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Self-Consistent Field Theory (SCFT) for confined polydisperse

di-block copolymers

We consider a melt ofn polydisperse di-block copolymer chains in between two parallel substrates.

For comparison with neutron reflectivity experiments, one of the walls represents a silicon substrate

with a thin layer of silicon oxide (SiOx) and the other represents a polymer-air interface. We con-

struct the partition function for this particular system bymodeling interaction between polymers

and substrates by short-range Flory’sχ parameter approach.1 In the following, we consider A-B

di-block copolymer chains where the A block is polydisperseand the B is monodisperse.

Representing the copolymer chains by continuous curves (~Rα(s) for α th chain parameterized

by the chain contour variables containingNα Kuhn segments), the Hamiltonian for A-B di-block

copoplymer chains confined between two substrates is written as

H =
3

2l2

n

∑
α=1

∫ Nα

0
ds

(

d~Rα(s)
ds

)2

+ ρ̂−1
0

∫

d~r χAB ρ̂A(~r)ρ̂B(~r) (S1)

+ ρ̂−1
0

∫

d~r ∑
k=s,a

∑
k′=A,B

χkk′ ρk(~r)ρ̂k′(~r) (S2)

where the first term inH is the chain stretching entropy given by the so-called “Gaussian thread”2

model for di-block chains with the same Kuhn segment length for each block (= l). In this work,

we have ignoredinherent conformational asymmetry between A and B blocks. This is a reasonable

approximation for the PGMA and PVDMA-d6 blocks studied in this work based on our estimates

for their Kuhn segment lengths (lk wherek =PGMA,PVDMA-d6) using approximate relationsl3
k ≡

vk, vk being monomeric molar volume. Molar volumes for the GMA and VDMA-d6 monomers

are estimated using group contribution method3 and these estimates are presented in Table S1.

The second and third term in Eq. S2 represent interaction energies between different pairs

within Flory-type model, which is parameterized bydimensionless χi j for species of kindi and j.

ρ̂0 = ∑n
α=1Nα/V is the total number density of monomers so thatNα is the polymerization index

for chainα andV is the volume containing a finite amount of polymer chains. Later on, ρ̂0 is
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Table S1: Estimates of molar volumes of GMA and VDMA-d6 and Kuhn segment lengths based
on group contribution method3

Monomeric molar volume (vk) (cm3/mol) Kuhn segment length (lk) (nm)
PGMA 120.68 0.58
PVDMA-d6 125.47 0.59

used as a reference density to construct volume fraction profiles from number densities. Using the

relation1 χi j/ρ̂0 = wi j − (wii +w j j)/2 andwii = 1/(κρ̂2
0),κ being isothermal compressibility,4 it

turns out thatχi j ∼ 1/ρ̂0. Similar dependence ofχi j parameter on the reference density (or vol-

ume) is postulated in its estimation using solubility parameters.3 Note that referencemass density

(∼ ρ̂0) can be estimated from neutron reflectivity experiments by preserving stochiometry while

transforming scattering length densities (SLDs) into volume fraction profiles. This is presented in

the next section.

In Eq. S2, we have parameterized the interaction energy between the monomers and particles

in the substrates byχ parameters. Subscriptsa ands are used to represent air and silicon sub-

strate, respectively. For example,χaA represents the parameter for interaction betweenA monomer

species and the air. Furthermore, regions where polymers interact with substrates are described by

functionsρ̂k(~r) for k = a,s, which are taken to be hyperbolic tangent centered at each side of the

polymer melt. Such an approach implicitly assumes that the particle density inside the substrates

is sufficiently large and continuous density profiles likeρk(~r) are appropriate models for the inter-

actions between particles in the substrate and monomers along the polymer chains. Explicitly, the

substrate density functions5,6 and monomer density operators are written as

ρs(~r) =
ρ̂0

2

[

1− tanh

[

z− zs

ξs

]]

(S3)

ρa(~r) =
ρ̂0

2

[

1+ tanh

[

z− za

ξa

]]

(S4)

ρ̂A(~r) =
n

∑
α=1

∫ NαA

0
ds δ (~r−~Rα(s)) (S5)

