of Pb^{2+} in

Aqueous Media

Liyan Zhao ${ }^{\dagger}$, Dan Sui ${ }^{*}$ and Yan Wang* ${ }^{*}$
\dagger Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001, China.
\# Management Office of Laboratory and Equipment (Center of Analysis and Testing), Northeast Forestry University, Harbin 150040.

Figure S1. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of compound CPA-8-HQL.

Figure S2. ${ }^{13} \mathrm{H}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ spectrum of compound CPA-8-HQL.

Figure S3. N_{2} adsorption-desorption isotherms of SBA-15, APTES/SBA-15, and CPA-8-HQL/SBA-15. Inset: the BJH pore size distribution of SBA-15 (\bigcirc), APTES/SBA-15 (\triangle), and CPA-8-HQL/SBA-15 (\square).

Table S1. Structural parameters of SBA-15, APTES/SBA-15, and CPA-8-HQL/SBA-15.

Sample	$\mathbf{S}_{\mathbf{B E T}^{\mathbf{a}}\left(\mathbf{m}^{\mathbf{2}} \mathbf{g}^{-\mathbf{1}}\right)} \mathbf{d}_{\mathbf{p}}^{\mathbf{b}}(\mathbf{n m})$	$\mathbf{V}_{\mathbf{p}}^{\mathbf{c}\left(\mathbf{c m}^{\mathbf{3}} \mathbf{g}^{\mathbf{- 1}}\right)}$	
SBA-15	439	7.4	0.66
APTES/SBA-15	378	6.5	0.47
CPA-8-HQL/SBA-15	258	6.2	0.45

${ }^{\text {a }}$ BET specific surface area obtained from adsorption isotherm data within the $\mathrm{P} / \mathrm{P} 0$ range of $0.05-0.35 .{ }^{\mathrm{b}} \mathrm{BJH}$ pore diameter obtained from desorption isotherm. ${ }^{\text {c Pore }}$ volume obtained from BJH analysis on desorption isotherm.

Detection Limit

The detection limit was determined from the fluorescence titration data based on a reported and broadly used method: [1,2] According to the result of titrating experiment, the fluorescent intensity data at 429 nm were normalized between the minimum intensity (0 equiv. Pb^{2+}) and the maximum intensity (16 equiv. of Pb^{2+}). A linear regression curve was then fitted to these normalized fluorescent intensity data and the concentration of Pb^{2+}. The point at which this line crossed the ordinate axis was considered as the detection limit. It was found that CPA-8-HQL/SBA-15 had a detection limit of $4.90 \times 10^{-7} \mathrm{M}$ for Pb^{2+}.

Figure S4. Emission (at 429 nm) of CPA-8-HQL/SBA-15 at different concentrations of $\mathrm{Pb}^{2+}(0.5,1,2,4,8$ and 16 eq) added, normalized between the minimum emission (0 equiv. of Pb^{2+}) and the maximum emission intensity (16 equiv. of Pb^{2+}). The detection limit was determined to be $4.90 \times 10^{-7} \mathrm{M}$.

References:

[1] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Anal. Chem. 68 (1996) 1414-1418.
[2] A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 127 (2005) 15666-15667.

