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Self-Consistent Field Theory (SCFT) for confined polydisperse
di-block copolymers

We consider a melt af polydisperse di-block copolymer chains in between two lpgrsubstrates.

For comparison with neutron reflectivity experiments, ofthe walls represents a silicon substrate

with a thin layer of silicon oxide (SiQ) and the other represents a polymer-air interface. We con-

struct the partition function for this particular systemropdeling interaction between polymers

and substrates by short-range Flory'parameter approachin the following, we consider A-B

di-block copolymer chains where the A block is polydispeard the B is monodisperse.
Representing the copolymer chains by continuous curﬁig@{ for a'" chain parameterized

by the chain contour variabkecontainingN, Kuhn segments), the Hamiltonian for A-B di-block

copoplymer chains confined between two substrates is widlte
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where the first term it is the chain stretching entropy given by the so-called “Geumsthread?

model for di-block chains with the same Kuhn segment lengtlefich block£ 1). In this work,

we have ignorethherent conformational asymmetry between A and B blocks. This isaoaable

approximation for the PGMA and PVDMAgblocks studied in this work based on our estimates

for their Kuhn segment lengthk (vherek =PGMA,PVDMA-d) using approximate relatiorh§5

Vi, Vk being monomeric molar volume. Molar volumes for the GMA andNWA-dg monomers

are estimated using group contribution methadd these estimates are presented in Table S1.
The second and third term in Eq. S2 represent interactiorg@sebetween different pairs

within Flory-type model, which is parameterized dliynensionless x;j for species of kind and j.

Po=S4_1Na/V is the total number density of monomers so tRatis the polymerization index

for chaina andV is the volume containing a finite amount of polymer chainstetan, pg is



Table S1: Estimates of molar volumes of GMA and VDMAa&hd Kuhn segment lengths based
on group contribution methdd

Monomeric molar volumew) (cm®/mol)  Kuhn segment lengthy) (nm)
PGMA 120.68 0.58
PVDMA-dg 125.47 0.59

used as a reference density to construct volume fractidiiggdrom number densities. Using the
relationt xij/fo = wij — (Wi +wj;j)/2 andwii = 1/(kp3), k being isothermal compressibilityit
turns out thatxij ~ 1/00. Similar dependence ¢fi; parameter on the reference density (or vol-
ume) is postulated in its estimation using solubility paetens® Note that referenceass density
(~ po) can be estimated from neutron reflectivity experiments t@s@rving stochiometry while
transforming scattering length densities (SLDs) into wodufraction profiles. This is presented in
the next section.

In Eq. S2, we have parameterized the interaction energydsgtwhe monomers and particles
in the substrates by parameters. Subscripgésands are used to represent air and silicon sub-
strate, respectively. For exampjaa represents the parameter for interaction betwesronomer
species and the air. Furthermore, regions where polymensict with substrates are described by
functionspy(T) for k = a, s, which are taken to be hyperbolic tangent centered at edehosithe
polymer melt. Such an approach implicitly assumes that #régbe density inside the substrates
is sufficiently large and continuous density profiles li&r) are appropriate models for the inter-
actions between particles in the substrate and monomenrg ttie polymer chains. Explicitly, the

substrate density functiod$ and monomer density operators are written as
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whereNg, is the number oA monomers ira'" chain andz represents the co-ordinate perpendic-
ular to substratesz, and, characterizes the location and width of polymer-subsiratfacial
region fork = s,a. Also, the choice of so-called masking functions (cf. Eqs3- S$4) fixes the
origin of the coordinate system at the silicon substrate@acks the di-block film on the positive
z-axis. Note that the SCFT presented here takes the maskiogdos as an input. For a refined
comparison with the neutron reflectivity experiments onvibleme fraction profiles in the interior
of films, we obtain these functions layposteriori analysis of reflectivity profiles, as detailed in
the next section.

