Investigation of threshold in laser-induced carbonization of sumanene derivatives through *in situ* observation utilizing a Raman spectroscope

Yuhi Inada,^a Toru Amaya^a and Toshikazu Hirao*^{a,b}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, (Japan). E-mail: hirao@chem.eng.osaka-u.ac.jp
^b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, (Japan).

Supplementary information

1) Materials preparation

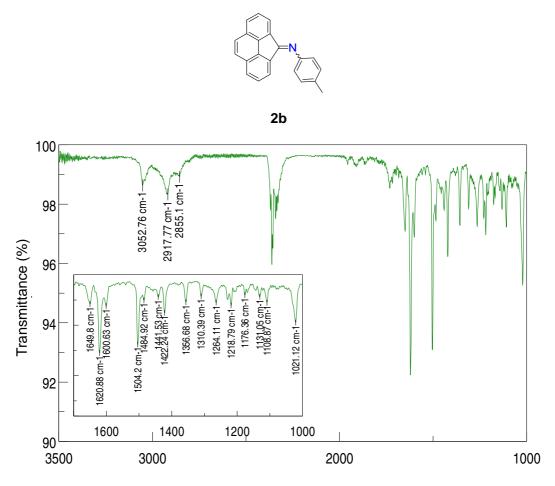
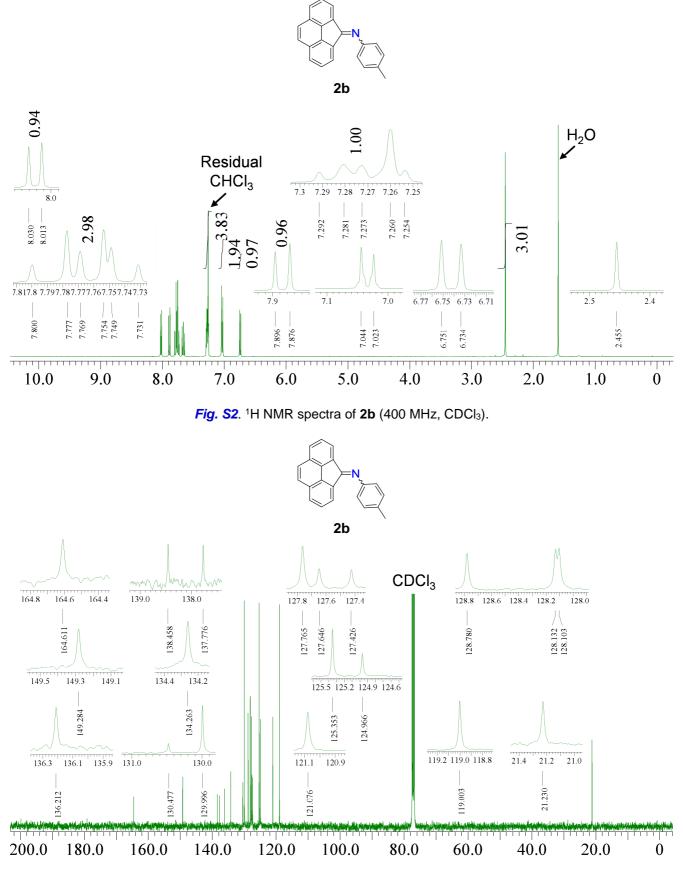
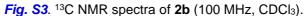




Fig. S1. FT-IR spectra of 2b (ATR, powder).

