Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Spectroscopic Signatures and Structural Motifs in Isolated and Hydrated Serotonin: A Computational Study

Santosh Kumar Srivastava and Vipin Bahadur Singh*

Department of Physics, Udai Pratap Autonomous College, Varanasi-221002, India

*E Mail: vipinwp vns@rediffmail.com

Table of Contents

Fig. S1 Optimized geometry of the most stable conformer Gph(out)/anti of serotonin
Fig. S2 Optimized geometries of the most stable conformers C and A of SERO alongwith
the NBO charge distribution at the MP2/aug-cc-pVDZ level of theory 4
Fig. S3 Computed optimized structures and relative energy (in kJ/mol) of eight low-energy SERO-
(H ₂ O) ₁ clusters at MP2/6-31+G(d) level
Fig. S4 Computed optimized structures, relative energies and binding energies (in parenthesis) (in
kJ/mol) of SERO-(H ₂ O) ₁ clusters involving Gpy(out)/anti conformer at MP2/6-31+G(d) level 6
Fig. S5 NBO charge distribution of the most stable structures of isolated and hydrated serotonin
involving Gph(out)/anti conformation at MP2/6-311++G(d,p) level

Fig. S1 Optimized geometry of the most stable conformer Gph(out)/anti of serotonin.

Fig. S2 Optimized geometries of the most stable conformers C and A of SERO alongwith the NBO charge distribution at the MP2/aug-cc-pVDZ level of theory.

Fig. S3 Computed optimized structures and relative energy (in kJ mol⁻¹) of eight low-energy SERO- $(H_2O)_1$ clusters at MP2/6-31+G(d) level.

Fig. S4 Computed optimized structures, relative energies and binding energies (in parenthesis) (in kJ/mol) of SERO- $(H_2O)_1$ clusters involving Gpy(out)/*anti* conformer at MP2/6-31+G(d) level.

NBO charges

Fig. S5 NBO charge distribution of the most stable structures of isolated and hydrated serotonin involving Gph(out)/anti conformation at MP2/6-311++G(d,p) level.