ρ̂B(~r) =
n

∑
α=1

∫ Nα

NαA

ds δ (~r−~Rα(s)) (S6)
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whereNαA is the number ofA monomers inα th chain andz represents the co-ordinate perpendic-

ular to substrates.zk andξk characterizes the location and width of polymer-substrateinterfacial

region fork = s,a. Also, the choice of so-called masking functions (cf. Eqs. S3- S4) fixes the

origin of the coordinate system at the silicon substrate andplaces the di-block film on the positive

z-axis. Note that the SCFT presented here takes the masking functions as an input. For a refined

comparison with the neutron reflectivity experiments on thevolume fraction profiles in the interior

of films, we obtain these functions bya posteriori analysis of reflectivity profiles, as detailed in

the next section.

The partition function for this system can be written as

Z =
∫ n

∏
α=1

D
[

~Rα

]

exp[−H]∏
r

δ [ρ̂0− ∑
k=s,a

ρk(~r)− ρ̂A(~r)− ρ̂B(~r)] (S7)

The delta function enforces an incompressibility constraint among A monomers, B monomers and

the substrates such that the total number density is kept constant. A field theory can be constructed

using standard particle to field transformations, which leads to

Z =
∫

D [ρA]D [ρB]D [ωA]D [ωB]D [p] e−βF (S8)

whereρk=A,B(r) represents collective density variable andwk=A,B(r) is the conjugate field in-

troduced through the exponential representation of the delta functionalδ [ρk=A,B − ρ̂k=A,B]. p

is the Lagrange’s multiplier which enforces incompressibility constraint. Explicitly,βF , where

β = 1/kBT so thatkB is the Boltzmann constant andT is the temperature, is given by

βF =
∫

d~r

[

ρ̂−1
0 (χABρA(r)ρB(r)+ ∑

k=s,a
∑

k′=A,B

χkk′ρk(r)ρ ′
k(r))− iwA(r)ρA(r)− iwB(r)ρB(r)

−ip(r)(ρ0− ∑
k=s,a

ρk(r)−ρA(r)−ρB(r))

]

−
n

∑
α=1

lnQα [iwA, iwB;Nα ] (S9)
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whereQα [iwA, iwB;Nα ] is the single-chain partition function forα th chain, given by

Qα =

∫

D
[

~Rα

]

exp

{

− 3
2l2
∫ Nα

0 ds
(

∂~Rα (s)
∂ s

)2
− ∫ NαA

0 ds iwA(~Rα(s))−
∫ Nα

NαA
ds iwB(~Rα(s))

}

∫

D
[

~Rα

]

exp

{

− 3
2l2
∫ Nα

0 ds
(

∂~Rα (s)
∂ s

)2
}

(S10)

The equation forQα is analogous to the Feynman-Kac formula in the path-integral description of

quantum mechanics7 and may be expressed as

Qα = V−1
∫

d~r qα(~r,Nα) (S11)

whereV is total volume andqα(~r,s) is a restricted chain partition function that may be calculated

as the solution to the modified diffusion equation

∂qα(~r,s)
∂ s

=























l2
6 ∇2qα(~r,s)− iwA(~r)qα(~r,s), 0< s < NαA

l2
6 ∇2qα(~r,s)− iwB(~r)qα(~r,s), NαA < s < Nα

(S12)

subject to the initial conditionqα(~r,0) = 1.

Evaluation of discrete sum in Eq. S9 for polydisperse block copolymers is computationally

extensive. In order to evaluate the sum, we approximate it byan integral over continuous chain

length distribution as discussed in the next section.

Modeling polydispersity effects by continuous chain length distribution

In order to model di-block copolymers containing polydisperse A block and monodisperse B block,

we assume that the A block has the chain-length distributed as per thenormalized Schulz-Zimm
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distribution1,8–10given by

pA(N) =

(

N
NA

)ν−1 exp[−N/NA]

NAΓ(ν)
(S13)

whereν andNA control different properties of the distribution function. Also, Γ is the Gamma

function. Assuming that the B block is monodisperse with fixed degree of polymerization (=

NB), the chain length distribution for the A-B di-block becomes pAB(N′) = pA(N′) for N′ <

(N −NB) and pAB(N′) = 0 otherwise. Using the continuous chain length distribution, the dis-

crete sum over chain indexα in Eq. S9 can be replaced by integrals over chain lengths via

n−1∑n
α=1 lnQα [iwA, iwB;Nα) =

∫ ∞
0 dN pAB(N) lnQ[iwA, iwB;N].