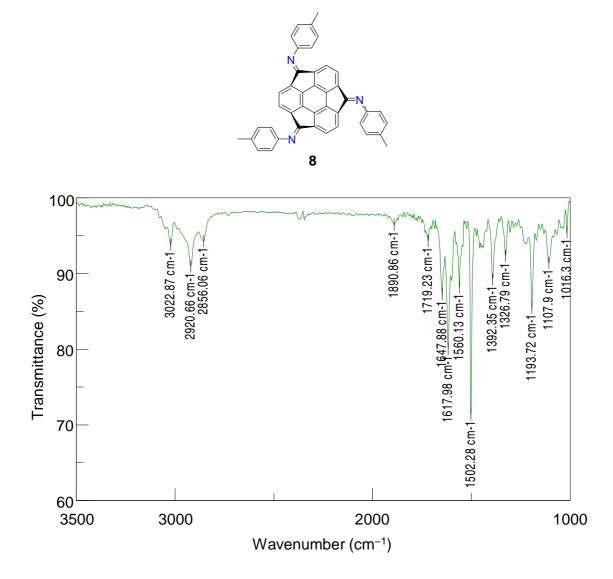
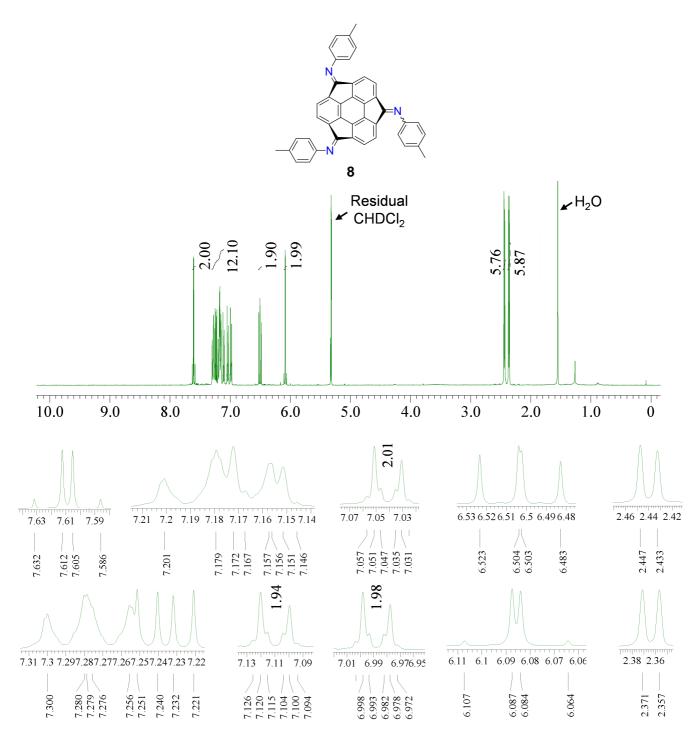
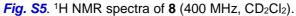
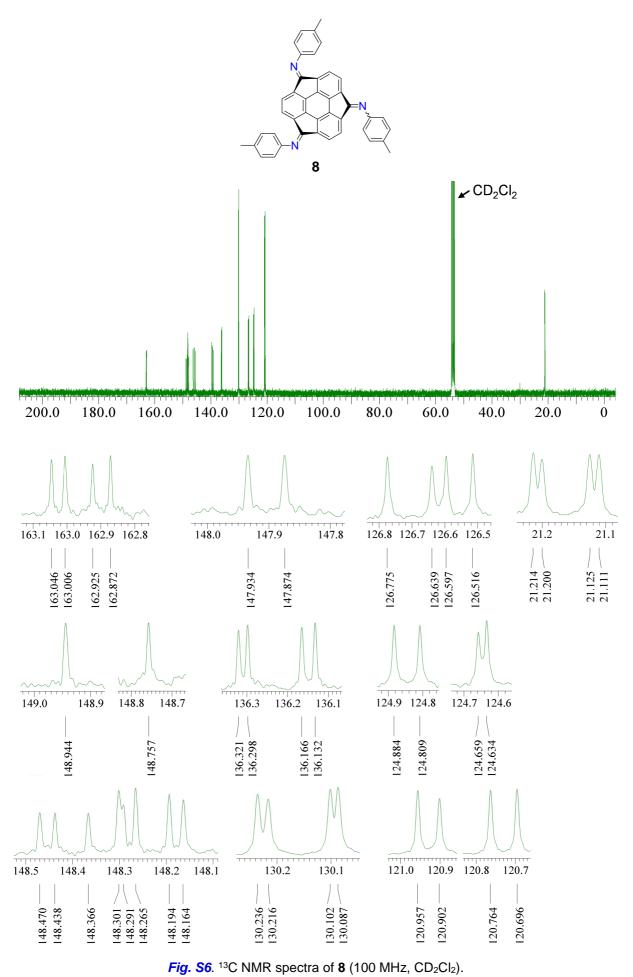
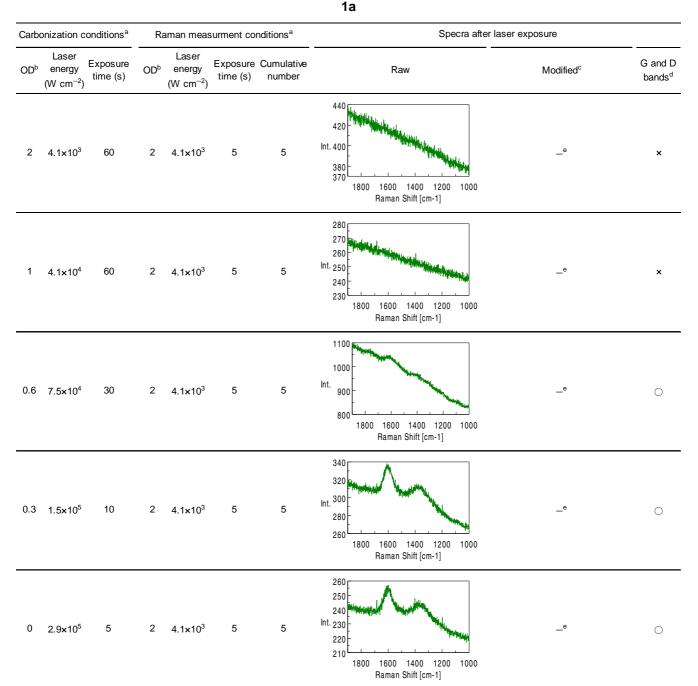





Fig. S4. FT-IR spectrum of 8 (KBr).



