## SUPPORTING INFORMATION

## "Off-the-Shelf" Thermoresponsive Hydrogel Design: Tuning Hydrogel Properties

## by Mixing Precursor Polymers with Different Lower-Critical Solution

## Temperatures

Emilia Bakaic<sup>‡</sup>, Niels M.B. Smeets<sup>‡</sup>, Helen Dorrington, and Todd Hoare<sup>\*</sup>

<sup>‡</sup>These authors contributed equally.

Emilia Bakaic<sup>‡</sup>, Dr. Niels M.B. Smeets<sup>‡</sup>, Helen Dorrington, and Dr. Todd Hoare<sup>\*</sup>

McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada.

\* To whom correspondence should be addressed; e-mail: <u>hoaretr@mcmaster.ca</u>



**Figure S1.** Correlation between the equilibrium mass-based swell ratio ( $Q_m$ ) and the weight fraction of high LCST precursor in the hydrogel. Swelling measured in 10mM PBS. Correlations: ( $\infty$ ) 22°C  $Q_m = 6.62\pm0.54 + (0.081\pm0.011)$ ·x;  $R^2 = 0.932$  and ( $\infty$ ) 37°C  $Q_m = 3.68\pm0.43 + (0.090\pm0.007)$ ·x;  $R^2 = 0.980$ .



**Figure S2.** Swelling kinetics of PO(50/50) and PO(50/50) analogue hydrogels (with the same overall M(EO)<sub>2</sub>MA:OEGMA<sub>475</sub> ratio but a different distribution of the comonomers between the precursor polymer(s)) in 10 mM PBS: ( $\infty$ , orange) PO(50/50), ( $\infty$ , yellow) PO(L/H); ( $\infty$ , grey) PO(H/L) and ( $\infty$ , violet) PO<sub>55</sub>. Top figure: swelling kinetics measured at 22<sup>o</sup>C; bottom figure: swelling kinetics measured at 37<sup>o</sup>C.



**Figure S3.** Mechanical properties of POEGMA hydrogels following swelling to equilibrium in 10 mM PBS at 22°C: ( $\infty$ , blue) PO(100/0); ( $\infty$ , purple) PO(75/25); ( $\infty$ , orange) PO(50/50); ( $\infty$ , green) PO(25/75) and ( $\infty$ , red) PO(0/100)



**Figure S4.** G' values for the PO(50/50) hydrogel as well as the PO(50/50) analogue hydrogels with the same overall  $M(EO)_2MA:OEGMA_{475}$  ratio but a different distribution of comonomers between the precursor polymer(s). PO(50/50) ( $\infty$ , dark grey), PO<sub>55</sub> ( $\infty$ , light grey), PO(L/H) ( $\infty$ , white) and PO(H/L) ( $\infty$ , black).



**Figure S5.** Optical transparency of PO(0/100) ( $\infty$ , black), PO(100/0) ( $\infty$ , open) and PO<sub>55</sub> ( $\infty$ , blue) as measured by UV-Vis at 37°C. Note that the lower transparency measured for PO(0/100) is due to the lower VPTT of this hydrogel and not because of phase separation between the precursors.



**Figure S6.** BSA release kinetics in 10mM PBS over the initial 12 hours of release at 37°C for the POEGMA hydrogels prepared at (A) 22°C and (B) 37°C: ( $\infty$ , blue) PO(100/0); ( $\infty$ , purple) PO(75/25); ( $\infty$ , orange) PO(50/50); ( $\infty$ , green) PO(25/75) and ( $\infty$ , red) PO(0/100).



**Figure S7.** Release of immunoglobulin G in 10mM PBS from PO(0/100) ( $\infty$ , black) and PO(100/0) ( $\infty$ , open) at 37°C.



**Figure S8.** Release of fibrinogen in 10mM PBS from PO(0/100) ( $\infty$ , black) and PO(100/0) ( $\infty$ , open) at 37°C.



**Figure S9.** Equilibrium water content of the mixed precursor POEGMA hydrogels as a function of the temperature in 10mM PBS: (A) single precursor and (B) mixed precursor hydrogels. PO<sub>0</sub> ( $\infty$ , black), PO<sub>10</sub> = PO(100/0) ( $\infty$ , blue), PO(75/25) ( $\infty$ , green), PO(50/50) ( $\infty$ , orange), PO(25/75) ( $\infty$ , purple), PO<sub>100</sub> ( $\infty$ , red), PO<sub>10</sub>H<sub>30</sub> + PO<sub>100</sub>A<sub>30</sub> ( $\infty$ , yellow) and PO<sub>100</sub>H<sub>30</sub> + PO<sub>10</sub>A<sub>30</sub> ( $\infty$ , grey).