structural parameters ^a	expt. ^b	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E	Conf. F	Conf. G	Conf. H
bond lengths (Å)									
N1-C2	1.367	1.38677	1.38661	1.38572	1.38662	1.38650	1.38734	1.38724	1.38610
C2-C3	1.365	1.39483	1.39506	1.39569	1.39413	1.39436	1.39411	1.39440	1.39505
C3-C9	1.433	1.44098	1.44110	1.44201	1.44037	1.44054	1.44172	1.44181	1.44299
C9-C4	1.377	1.42012	1.42000	1.42093	1.42006	1.41995	1.41794	1.41780	1.41931
C4-C5	1.384	1.39822	1.39822	1.39771	1.39805	1.39812	1.39685	1.39684	1.39680
C5-C6	1.401	1.42145	1.42153	1.42182	1.42149	1.42157	1.42252	1.42259	1.42302
C6-C7	1.376	1.39914	1.39894	1.39907	1.39909	1.39898	1.40162	1.40147	1.40130
C7-C8	1.386	1.41022	1.41016	1.41030	1.41026	1.41024	1.40873	1.40869	1.40870
C8-C9	1.407	1.43223	1.43183	1.43251	1.43184	1.43166	1.43339	1.43301	1.43403
C8-N1	1.371	1.38410	1.38422	1.38395	1.38380	1.38385	1.38418	1.38434	1.38387
C3-C10	1.501	1.50257	1.50098	1.50476	1.50169	1.50151	1.50253	1.50088	1.50480
C10-C11	1.483	1.53813	1.54687	1.53709	1.53553	1.54372	1.53803	1.54696	1.53718
C11-N2	1.502	1.47174	1.46799	1.47363	1.47365	1.46973	1.47238	1.46833	1.47226
C5-O1	1.372	1.38749	1.38683	1.38726	1.38793	1.38732	1.38829	1.38764	1.38801
01-Н	1.010	0.96802	0.96805	0.96828	0.96797	0.96800	0.96748	0.96749	0.96748
N1-H	0.930	1.01225	1.01223	1.01225	1.01214	1.01216	1.01215	1.01214	1.01217
N2•••H	-	6.50860	6.40959	4.73101	6.37084	6.32043	7.39873	7.34131	5.91620
N2•••O1	2.896	6.69974	6.62241	5.11519	6.87967	6.83516	6.60661	6.55127	5.05713
bond angles (°)									
N1-C2-C3	109.7	109.70646	109.75083	109.77567	109.72094	109.71020	109.77746	109.81876	109.85719
C2-C3-C9	106.7	106.18479	106.13852	106.09540	106.17871	106.18370	106.20545	106.15741	106.12513
C3-C9-C8	106.8	107.56338	107.58087	107.56026	107.58437	107.57137	107.48562	107.51103	107.44215
C9-C8-N1	107.5	107.09340	107.11840	107.10717	107.07914	107.09473	107.14887	107.16753	107.18946
C8-N1-C2	109.3	109.45075	109.40993	109.46083	109.43639	109.43922	109.38123	109.34382	109.38482
C3-C9-C4	133.1	133.09246	133.05418	133.06285	133.07679	133.05593	132.91530	132.86414	132.96009
C9-C4-C5	119.0	118.30205	118.28425	118.16202	118.31468	118.29607	118.23885	118.22056	118.09139
C4-C5-C6	120.5	121.72788	121.72228	121.88344	121.72776	121.71385	121.61899	121.61077	121.76295
C5-C6-C7	121.2	120.94362	120.95434	120.88766	120.92368	120.94526	121.13336	121.14829	121.10995
C6-C7-C8	118.0	117.66108	117.64677	117.63597	117.67359	117.66291	117.45568	117.43940	117.41101
C7-C8-C9	121.2	122.02452	122.03126	122.05653	122.02481	122.01303	121.95739	121.95980	122.02996
C8-C9-C4	120.1	119.34026	119.36056	119.37381	119.33494	119.36856	119.59523	119.62068	119.59375
C7-C8-N1	131.3	130.88206	130.85027	130.83618	130.89561	130.89197	130.89373	130.87264	130.78046
C2-C3-C10	129.8	126.92161	127.25029	126.35651	126.97079	127.25013	126.97045	127.32926	126.23865
C9-C3-C10	123.4	126.78839	126.50441	127.52584	126.80115	126.48694	126.71993	126.39898	127.60786
C3-C10-C11	113.9	111.03601	111.28299	112.20894	111.66930	111.62302	111.00834	111.23330	112.09030
C10-C11-N2	110.8	109.01921	115.14856	109.87433	109.89047	115.79721	109.03045	115.11752	109.78720
C4-C5-O1	117.9	122.85564	122.87662	122.67031	122.86450	122.88266	117.09713	117.08897	117.09425
C6-C5-O1	121.6	115.41647	115.40110	115.44568	115.40769	115.40348	121.28387	121.30026	121.14267
dihedral angles (°))								
C9-C3-C10-C11	171.7	-72,46745	-70.80513	-83.31435	-72.60218	-72.08265	-72.26004	-71,15463	-84.29496
C3-C10-C11-N2	175.8	-61.67715	-59.88639	62.77152	179.42873	177.95573	-61.61271	-60.13418	63.54343
55 CIC CII IN2	170.0	01.07710	57.00057	52.77152	177.12013	111.75515	01.012/1	00.15110	55.51515

Table S1. Selected calculated structural parameters of eight experimentally observed conformers of serotonin at the MP2/aug-cc-pVDZ level of theory.