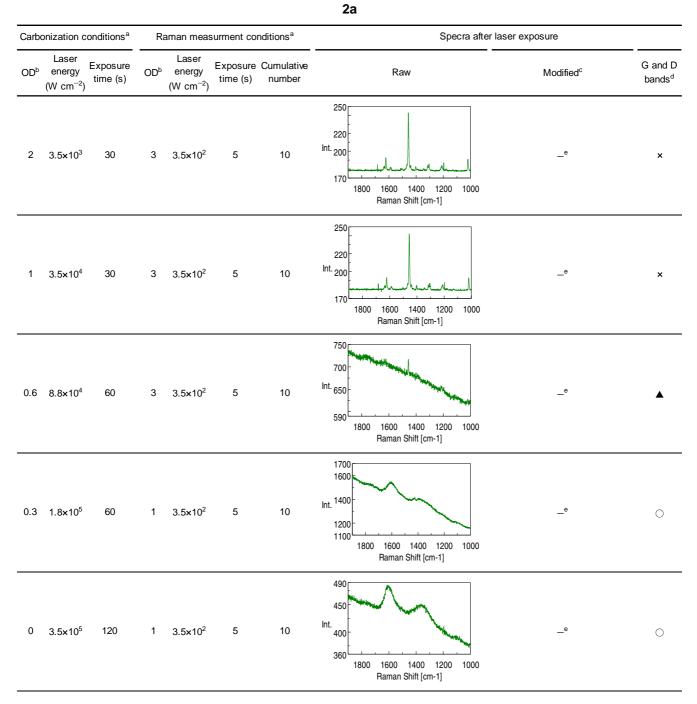
S6

2) Materials characterization

Table S1. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **1a** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.


^e The modified spectra are shown in Fig. 2a.

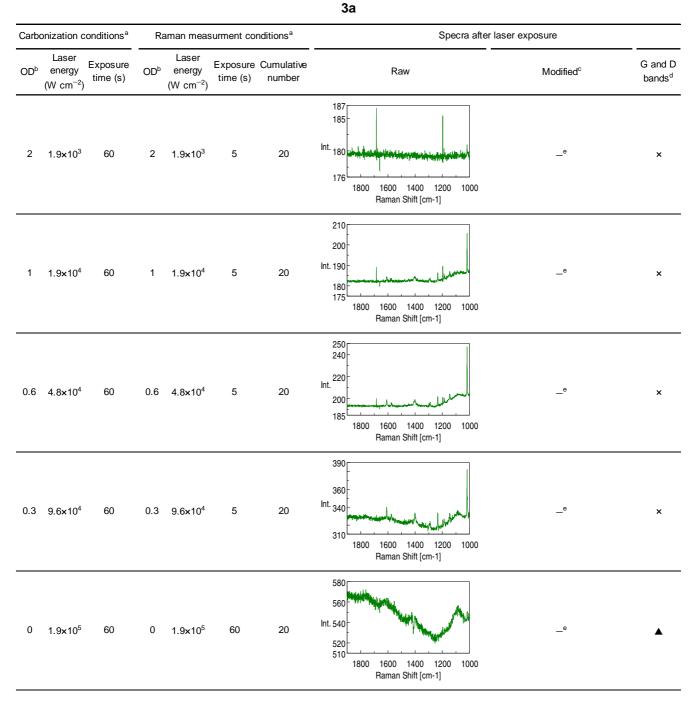
^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S2. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **2a** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.

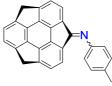

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

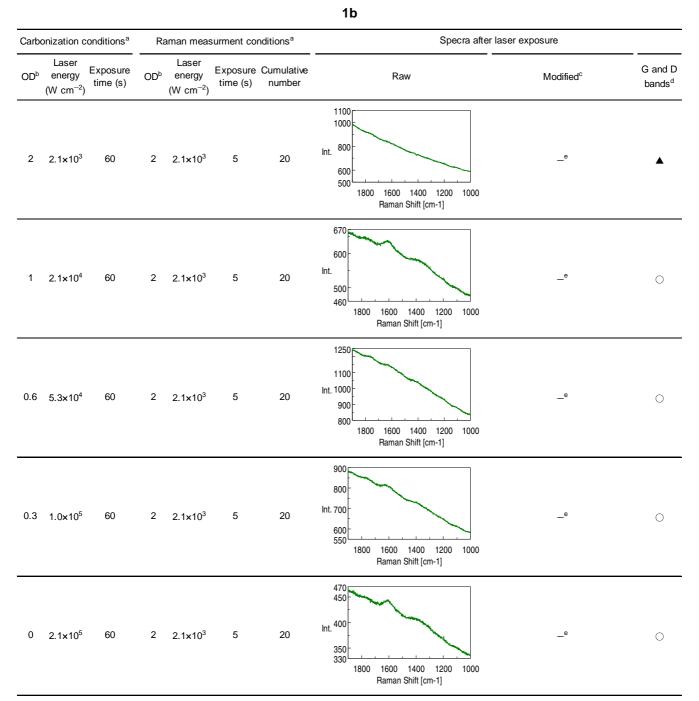
 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

^e The modified spectra are shown in Fig. 2b.