The field theoretic transformations and approximation of continuous chain length distribution

lead to deconvolution of chain-chain interactions into single chain problem, where each chain inter-

acts with fieldswk. Even with these simplifications, numerical evaluation of the functional integrals

in Eq. S8 poses a serious challenge. In the following, we approximate these integrals by saddle-

point approximation so that the full partition function is approximated by its value when the fields

attain their “saddle-point” values. Noting that the saddle-points are located along the imaginary

axis in the complex-w plane,5,11 we rescale these fields by writingωA=i〈N〉n wA, ωB=i〈N〉n wB,

andη =i〈N〉n p so thatωA, ωB andη are purely real and〈N〉n = νNA +NB is the number aver-

age chain length for the di-block copolymers, assuming thatthe B block is monodisperse. Also,

volume fractions are defined byφk(~r) = ρk(~r)/ρ̂0 for k = A,B,s,a.

The value of the fields [φA,φB,ωA,ωB,η ] at the saddle-point satisfy the following set of equa-
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tions

ωA(~r) = χAB 〈N〉n φB(~r)+ ∑
k=s,a

χkA 〈N〉n φk(~r)+η(~r) (S14)

ωB(~r) = χAB 〈N〉n φA(~r)+ ∑
k=s,a

χkB 〈N〉n φk(~r)+η(~r) (S15)

φA(~r)+φB(~r) = 1− ∑
k=s,a

φk(~r) (S16)

φA(~r) =
∫ ∞

0
dN

pAB(N)

Q{N/〈N〉n}

∫ (N−NB)/〈N〉n

0
ds̄ q(~r, s̄) q†(~r, s̄) (S17)

φB(~r) =
∫ ∞

0
dN

pAB(N)

Q{N/〈N〉n}

∫ N/〈N〉n

(N−NB)/〈N〉n

ds̄ q(~r, s̄) q†(~r, s̄) (S18)

where

Q = V−1
∫

d~r q(~r,N/〈N〉n) (S19)

and we have usedρ0 = n〈N〉n /V along with a well-known factorization of the single-chain path

integral7,12,13in writing Eqs. S17 and S18. Furthermore, solution to the restricted partition function

q†, may be calculated as the solution to a modified diffusion equation similar to Eq. S12 subject to

the initial conditionq†(~r,s = N/〈N〉n) = 1.14

We have solved the set of equations representing saddle-point in the complex plane using an

iterative procedure devised by Drolet and Fredrickson11,15 (so called “model A” type relaxation

dynamics16). This results in the following expressions for updating the chemical potential fields

from relaxation stepn to n+1

ωn+1
A −ωn

A = λ
′ δβF

δφ n
B
+λ

δβF
δφ n

A
(S20)

= λ
′
[

χAB 〈N〉n φ n
A + ∑

k=s,a

χkB 〈N〉n φk −ωn
B +ηn

]

+ λ

[

χAB 〈N〉n φ n
B + ∑

k=s,a

χkA 〈N〉n φk −ωn
A +ηn

]
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A similar equation is used for relaxingωB, and this is written as

ωn+1
B −ωn

B = λ
δβF
δφ n

B
+λ

′ δβF
δφ n

A
(S21)

where the relaxation parameters are chosen such thatλ ′
< λ and λ > 0 and the quantitiesφ n

A,

φ n
B are calculated as functionals ofωn

A, ωn
B using their expression in terms ofq andq†. For the

evaluation of integrals over the chain lengths in Eqs. S17 and S18, we have used the Gaussian

quadrature scheme applied to the polydisperse di-block copolymer melts in Ref.9 For the results

presented in this work, we have found ten quadrature points to be sufficient to provide converged

results on the volume fraction profiles due to the fact that most of the calculations done in this work

are in the weak segregation limit. For some of our test runs done in the intermediate and strong

segregation, we have found that more quadrature points are required. The contribution of different

quadrature points to the total volume fraction of the A monomers in a thin film of A-B di-block

chains containing equal average volume fractions of the twoblocks is shown in Figure S1.