^a See figure S1 for the atom numbering. ^b ref. 16

		MP2/6-311-	++G(d,p)		B3LYP/6-311++G(d,p)			
ĉ								
conformer	A	В	С	ZPVE ^a	A	В	С	ZPVE
Gpy(out)/anti	1.2708981	0.5813517	0.4420128	0.207024	1.2977412	0.5569207	0.4264263	0.206785
	1.286457 ^b	0.5717580 ^b	0.43561945 ^b					
Gpy(up)/anti	1.2462172	0.5866193	0.4431202	0.206851	1.2733921	0.5607364	0.4272715	0.206697
	1.2670434 ^b	0.57460393 ^b	0.43601524 ^b					
Gpy(in)/anti	1.7152871	0.4664216	0.3726577	0.206887	1.7339691	0.4607784	0.3692944	0.206830
Gph(out)/anti	1.1622081	0.6562451	0.4530720	0.207240	1.1509448	0.6454988	0.4439913	0.206939
	1.1631523 ^b	0.6506354 ^b	0.45007232 ^b					
Gph(up)/anti	1.1910038	0.6253403	0.4507190	0.207041	1.1788278	0.6153416	0.4408389	0.206645
Gph(in)/anti	1.0839042	0.6767164	0.4322664	0.206847	1.0711608	0.6767119	0.4276598	0.206779
Anti(py)/anti	1.1799120	0.5516205	0.3902360	0.206626	1.2027355	0.5365835	0.3840335	0.206481
Anti(ph)/anti	1.1713720	0.5578108	0.3923397	0.206665	1.1939332	0.5419118	0.3857470	0.206471
Anti(up)/anti	1.1710397	0.5545056	0.3909527	0.206627	1.1959175	0.5378908	0.3843083	0.206366
Gpy(out)/syn	1.2625801	0.5858284	0.4439339	0.206858	1.2906747	0.5602042	0.4278466	0.206603
Gpy(up)/syn	1.2463345	0.5875988	0.4437853	0.206705	1.2717649	0.5620955	0.4278869	0.206508
Gpy(in)/syn	1.7042368	0.4683741	0.3735454	0.206813	1.7277590	0.4621193	0.3698611	0.206558
Gph(out)/syn	1.1624249	0.6545397	0.4527216	0.206941	1.1529698	0.6422079	0.4433162	0.206613
Gph(up)/syn	1.1836196	0.6308938	0.4522852	0.206876	1.1719000	0.6206793	0.4422597	0.206519
Gph(in)/syn	1.1530843	0.6434776	0.4443253	0.206464	1.0855113	0.6688420	0.4294628	0.206281
Anti(py)/syn	1.1727653	0.5558409	0.3915140	0.206556	1.1948866	0.5409249	0.3853248	0.206263
Anti(ph)/syn	1.1695639	0.5592215	0.3926951	0.206591	1.1904437	0.5443005	0.3863098	0.206218
Anti(up)/syn	1.1677248	0.5567103	0.3918820	0.206500	1.1924775	0.5400519	0.3851303	0.206178
Conf. 9/anti	1.5393097	0.4459346	0.3478938	0.206606	1.5338672	0.4456426	0.3474246	0.206573
Conf. 9/syn	1.5314008	0.4476521	0.3485289	0.206367	1.5282205	0.4470333	0.3479759	0.206320
Conf. 10/anti	1.1915027	0.6249415	0.4506223	0.207032	1.5098188	0.4866888	0.3930131	0.206713
Conf. 10/syn	1.1836371	0.6308766	0.4522803	0.206878	1.1718917	0.6206529	0.4422370	0.206512
Conf. 11/anti	1.5169602	0.4517075	0.3506248	0.206713	1.5269831	0.4490406	0.3488347	0.206481
Conf. 11/syn	1.4906336	0.4563831	0.3530848	0.206559	1.5220588	0.4503682	0.3493649	0.206138

Table S2. Rotational constants [*A*, *B* and *C*(GHz)] and zero-point vibrational energy (a.u.) for the 24 low-energy conformers of serotonin calculated at MP2 and B3LYP levels employing 6-311++G(d,p) basis set.

^{*a*} Values obtained at B3LYP/6-311++G(d,p) level using MP2/6-311++G(d,p) level optimized geometries. ^{*b*} From ref 2.