Table S3. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing 3a to 532 nm laser.

^a Magnification of objective lens was 100 times.


^b Optical density (OD) of a neutral density (ND) filter.


^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

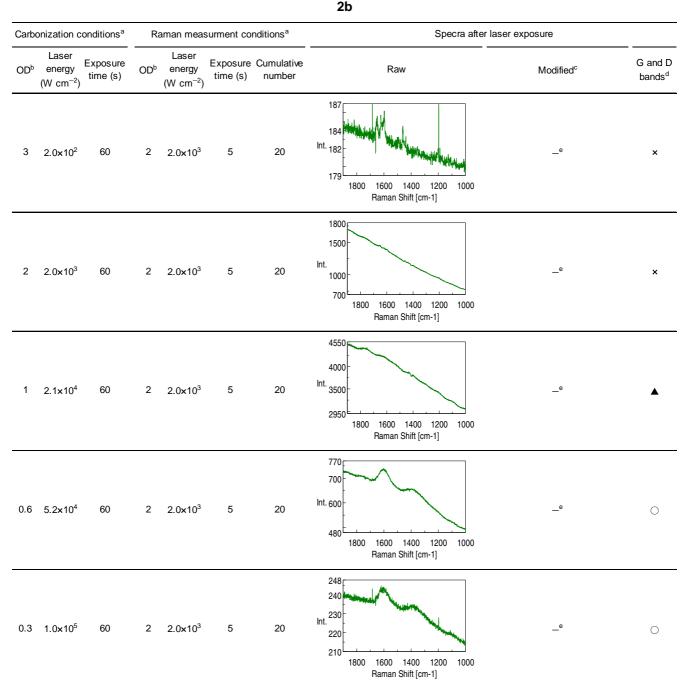
 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

^e The modified spectra are shown in Fig. 2c.

Table S4. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **1b** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.


^e The modified spectra are shown in Fig. 2d.

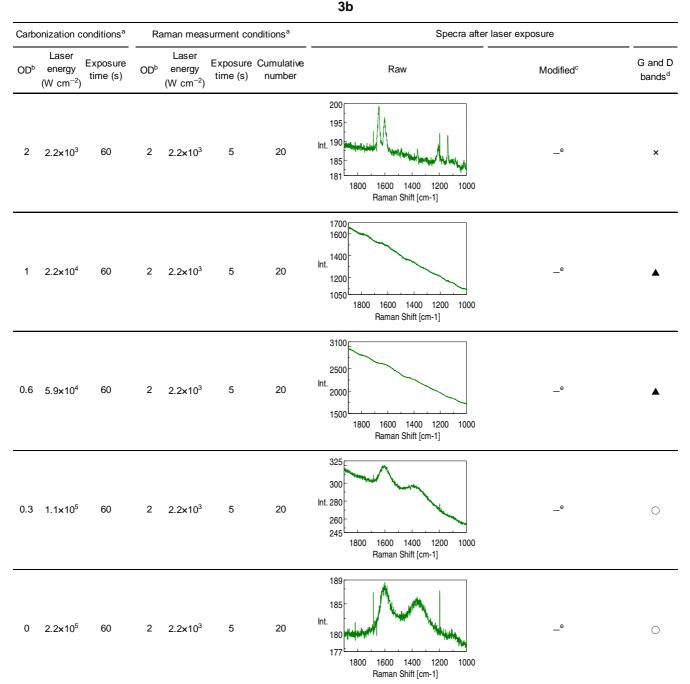
^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S5. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **2b** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^e The modified spectra are shown in Fig. 2e.


^b Optical density (OD) of a neutral density (ND) filter.

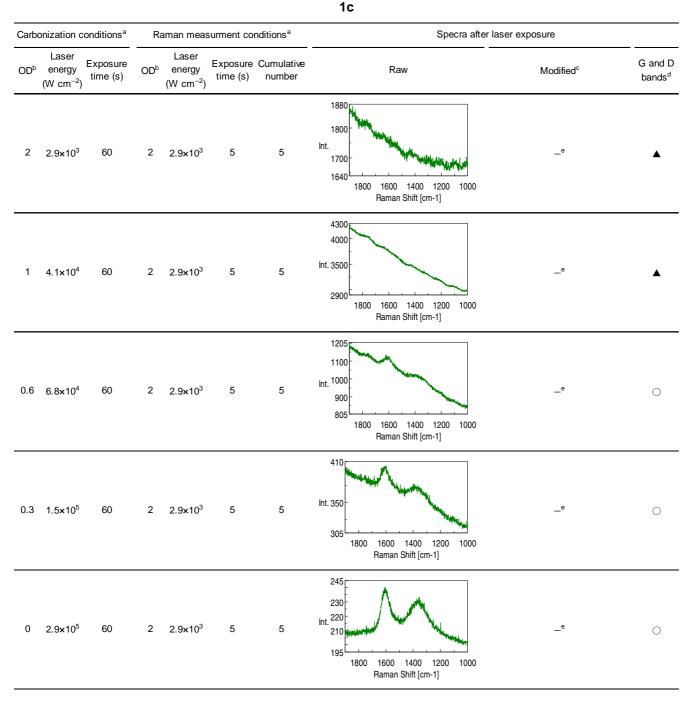
^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S6. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **3b** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.