The pressure field is updated using the expression

ηn+1 =
1
2

[

ωn+1
A +ωn+1

B −χAB 〈N〉n +(χAB − ∑
k=s,a

{χkA +χkB})〈N〉n φk

]

(S22)

After updating the pressure field, its spatial averageV−1∫ η(~r) d~r is subtracted so as to improve

the algorithm’s stability. This has no effect on the equilibrium structure of the chains as the ther-

modynamic properties are invariant to a constant shift in the pressure field. With the new fields

ωA, ωB andη , the procedure is repeated until the saddle-point configurations are found.

Interpretation of neutron reflectivity profiles

As mentioned in the main text, for interpretation of neutronreflectivity profiles, we have followed a

three step procedure. In the first step, an initial estimate of the film thickness was obtained using the

spacing (in terms of momentum transfer vectorq) between two fringes in the neutron reflectivity
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Figure S1: Contribution of different Gaussian quadrature points to the total volume fraction of
the A monomers in a thin film of polydisperse A-B di-block copolymer chains containing equal
average fraction of A and B block. “Total” corresponds to thesum of all of the ten quadrature
points used for these calculations. These results were obtained by usingχAB 〈N〉n = 10,χsA =
χaB = 0.001,χaA = χsB = 0.35, PDIA = 1.36 and a film of thicknessL = 5Rg in the SCFT.

data. With these film thicknesses, the SCFT simulations with the hyperbolic tangent masking

functions (as discussed in the previous section) were used to determine the number of strata that

are present in the thin film. These simulations were run to mimic the PGMA-PVDMA-d6 systems

with PDIPGMA = 1.36 and different values ofχ parameters characterizing monomer-monomer and

monomer-substrate interactions. In the second step, a multi-layer model based on the number

of strata and density profiles was constructed to fit the neutron reflectivity data using Parratt’s

formalism.17 Predictions of the SCFT were used as an initial guess for the construction of multi-

layer models, which makes it easier to find the best fit. Note that the SCFT provides description

of density profiles at equilibrium in the thin films. However,it is not clear whether the multi-layer

models corresponding to the best fits represent equilibriumor non-equilibrium structure due to the

presence of kinetic effects in thin films. In order to distinguish between the two kinds of structures,

we have taken a third step by extracting “refined” masking functions (see Figure S2) and total
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Figure S2: Extraction of masking functions from the muli-layer model corresponding to the best
fit of neutron reflectivity profile for the three samples is described here. Figures (a),(c) and (e)
show the volume fraction profiles of different components used in the multi-layer model. As the
SCFT model doesn’t distinguish between the silicon and its oxide layer, the masking function
near these substrates represents the combined effects of these. In order to extract the masking
functions, volume fractions of silicon and oxide layer on itare added, which is shown in Figures
(b),(d) and (f); functions based on hyperbolic tangents areused to fit the volume fraction of air and
silicon-silicon oxide layers. These masking functions areused to run the SCFT simulations with
the different values ofχ parameters.
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film thicknesses from the best fits obtained using the two steps mentioned above and using these

functions and thicknesses to run another round of SCFT simulations.

Table S2: Characteristics of extracted masking functions (given by Eqs. S3 and S4) from mod-
eling of neutron reflectivity profiles.

zs (Å) ξs (Å) za (Å) ξa (Å)