conformer		MP2/aug-o	2/aug-cc-pVDZ B3LYP/aug-cc-pV			g-cc-pVDZ		
	A	В	С	ZPVE ^a	A	В	С	ZPVE
Gpy(out)/anti	1.2703167	0.5741047	0.4372926	0.206716	1.2977156	0.5530299	0.4236792	0.207066
	1.286457 ^b	0.5717580 ^b	0.43561945 ^b					
Gpy(up)/anti	1.2493371	0.5765956	0.4372803	0.206596	1.2765820	0.5557572	0.4241091	0.206883
	1.2670434 ^b	0.57460393 ^b	0.43601524 ^b					
Gpy(in)/anti	1.7144256	0.4605362	0.3685247	0.206638	1.7266675	0.4585319	0.3677336	0.206961
Gph(out)/anti	1.1552040	0.6521292	0.4506364	0.206988	1.1490006	0.6415996	0.4421049	0.207160
	1.1631523 ^b	0.6506354 ^b	0.45007232 ^b					
Gph(up)/anti	1.1724847	0.6313426	0.4496438	0.206772	1.1716821	0.6160387	0.4393505	0.206875
Gph(in)/anti	1.0689997	0.6744293	0.4281742	0.206616	1.0691475	0.6710113	0.4255084	0.206962
Anti(py)/anti	1.1650439	0.5497340	0.3875310	0.206410	1.1963251	0.5356477	0.3828903	0.206705
Anti(ph)/anti	1.1576517	0.5552425	0.3893949	0.206399	1.1894261	0.5400001	0.3842951	0.206658
Anti(up)/anti	1.1591248	0.5510985	0.3878656	0.206332	1.1921446	0.5359967	0.3829703	0.206574
Gpy(out)/syn	1.2639165	0.5773044	0.4384607	0.206649	1.2926954	0.5554168	0.4246515	0.206970
Gpy(up)/syn	1.2471368	0.5781139	0.4378009	0.206526	1.2757429	0.5567628	0.4245457	0.206781
Gpy(in)/syn	1.7048427	0.4623185	0.3692023	0.206560	1.7203669	0.4598821	0.3682944	0,206874
Gph(out)/syn	1.1558081	0.6501907	0.4504956	0.206763	1.1508718	0.6384428	0.4414659	0.206925
Gph(up)/syn	1.1668283	0.6355344	0.4509586	0.206696	1.1667875	0.6198693	0.4405483	0.206815
Gph(in)/syn	1.1501780	0.6371469	0.4427726	0.206209	1.1142303	0.6452710	0.4308108	0.206535
Anti(py)/syn	1.1580613	0.5539766	0.3888155	0.206327	1.1897618	0.5393017	0.3839768	0.206602
Anti(ph)/syn	1.1563333	0.5563399	0.3896740	0.206282	1.1872843	0.5416439	0.3846885	0.206532
Anti(up)/syn	1.1556512	0.5534239	0.3888126	0.206228	1.1903037	0.5372795	0.3835514	0.206507
Conf. 9/anti	-	-	-	-	1.5296599	0.4439218	0.3461769	0.206783
Conf. 9/syn	-	-	-	-	1.5237356	0.4453463	0.3467354	0.206759
Conf. 10/anti	-	-	-	-	1.5572720	0.4761214	0.3851524	0.206980
Conf. 10/syn	-	-	-	-	1.1667794	0.6198610	0.4405436	0.206815
Conf. 11/anti	-	-	-	-	1.5233408	0.4471457	0.3475113	0.206800
Conf. 11/syn	-	-	-	-	1.5183244	0.4484766	0.3480416	0.206695

Table S3. Rotational constants [A, B, and C (GHz)] and zero-point vibrational energies (a.u.) for the 24 lowenergy conformers of serotonin calculated at MP2 and B3LYP levels employing aug-cc-pVDZ basis set.

^{*a*} Values obtained at B3LYP/aug-cc-pVDZ level using MP2/aug-cc-pVDZ level optimized geometries. ^{*b*} from ref 2.

			0 1		2						
atom		NBO Charge									
number ^a	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E	Conf. F	Conf. G	Conf. H			
N1	-0.665	-0.665	-0.663	-0.664	-0.664	-0.668	-0.668	-0.666			
01	-0.768	-0.768	-0.770	-0.768	-0.768	-0.768	-0.767	-0.767			
N2	-0.928	-0.913	-0.930	-0.919	-0.910	-0.928	-0.913	-0.927			
C2	0.058	0.051	0.056	0.059	0.058	0.061	0.053	0.058			
C3	-0.153	-0.148	-0.152	-0.143	-0.145	-0.152	-0.146	-0.150			
C4	-0.296	-0.294	-0.295	-0.296	-0.296	-0.263	-0.261	-0.261			
C5	0.361	0.362	0.357	0.361	0.362	0.356	0.357	0.352			
C6	-0.273	-0.270	-0.270	-0.273	-0.272	-0.303	-0.300	-0.300			
C7	-0.212	-0.212	-0.216	-0.211	-0.211	-0.214	-0.214	-0.218			
C8	0.167	0.168	0.167	0.167	0.168	0.168	0.169	0.168			
С9	-0.074	-0.075	-0.082	-0.071	-0.071	-0.071	-0.072	-0.080			
C10	-0.396	-0.402	-0.396	-0.396	-0.401	-0.396	-0.402	-0.396			
C11	-0.150	-0.154	-0.145	-0.150	-0.155	-0.151	-0.155	-0.144			