^e The modified spectra are shown in Fig. 2f.

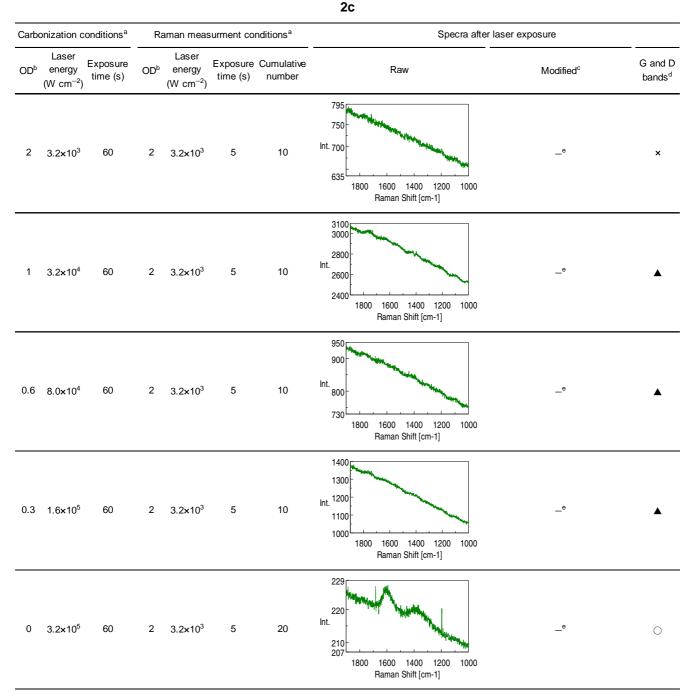
^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S7. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **1c** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.


^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

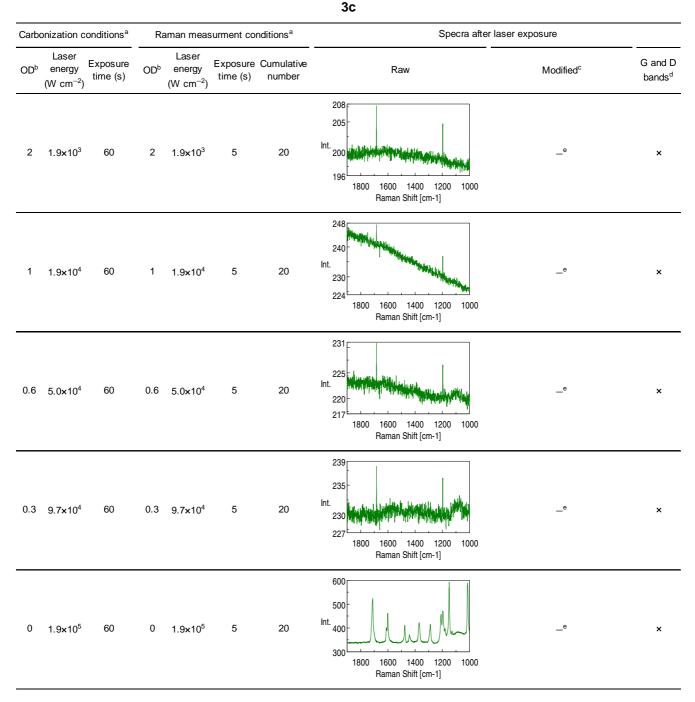
 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

^e The modified spectra are shown in Fig. 2g.

Table S8. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **2c** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.


^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

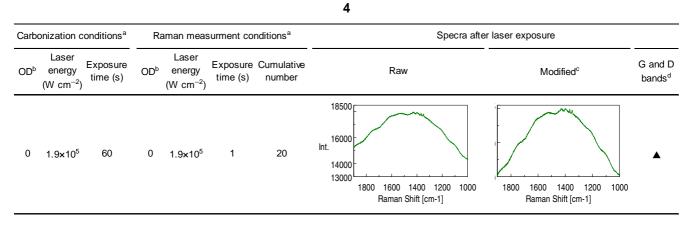
 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

^e The modified spectra are shown in Fig. 2h.

Table S9. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing 3c to 532 nm laser.

^a Magnification of objective lens was 100 times.

^e The modified spectra are shown in Fig. 2i.


^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S10. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **4** to 532 nm laser.

^a Magnification of objective lens was 100 times.

^b Optical density (OD) of a neutral density (ND) filter.