L = 412.0 Å 37.40 5.96 449.19 5.38
L = 286.1 Å 37.38 7.69 329.93 6.11
L = 123.0 Å 26.51 5.48 149.47 2.54

In order to obtain the volume fraction (φk) profiles from the SLD profiles of the best fits,

we used the relationSLD(r) = ∑k=Air,Si,SiOx,PGMA,PVDMA−d6
SLDkφk(r), whereSLDk is the SLD

andφk(r) = mk(r)/ρ0 so thatρ0 is the referencemass density andmk is the mass density of the

component of typek. The SLDk were computed using the molecular formula and the reference

densityρ0. Furthermore,ρ0 was varied to make sure that the spatial average ofφk(r) is 0.5 for

the three samples studied in this work. The volume fraction profiles for the silicon (φSi), silicon

oxide (φSiOx) and air (φair) were used to extract the masking functions for the SCFT simulations,

as shown in Figure S2. In our SCFT model, the effects of siliconand silicon oxide layer appear

through a single masking function that is given by Eq. S3 and effects of monomer-air are modeled

by the masking function given as Eq. S4. In order to extract parameterszs andξs for the masking

function that describes the silicon substrate, we have added the volume fractions of silicon and

silicon oxide before fitting the profiles to Eq. S3. For the monomer-air interface, we have fitted

the volume fraction of air to Eq. S4. The fits are shown in Figure S2 for the three films studied

in this work and the fit parameters are presented in Table S2.

Volume fraction profiles for the PGMA and PVDMA-d6, obtained from the SLDs representing

the best fits for the neutron reflectivity data are compared with the profiles obtained from the SCFT

simulations. Different SCFT results were obtained for the volume fraction profiles inside the film

by varying fiveχ parameters. For setting up dimensionless parameters mimicking the three films,

we have estimatedRg = (〈N〉n l2/6)1/2 = 39.6 Å, corresponding to〈N〉n = 284 (instead of 290,

which preserves equal fractions of PGMA and PVDMA-d6) obtained from molecular characteri-
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Figure S3: Procedure for extracting theχ 〈N〉n = χPGMA−PV DMA−d6 〈N〉n from the volume fraction
profiles corresponding to best fits of neutron reflectivity profiles for the three films studied in this
work. Left figures showindependent fits to the volume fraction profiles near each substrate using
Eq. S23. Right figures show the volume fraction profiles after the addition of masking functions.
For the thickest films, flat region in the interior of the film can not be modeled by the analytical
profiles and the region is kept the same in obtaining the figureon the right hand side.
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zation of the PGMA-PVDMA-d6 di-block copolymers presented in Table 1 in the main text and

l =
√

lPGMAlPV DMA−d6 = 5.75Å, which is estimated using group contribution method (cf. Table

S1). Due to the fact that each SCFT calculation is computationally extensive and takes around four

hours to obtain converged density profiles on eight cores in parallel execution, it is not practical

to vary the fiveχ parameters in an arbitrary fashion. As it turns out, the polydisperse di-blocks

studied in this work lie in the weak and intermediate segregation limit. So, we have estimated the

χ parameters using an analytical theory applicable in the weak segregation limit18 (WSL). The

theory is a straightforward generalization from the case ofmonodisperse to polydisperse copoly-

mers. Details of the theory will be presented elsewhere. Volume fraction profiles obtained from

the modeling of neutron reflectivity data can be readily fit with the predicted functional form in the

so-called “ordered bulk” regime, in the parlance of Ref.18 and written as

φ j(z) = f j +

√

8χ̄ε
∆

E(z− z0)cos[q0(z− z0)+φ ] (S23)

E(z) =
1−µ(φ)exp

[

−
√

2z/ξ−
]

1+µ(φ)exp
[

−
√

2z/ξ−
] (S24)

µ(φ) =
1−q1(φ)
1+q1(φ)

(S25)

q1(φ) =

[

ξ 2
−
2

(

q0 tanφ +
1
λ

)2

+
H1ξ−

Bcosφ

√

∆
4χ̄ε

+1

]1/2

− ξ−√
2

[

q0 tanφ +
1
λ

]

(S26)

The parameterH1 characterizes the difference in the chemical potential between PGMA and

PVDMA-d6 to be at different surfaces. In the SCFT, this is equivalent tothe difference inχ jPGMA

and χ jPV DMA−d6 so that j = s,a. ε = (χ − χs)/χs = 2/(q2
0ξ 2

−), so thatχs is the value ofχ =

χPGMA,PV DMA−d6 at the stability limit of the disordered phase. For the physical interpretation of

other parameters appearing in Eq. S23, the interested reader should refer to Ref.18 For estimating

the χ parameters using Eq. S23, we have setλ → ∞, which, in turn, corresponds to setting the

