Nano γ -Fe₂O₃-supported fluoroboric acid: a novel magnetically recyclable catalyst for the synthesis of 12-substituted-benzo[*h*] [1,3]dioxolo[4,5-*b*] acridine-10,11-diones as potent antitumor agents

Xiaojuan Yang,^a Chong Zhang,^b Liqiang wu^{b,*}

^a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453003,

China

^b School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China

Content

Copy of ¹H NMR ¹³C NMR and IR------2-30

1H solvent:DMSO No:4a 2013.11.16

Figure 1. ¹H NMR of 4a

Figure 2. ¹³C NMR of 4a

Figure 4. ¹H NMR of 4b

Figure 5. ¹³C NMR of **4b**

Figure 6. IR of 4b

Figure 8. ¹³C NMR of 4c

Figure 10. ¹H NMR of 4d

Figure 12. IR of 4d

Figure 14. ¹³C NMR of **4e**

ppm (t1)

Figure 16. ¹H NMR of 4f

Figure 17.¹³C NMR of 4f

Figure 18. IR of 4f

Figure 20. ¹³C NMR of **4g**

Figure 22. ¹H NMR of 4h

Figure 24. IR of 4h

Figure 26. ¹³C NMR of **4i**

35 30 25 4000 Figure 30. IR of 4j

Wavenumbers (cm-1)

Mransnit

Figure 32. ¹³C NMR of **4**k

Figure 33. IR of 4k

Figure 34. ¹H NMR of 41

Figure 35. ¹³C NMR of **4**

Figure 36. IR of 41

Figure 37. ¹H NMR of 4m

Figure 38. ¹³C NMR of **4m**

Figure 39. IR of 4m

Figure 40. ¹H NMR of 4n

Figure 42. IR of 4n

Figure 43. ¹H NMR of 40

Figure 44. ¹³C NMR of **40**

Figure 46. ¹H NMR of 4p

Wavenumbers (cm-1)

Figure 48. IR of 4p

Figure 50. ¹³C NMR of **4q**

Figure 51. IR of 4q

Figure 53. ¹³C NMR of **4r**

Figure 54. IR of 4r

Figure 55. ¹H NMR of 5

Figure 56. ¹³C NMR of **5**

Figure 57. IR of 5