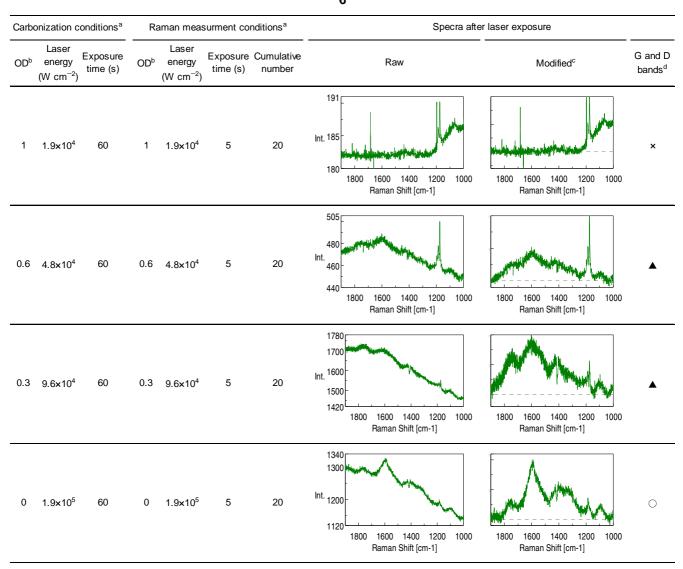
^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S11. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **5** to 532 nm laser.

							5			
Carbonization conditions ^a			Raman measurment conditions ^a				Specra after laser exposure			
OD ^b	Laser energy (W cm ⁻²)	Exposure time (s)	OD ^b	Laser energy (W cm ⁻²)	Exposure time (s)	Cumulative number	Raw	Modified ^c	G and D bands ^d	
2	3.8×10 ³	5	2	3.8×10 ³	5	20	490 450 400 360 1800 1600 1400 1200 1000 Raman Shift [cm-1]	1800 1600 1400 1200 1000 Raman Shift [cm-1]	×	
1	3.8×10 ⁴	5	1	3.8×10 ⁴	5	20	2100 Int. 1500 1050 1800 1600 1400 1200 1000 Raman Shift [cm-1]	1800 1600 1400 1200 1000 Raman Shift [cm-1]	×	
0.6	7.4×10 ⁴	5	0.6	7.4×10 ⁴	5	20	4650 4000 Int. 3500 3000 2700 1800 1600 1400 1200 1000 Raman Shift [cm-1]	1800 1600 1400 1200 1000 Raman Shift [cm-1]	×	
0.3	1.5×10 ⁵	5	0.3	1.5×10 ⁵	5	20	32500 30000 Int. 28000 25000 1800 1600 1400 1200 1000 Raman Shift [cm-1]	1800 1600 1400 1200 1000 Raman Shift [cm-1]	×	
0	2.9×10 ⁵	300	0	2.9×10 ⁵	5	20	1950 1800 Int. 1700 1600 1450 1800 1600 1400 1200 1000 Raman Shift [cm-1]	1800 1600 1400 1200 1000 Raman Shift [cm-1]	•	

^a Magnification of objective lens was 100 times.

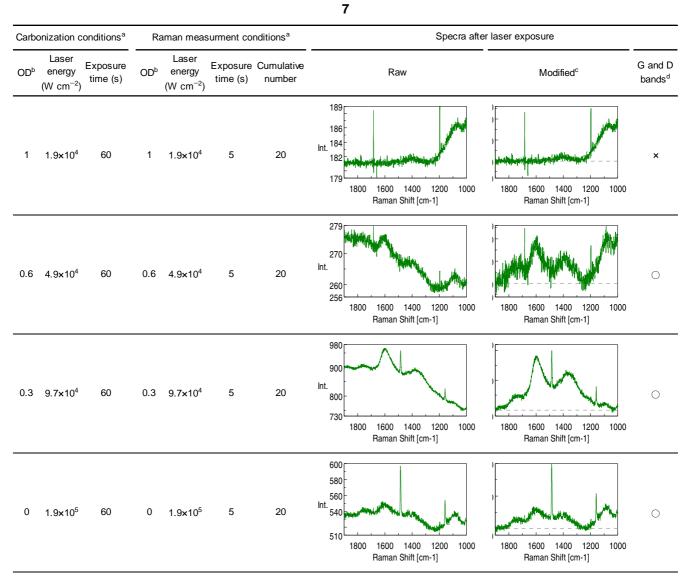

^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S12. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **6** to 532 nm laser.

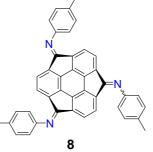
^a Magnification of objective lens was 100 times.

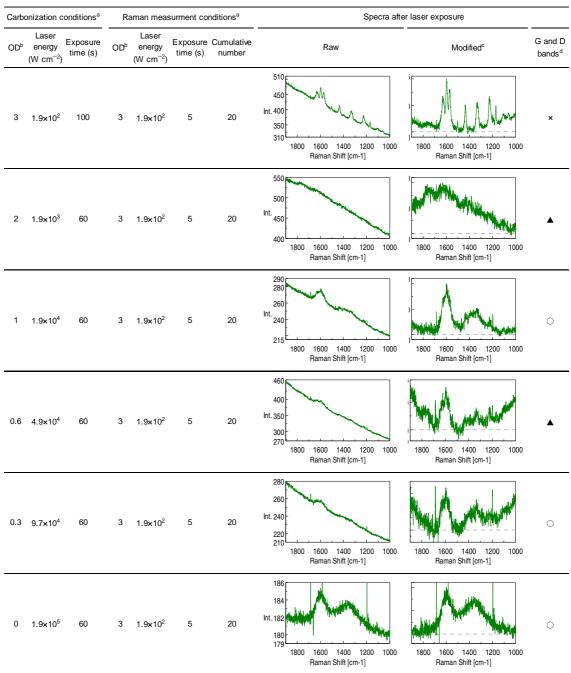

^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 d ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S13. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **7** to 532 nm laser.