“extrapolation length”a1 in Ref.18 to zero. We have done this by keeping in mind the fact that the

Hamiltonian used for the construction of the SCFT doesn’t have a term dependent on the “extrap-
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olation length”a1 in the surface free energy density. For these fits, each substrate is assumed to

behave independent of each other. As the analytical theory doesn’t take into account the depletion

zone, we have usedz0 as the starting point for the fitting and indexj corresponds to the compo-

nent near each wall.H1/B, tanφ ,ξ−,q−1
0 and

√

(4χ̄ε)/∆ are taken as the fit parameters, which are

shown in Table S3 for the silicon and air sides.

Table S3: Parameters obtained by fitting volume fraction profiles using Eq. S23

Silicon side Air side Silicon side Air side Silicon side Air side
L = 412.0 Å L = 412.0 Å L = 286.1 Å L = 286.1 Å L = 123.0 Å L = 123.0 Å

H1/B 1.32×10−3 1.75×10−3 3.33×10−4 5.93×10−11 2.37×10−3 1.54×10−3

tanφ −1.13×10−3 −3.21×10−7 −8.19×10−11 −2.16×10−1 −3.18×10−8 −6.70×10−3

ξ− 3.06×103 3.06×103 1.46×102 1.51×102 4.00×101 6.35×101

q−1
0 2.53×101 3.28×101 2.15×101 3.13×101 1.36×101 2.11×101

[

4χ̄ε
∆

]1/2
1.92×10−3 7.42×10−3 5.66×10−2 1.00×10−1 2.17×10−1 2.32×10−1

χ 〈N〉n 9.17 9.17 9.56 9.96 11.29 11.20

The fits are shown in Figure S3. From the fit parameters shown inTable S3,χ = χPGMA−PVDMA−d6 〈N〉n

is computed using the relation(χ −χs)/χs = 2/(q2
0ξ 2

−). χs 〈N〉n and the characteristic length scale

appearing at the stability limit of disordered phase in the polydisperse case have already been pre-

sented in the literature and we have reproduced those results, as shown in Figure S4. In the

process, we have found typographical errors in Eqs. (37) and(38) of Ref.,9 which are relevant for

the computation of stability limit of the disordered phase.In particular, the Eqs. (37) and (38) in

that work should read as

So
BB(q) =

2Nn

x2

[

{

1+
Nbx
Nn

}−α
−1+

αNbx
Nn

]

(S27)

So
AB(q) =

Nn

x2

[

exp

{

−NAx
Nn

}

−1

]

[

{

1+
Nbx
Nn

}−α
−1

]

(S28)

wherex = q2Nnb2/6. Here, we have used the same notation as in Ref.9

Note that we have used the assumption that volume fraction profile near each substrate is not

affected by the presence of the other substrate. Such an assumption facilitates the fitting and, at the

same time, provides useful information regarding the confinement effects. For example, the esti-
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mated values ofχPGMA−PV DMA−d6 〈N〉n based on this assumption are equal for the two substrates

in the case of the thickest film (i.e.,L = 412.0Å) studied in this work. However, for the thinner

films, values ofχPGMA−PV DMA−d6 〈N〉n determined from the fitting of volume fraction profiles near

each substrate differ from each other and reveals the presence of confinement effects. Nevertheless,

these estimates provide a useful range ofχPGMA−PV DMA−d6 〈N〉n, which we have used in the nu-

merical SCFT and computed the volume fraction profiles in filmscontaining polydisperse di-block

copolymers.
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Figure S4: Characteristics of the domain spacing (D = 2π/q⋆,q⋆ being the wave-vector at the
minimum of the free energy at the stability limit) andχs 〈N〉n in the polydisperse A-B di-block
copolymers as predicted by the weak segregation theory.D0 is the domain spacing at the stability
limit of monodisperse di-block copolymer melts. The di-block copolymers contains equal average
volume fractions of A and B monomers.
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