Supplementary Information (SI)

Can bicarbonate replace phosphate to improve the sustainability of bioelectrochemical systems for H₂ production?

Dawei Liang^{a,*}, Weiwei Xu^a, Yanyan Liu^a, Sikan Peng^a, Beizhen Xie^b, Shanfu Lu^a,

Yan Xiang^a, Hong Liu^b

^a Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, Beihang University, Beijing, 100191, China

 ^b Laborotory of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China

*Corresponding author: Dawei Liang

Email: <u>liangdw@buaa.edu.cn</u>

Tel: +86-10-82339539

Buffer type	Phosphate	Bicarbonate	рН	Conductivity
	(%)	(%)		(S/m)
P/C@100%	100	0	7.04	1.13
P/C@20%	20	80	8.40	1.30
P/C@0.8%	0.8	99.2	8.45	1.74
P/C@0%	0	100	8.47	1.80

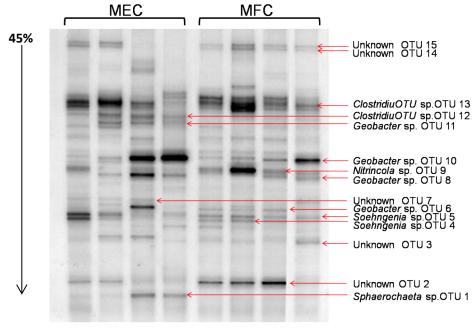

Table S1. pH and conductivity of different electrolyte buffer systems

Table S2. The BLAST results of the distinct DGGE band DNA in the bioanode of
MECs and MFCs operated with different buffers

Sample	Species Closest gene sequence		Identities	
OTU-1	Spirochaetaceae sp.	<i>Spirochaetaceae</i> bacterium S37_12_1 LK391556.1	151/151 (100%)	
OTU-2	Geoalkalibacter ferrihydriticus	Uncultured bacterium C4 AB630334.1	147/148(9 9%)	
OTU-3	_	Uncultured bacterium TB003- 114 AB196087.1	131/132 (99%)	
OTU-4	<i>Soehngenia</i> sp.	<i>Soehngenia</i> sp. B312138 HQ133002.1	120/122 (98%)	
OTU-5	Soehngeniasp.	<i>Soehngenia</i> sp. B312138 HQ133002.1	127/127 (100%)	
OTU-6	Geobacter sp.	Uncultured <i>Geobacter</i> sp. MEC25- 11 HM124838.1	152/152(1 00%)	
OTU-7	Bacteroidetes sp.	Uncultured <i>Bacteroidetes</i> bacterium C1016S KF193877.1	147/148 (99%)	
OTU-8	Geobacter sp.	Uncultured bacterium MFC4P_296 JF309187.1	152/152 (100%)	
OTU-9	<i>Nitrincola</i> sp.	<i>Nitrincola</i> sp. LAR05R9 JX945779.1	157/158 (99%)	
OTU-10	Geobacter sp.	Uncultured bacterium MEC_Bicarb_Ac-041 GQ152932.1	162/162 (100%)	
OTU-11	Geobacter sp.	Uncultured bacterium MECB5- C04 KF171498.1	144/145 (99%)	
OTU-12	Clostridium sp.	Uncultured <i>Clostridium</i> sp. 8 JX548536.1	147/147 (100%)	
OTU-13	Clostridium sp.	Uncultured <i>Clostridium</i> sp. 8 JX548536.1	143/144 (99%)	
OTU14	_	Acholeplasmamorum strain 72- 043 NR_042959.1	112/120 (93%)	
OTU15	_	Acholeplasmamorum strain 72- 043 NR_042959.1	112/120 (93%)	

Sample	Species	Closest gene sequence	Identities	
OTU-S1	Clostridium sp.	Uncultured <i>Clostridium</i> sp. isolate DGGE gel band 8 JX548536.1	146/146(1 00%)	
OTU-S2	Arcobacter sp.	Uncultured bacterium clone SanDiego_a6357 KF799750.1	138/138(1 00%)	
OTU-S3	Pseudomonas sp.	Pseudomonas sp. GRPAa2 GU939693.1	144/148(9 7%)	
OTU-S4	Geobacter sp.	Uncultured bacterium clone MFC4P_296 JF309187.1	151/151(1 00%)	
OTU-S5	Geobacter sp.	Geobacter sp. GSS01 KJ620987.1	151/151(1 00%)	
OTU-S6	Geobacter sp.	Geobacter sp. GSS01 KJ620987.1	148/152(9 7%)	
OTU-S7	Geobacter sp.	Geobacter sp. GSS01 KJ620987.1	150/153(9 8%)	
OTU-S8	Geobacter sp.	Geobacter sp. GSS01 KJ620987.1	149/149(1 00%)	
OTU-S9	Geobacter sp.	Uncultured bacterium clone MFC4P_296 JF309187.1	149/149(1 00%)	
OTU-S10	Geobacter sp.	Uncultured bacterium clone MFC4P_296 JF309187.1	149/149(1 00%)	

Table S3. The BLAST results of the distinct DGGE band DNA in the bioanodeofMECs with different applied voltages (0.5 V~1.0 V) and different time slot

P/C@ 0% 0.8% 20% 100% 0% 0.8% 20% 100%

Fig. S1 The DGGE profile showing the microbial diversity and population in the bioanodes of MECs, together with their precursor MFCs. All MECs and MFCs were operated with electrolyte buffers at different P/C ratios (with a total concentration of 0.1 M). The formamide gradient in DGGE gel is from 45% to 60%.

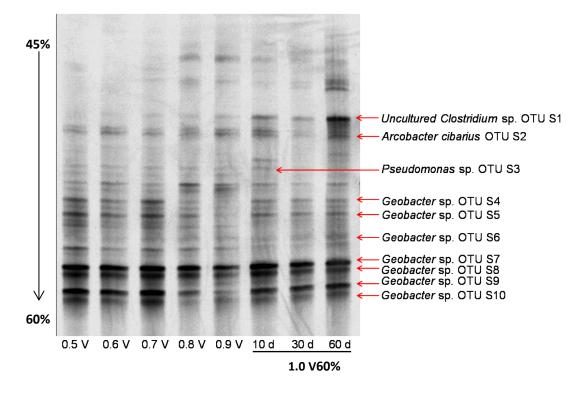


Fig.S2 The DGGE profile showing the microbial diversity and population in the bioanodes of MECs operated under different applied voltages (0.5 V~1.0V) and different time slot (1.0V: 10 d, 30 d, 60 d). All MECs were operated withthe electrolyte buffers at P/C@20% (total concentration: 0.1 M). The formamide gradient in DGGE gel is from 45% to 60%.