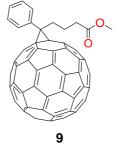

^a Magnification of objective lens was 100 times.

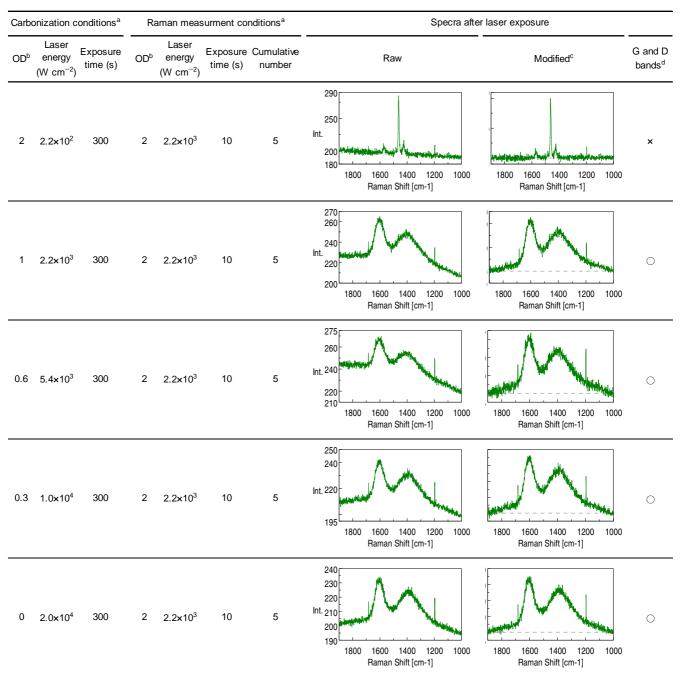

^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S14. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **8** to 532 nm laser.

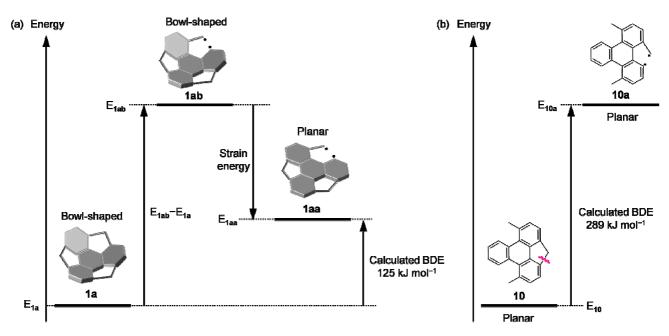

^a Magnification of objective lens was 100 times.


^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

Table S15. Carbonization and Raman measurement conditions, and the resulting raw and modified Raman spectra after exposing **9** to 532 nm laser.

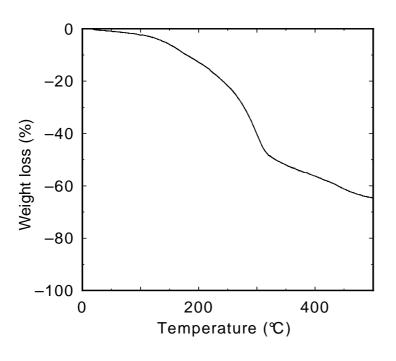

^a Magnification of objective lens was 20 times.

^b Optical density (OD) of a neutral density (ND) filter.

^c Modified spectra were displayed after subtracting linear background and normalizing them for ease of comparing them with each other. Vertical axis exhibits the Raman intensity with arbitrary unit.

 $^{^{}d}$ ×, \blacktriangle , and \circ denote the case when G and D bands were not detected, when it was difficult to judge detection of G and D bands, and when G and D bands were clearly detected, respectively.

3) Density functional theory (DFT) calculation


Fig. **S7**. Energy level diagrams of (a) sumanene (**1a**) and (b) 1,7-dimethyl-4*H*-cyclopenta[*def*]triphenylene (**10**) with the biradical species resulted from $Ar-CH_2$ bond dissociation.