Table S4. Natural atomic charges of the eight experimentally observed conformers of serotonin calculated at the MP2/aug-cc-pVDZ level of theory.

^{*a*} See figure S1 for the atom numbering.

	description	MP2/6-311++G(d,p)		MP2/aug-	MP2/aug-cc-pVDZ		11++G(d,p)	B3LYP/aug-cc-pVDZ	
S. No.	ethylamine side chain	anti-5-OH	syn-5-OH	anti-5-OH	syn-5-OH	anti-5-OH	syn-5-OH	anti-5-OH	syn-5-OH
1	Gph(out)	-571.5303500	-571.5283381	-571.4313716	-571.4297226	-573.1765088	-573.1750384	-573.0930081	-573.0917648
		(3.5547)	(3.9880)	(3.4172)	(3.9979)	(3.2219)	(3.7671)	(3.0694)	(3.6118)
2	Gpy(out)	-571.5300959	-571.5294077	-571.4309162	-571.4302871	-573.1767624	-573.1762904	-573.0933049	-573.0929407
		(1.4270)	(2.8797)	(1.3292)	(2.8762)	(1.2503)	(2.7944)	(1.2191)	(2.6650)
3	Gpy(up)	-571.5295344	-571.5287048	-571.4299398	-571.4292465	-573.1764563	-573.1759153	-573.0928275	-573.0924106
		(3.1864)	(4.2897)	(3.1398)	(3.9313)	(2.9144)	(3.8737)	(2.7854)	(3.6585)
4	Gph(up)	-571.5285419	-571.5277865	-571.4293101	-571.4288434	-573.1752647	-573.1749809	-573.0916507	-573.0914656
		(2.7530)	(3.8973)	(2.7505)	(3.7228)	(2.4814)	(3.6515)	(2.4160)	(3.4901)
5	Anti(ph)	-571.5276731	-571.5265272	-571.4281903	-571.4272871	-573.1758387	-573.1751126	-573.0924953	-573.0918819
		(3.5572)	(3.9954)	(3.4409)	(3.9532)	(3.2526)	(3.7773)	(3.1181)	(3.6081)
6	Anti(py)	-571.5273457	-571.5267945	-571.4279051	-571.4274274	-573.1756155	-573.1752692	-573.0922730	-573.0920344
		(1.4570)	(2.8894)	(1.4012)	(2.8561)	(1.3352)	(2.7712)	(1.2749)	(2.6138)
7	Anti(up)	-571.5273327	-571.5266190	-571.4278533	-571.4272643	-573.1757672	-573.1753410	-573.0922972	-573.0919811
		(3.1457)	(4.0994)	(3.0790)	(3.7923)	(2.8270)	(3.6515)	(2.7072)	(3.4670)
8	Gpy(in)	-571.5265125	-571.5258832	-571.4272262	-571.4266665	-573.1748571	-573.1744872	-573.0914710	-573.0911871
		(3.5410)	(2.5610)	(3.4081)	(2.4515)	(3.2144)	(2.2588)	(3.0299)	(2.1336)
9	Gph(in)	-571.5256850	-571.5241415	-571.4261924	-571.4249858	-573.1735652	-573.1719802	-573.0899543	-573.0887017
		(3.7612)	(2.5228)	(3.6238)	(2.4046)	(3.4308)	(2.4161)	(3.2628)	(2.2810)
10	Conf. 9 ^a	-571.5251458	-571.5243540	-	-	-573.1749399	-573.1745309	-573.0917910	-573.0914776
		(1.1419)	(2.9182)			(0.9963)	(2.7356)	(0.9674)	(2.5717)
11	Conf. 10 ^a	-571.5285420	-571.5277865	-	-	-573.1746340	-573.1749809	-573.0913971	-573.0914656
		(2.7525)	(3.8963)			(1.1272)	(3.6512)	(0.9475)	(3.4900)
12	Conf. 11 ^{<i>a</i>}	-571.5251028	-571.5242892	-	-	-573.1746838	-573.1740637	-573.0917892	-573.0912914
		(3.1694)	(3.5774)			(3.2005)	(3.6449)	(3.0464)	(3.4675)

