Controlling the coassembly of highly amphiphilic block copolymers with a hydrolytic sol by solvent exchange – Supporting Information –

Stefan Guldin^{a†}, Morgan Stefik^b, Hiroaki Sai^c, Ulrich Wiesner^c & Ullrich Steiner^{a,‡,*}

Full experimental details

Material fabrication. The poly(isoprene-*b*-ethylene oxide) (PI-*b*-PEO) BCP was synthesised by anionic polymerisation as described in reference¹. The polymer characteristics were studied by gel permeation chromatography and NMR and determined as follows: molecular weight $M_n = 33.5 \text{ kg mol}^{-1}$, 23 wt% PEO, polydispersity index PDI = 1.03.

Titanium containing sol was synthesised by quickly adding 0.69 ml of HCl (37%) into 1 ml of titanium ethoxide (purum) under vigorous stirring at ambient conditions and left age for 90 min.² Depending on the inorganic to organic weight ratio, the adequate amount of sol was subsequently mixed with PI-*b*-PEO copolymer in 7 ml THF (99.97%). This ratio was determined by the weight of the resulting TiO₂ compared to the initial weight of the polymer in solution. For a weight ratio of 2:1 between the resulting TiO₂, 0.87 ml sol was added to 0.1 g BCP. After solvent evaporation in a Petri dish at 50 °C , the dried hybrid material was redissolved in an azeotrope solvent mixture of toluene (apolar, 99.8%) and 1-butanol (polar, 99%). Typically a solid weight content of 70 mg polymer per ml was used. The solution was then solvent casted in a covered Petri dish at 40 °C and then left to dry for over 24 hours. The dry hybrid material was subsequently annealed by slow ramping to 130 °C (180 min linear ramp, 30 min dwell).

Transmission Electron Microscopy (TEM). TEM samples of the $PI-b-PEO/TiO_2$ mesostructure were prepared by sectioning the bulk materials to 50 nm with a Leica Ultracut UCT cryo-ultramicrotome and transferring the slices onto copper TEM grids. These samples were imaged in a Tecnai T12 Spirit TEM with an acceleration voltage of 120 keV.

Small angle X-ray scattering (SAXS). SAXS patterns were recorded in the G1 beamline in Cornell High Energy Synchrotron Source (CHESS) with a Flicam 2D CCD detector, with the beam energy at 10.5 keV and a sample-to-detector distance of 2.3 m.

^aDepartment of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK. ^bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, USA. ^cDepartment of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA. [†]Present address: Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. [‡] Present address: Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 1700 Fribourg, CH. *e-mail: ullrich.steiner@unifr.ch

Supp	lementary	Table	S1	Bragg	spacings	for	investigated	morphologies. ³	-5	

Sample	assigned morphology	q^*	q_{hkl}			
1:1	inverse hexagonal	0.192	$\sqrt{3}q^*$	$\sqrt{4}q^*$	$\sqrt{7}q^*$	$\sqrt{9}q^*$
1:2	lamellar	0.175	$2q^*$	$3q^*$	$4q^*$	
1:3	hexagonal	0.201	$\sqrt{3}q^*$	$\sqrt{4}q^*$	$\sqrt{7}q^*$	

Supplementary Table S2 | Characteristic properties of employed BCPs.

$M_{\rm n}$ PI- <i>b</i> -PEO	$N_{\rm TOT}$	$M_{\rm n}$ PEO	$N_{\rm PEO}$	$f_{\rm PEO}$	PDI (= $\frac{M_{\rm w}}{M_{\rm n}}$)	
	[kg/mol]		[kg/mol]		[%]	
33.5	554	7.7	175	25.8	1.03	

References

- 1. J. Allgaier, A. Poppe, L. Willner, D. Richter, Macromolecules 1997, 30, 1582–1586.
- P. Alberius, K. Frindell, R. Hayward, E. Kramer, G. Stucky, B. Chmelka, Chemistry Of Materials 2002, 14(8), 3284–3294.
- 3. I. Hamley, The Physics of Block Copolymers, Oxford University Press, 1st edition, 1998.
- 4. I. Hamley, V. Castelletto, Progress In Polymer Science 2004, 29(9), 909D948.
- S. Foerster, S. Fischer, K. Zielske, C. Schellbach, M. Sztucki, P. Lindner, J. Perlich, Advances In Colloid And Interface Science 2011, 163(1), 53–83.