	E			E		Difficult Bond dissociation Ea		
Species	(Hartree per particle)	(kJ mol⁻¹)	Species	(Hartree per particle)	(kJ mol⁻¹)			
1a	-807.18871	-2118210	laa	-807.141033	-2118085	200		
2a	-577.456229	-1515350	Ç. 2aa	-577.331545	-1515023	289		
3a	-501.250544	-1315373	G J J J J J J J J J J J J J J J J J J J	-501.107154	-1314996	376 2 a		
	-809.63291	-2124624	10a	-809.522918	-2124335	3a		}•
	-881.217211	-2312474	1ca	-881.175038	-2312364			≽o
<pre> Contract of the second second</pre>	-881.172494	-2312357	€ 1cc	-881.160043	-2312324			
2c	-651.482822	-1709609	Ca → → → → → → → → → → → → →	-651.374542	-1709325	284	2c	
G G G G G	-575.279822	-1509639	G J J J Ca	-575.155089	-1509312	327		→N
	-1131.599837	-2969524	iba	-1131.563795	-2969429		95 1 1 138 1 1b	
	-1131.547206	-2969386	1bc	-860.71458	-2258672	253		
1bb	-901.865229	-2366658		-901.768969	-2366406	261		
Zbb	-630.975893	-1655796	Sb	-825.660342	-2166683	272		
3ba	-825.542365	-2166373	3bb	-554.770702	-1455819	310 J	3b V	
	-270.78567	-710591				500 400	300 200 BDE (kJ mol ⁻¹)	100

Table S16. Sum of electronic and zero-point energies (E) calculated by DFT method. On the right side of the table, calculated BDEs of various bonds are summarized.

4) Thermogravimetry

The thermogravimetry (TG) for **1b** was performed using a thermogravimetric analyzer (Rigaku Corp., Thermo plus EVO2 TG8121). A powder of **1b** (0.757 mg) was added into an aluminum pan, and then the temperature was increased from room temperature (17 °C) to 500 °C (5 °C min⁻¹) under nitrogen gas flow (~100 mL min⁻¹). Fig. S8 shows the thermogravimetric curve for **1b**. As the temperature increased, gradual weight loss was observed from room temperature. After the analysis, the weight decreased up to 0.26 mg to yield a black solid.

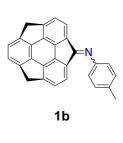
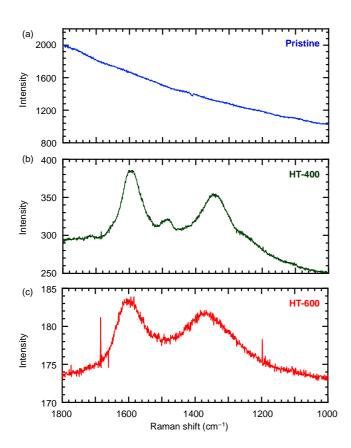
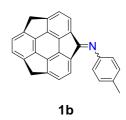


Fig. S8. TG curve for 1b.

5) Thermal pyrolysis and Raman measurements of the products

5.1 Thermal pyrolysis


The heat treatment of sumanenemonoone imine **1b** was conducted employing an electric furnace (FULL TECH, FT-01X). First, three films of **1b** in total were prepared on each quartz substrate through drop-casting a dichloromethane solution of **1b** (~5 mg / 50 μ L). After drying them *in vacuo*, they were heated from room temperature using the furnace to ~400, 600, or 800 °C and naturally cooled down under nitrogen gas flow by turning off the heater. The heat-treated samples are named as HT-400, HT-600, and HT-800, respectively.


In preparing HT-400, the temperature was increased to 430 °C for $1\sim2$ min to give a dark-brown residue. Regarding HT-600, after the film of **1b** was heated, the temperature reached 607 °C for $1\sim2$ min to yield a slight amount of a blackish residue. For the last sample (HT-800), after its temperature was raised up to 804 °C by taking ~2 min, any residue was not observed.

5.2 Raman measurements

The Raman spectra of the samples were measured using a micro-Raman spectrometer (JASCO, NRS-3100). The excitation wavelength was 532 nm, the slit size was 0.1×6 mm, the magnification of the objective lens was 100 times, the exposure time was 5 s, and the laser energy under objective was 2.2×10^3 W cm⁻².

Fig. S9a–c shows the Raman spectra of pristine **1b**, HT-400, and HT-600, respectively. For pristine **1b**, a slope background was observed in its Raman spectrum due to the luminescence phenomenon (Fig. S9a). In Fig. S9b, the spectrum of HT-400 appears to consist of multiple bands at ~1593, ~1485, ~1345, ~1258 cm⁻¹ and so on, implying that it may be in the process of carbonization. On the other hand, the spectrum of HT-600 possesses typical G and D bands at ~1603 and ~1367 cm⁻¹, suggesting that the carbonization proceeded under the pyrolysis conditions. The positions of G and D bands for the Raman spectrum of HT-600 (Fig. S9c) are similar to those of the laser-annealed film of **1b** (~1600 and ~1380 cm⁻¹, see Fig. 2d). The positions of G bands for both HT-600 and the laser-annealed film of **1b** are considered to be assigned not to that of graphite (1581 cm⁻¹) or amorphous carbon (~1510 cm⁻¹) but to that of nanocrystalline graphite (~1600 cm⁻¹) according to the literature.¹

Fig. **S9**. Raman spectra for (a) pristine **1b**, (b) HT-400, and (c) HT-600.

Reference

1. A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc., A, 2004, 362, 2477-2512.