Table S5. Electronic energies (a.u.) and dipole moments (D) in parenthesis of the *anti/syn* conformational pairs of serotonin calculated by MP2 and DFT-B3LYP methods employing 6-311++G(d,p) and aug-cc-pVDZ basis sets.

^a ref 11.

	calculated values at TD-DFT-B3LYP/aug-cc-pVDZ level								
- conformational state	$^{1}L_{b}$	$^{1}L_{a}$	¹ πσ* (O-H)	$^{1}\pi\sigma^{*}$ (N-H)	${}^{1}B_{b}$				
Gph(out)/anti	4.189	4.457	4.876	5.084	5.525				
- · /	(0.067)	(0.130)	(0.005)	(0.021)	(0.192)				
Gpy(out)/anti	4.193	4.463	4.885	5.130	5.501				
	(0.059)	(0.134)	(0.004)	(0.017)	(0.353)				
Gpy(up)/ <i>anti</i>	4.191	4.464	4.878	5.118	5.507				
	(0.061)	(0.137)	(0.004)	(0.020)	(0.302)				
Anti(py)/ <i>anti</i>	4.190	4.449	4.899	5.087	5.544				
	(0.062)	(0.137)	(0.004)	(0.005)	(0.243)				
Anti(up)/ <i>anti</i>	4.163	4.441	4.935	5.036	5.525				
	(0.064)	(0.132)	(0.006)	(0.008)	(0.362)				
Gph(out)/syn	4.159	4.461	4.883	5.030	5.528				
	(0.069)	(0.121)	(0.006)	(0.017)	(0.317)				
Gpy(out)/ <i>syn</i>	4.163	4.471	4.895	5.058	5.485				
	(0.062)	(0.124)	(0.003)	(0.015)	(0.252)				
Gpy(up)/syn	4.160	4.471	4.886	5.062	5.490				
	(0.063)	(0.127)	(0.004)	(0.020)	(0.103)				

Table S6. Vertical excitation energies (eV) and oscillator strengths (in bracket) for the low-lying excited states of macro-hydrated serotonin by PCM method.

State	Indole		Indole 5-hydroxy-indole		Tryptam	ine	5-hydroxy-tryptamine			
	CAS PT2 ^a	expt. ^a	CAS PT2 ^b	B3LYP ^c	expt. ^b	DFT/MRCI ^d	expt. ^d	B3LYP ^c	PBE0 ^c	Expt. ^e
$^{1}L_{b}$	4.43 (0.05)	4.43 (0.05)	4.29	4.30* (0.06)	4.08	4.32	4.33	4.02 (0.08)	4.14 (0.08)	4.04
$^{1}L_{a}$	4.73 (0.08)	4.77 (0.12)	5.75	4.42 (0.13)	-	4.86 (0.14)	-	4.50 (0.10)	4.65 (0.10)	
$^{1}B_{b}$	5.84 (0.46)	6.02 (0.60)	6.08	-	-	-	-	-	-	
${}^{l}\pi\sigma^{*}$ (N-H)	5.15 (0.004)	-	4.95	-	-	-	-	5.23 (0.00)	5.55 (0.00)	
¹ πσ* (O-H)	4.98 (0.00)	-	5.01	-	-	-	-	-	5.68 (0.00)	

Table S7. Optimized excited state energies (in eV, at the ground state equilibrium values of R_{N-H} and R_{O-H}) for the indole, 5- hydroxy-indole, tryptamine and 5- hydroxy-tryptamine

^{*a*} ref .47 ^{*b*} ref .46,47 ^{*c*}This work. ^{*d*} ref .15,44 ^{*e*} ref .5