The partition function for this system can be written as
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The delta function enforces an incompressibility conatramong A monomers, B monomers and
the substrates such that the total number density is kegtaan A field theory can be constructed

using standard particle to field transformations, whicllét@
Z — [ DlpalD[pg D[wx] D[we] D[p] & (8)

where p—ag(r) represents collective density variable angd.ag(r) is the conjugate field in-
troduced through the exponential representation of theadehctional d[px—ag — Pk=aB]. P
is the Lagrange’s multiplier which enforces incompredgybconstraint. Explicitly, BF, where

B = 1/kgT so thatkg is the Boltzmann constant aidis the temperature, is given by
BF = /df' [ﬁo_l(XABPA(r)PB(r) + 3 > Xawelk(r)pi(r)) —iwa(r)pa(r) —iwg(r)ps(r)
k=s,ak'=AB
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whereQq[iwa, iwg; Ny ] is the single-chain partition function far" chain, given by
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The equation foQ, is analogous to the Feynman-Kac formula in the path-intefgscription of

quantum mechani¢sand may be expressed as

Q = V! / dF da (, Nq) (S11)

whereV is total volume andjq (T, S) is a restricted chain partition function that may be caltada

as the solution to the modified diffusion equation

%Dan(F’, S) —iWA(M)da(T,S), 0<S<Nga

Js

024 (F,s) — iwg(F)da (F,S), Nga <S<Ng

subject to the initial conditioq, (T,0) = 1.
Evaluation of discrete sum in Eq. S9 for polydisperse blogotymers is computationally
extensive. In order to evaluate the sum, we approximate d@rbyntegral over continuous chain

length distribution as discussed in the next section.

Modeling polydispersity effects by continuous chain length distibution

In order to model di-block copolymers containing polydisgeA block and monodisperse B block,

we assume that the A block has the chain-length distribusgoka thenormalized Schulz-Zimm



distributiont®-19given by

N )V_l eXp[—N/NA] (813)
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wherev andNa control different properties of the distribution functioAlso, I is the Gamma
function. Assuming that the B block is monodisperse withdixkegree of polymerization=
Ng), the chain length distribution for the A-B di-block becanpag(N’) = pa(N’) for N’ <
(N —Ng) and pag(N’) = 0 otherwise. Using the continuous chain length distribytithe dis-
crete sum over chain index in Eq. S9 can be replaced by integrals over chain lengths via
n~1s0_1INQqiwa,iwg;Ny) = [ ANpag(N) InQ[iwa,iwg; N].

The field theoretic transformations and approximation aftcmious chain length distribution
lead to deconvolution of chain-chain interactions inta@rchain problem, where each chain inter-
acts with fieldsw. Even with these simplifications, numerical evaluatiorheffunctional integrals
in Eq. S8 poses a serious challenge. In the following, we@fprate these integrals by saddle-
point approximation so that the full partition function igpeoximated by its value when the fields
attain their “saddle-point” values. Noting that the sadabénts are located along the imaginary
axis in the complexv plane>!! we rescale these fields by writinga=i (N),,wa, ws=i (N),ws,
andn =i (N),p so thatwa, ws andn are purely real andN),, = VNa + Ng is the number aver-
age chain length for the di-block copolymers, assumingttaB block is monodisperse. Also,
volume fractions are defined lgx () = p«(T)/po for k= A, B, s,a.

The value of the fieldsga,@s,wa,ws,n] at the saddle-point satisfy the following set of equa-



tions
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where

Q = v [drqrN/(N),) (S19)

and we have usedy = n(N),/V along with a well-known factorization of the single-chaiatip
integral’12-13in writing Egs. S17 and S18. Furthermore, solution to theieged partition function
q', may be calculated as the solution to a modified diffusioraéiqn similar to Eq. S12 subject to
the initial conditiong’(7,s= N/ (N),) = 1.14

We have solved the set of equations representing saddh-pdine complex plane using an
iterative procedure devised by Drolet and Fredrickddn (so called “model A’ type relaxation
dynamics®). This results in the following expressions for updating themical potential fields

from relaxation stemton+1
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A similar equation is used for relaxings, and this is written as

OBF ' OBF
n+1_ .n
Wy Wy A 560 +A 5qf (S21)

where the relaxation parameters are chosen suchithatA andA > 0 and the quantitiegy,

¢f are calculated as functionals af}, wg using their expression in terms gfand q’. For the
evaluation of integrals over the chain lengths in Eqs. SX¥ 818, we have used the Gaussian
quadrature scheme applied to the polydisperse di-blocklgorer melts in Ref For the results
presented in this work, we have found ten quadrature painive tsufficient to provide converged
results on the volume fraction profiles due to the fact thagtrobthe calculations done in this work
are in the weak segregation limit. For some of our test rumedo the intermediate and strong
segregation, we have found that more quadrature pointequered. The contribution of different
guadrature points to the total volume fraction of the A moeasrin a thin film of A-B di-block
chains containing equal average volume fractions of theltlwoks is shown in  Figure S1.

The pressure field is updated using the expression

1
n"tt = 5 Wt 4+ B ™ — Xag (), + (XaB — > {Xiat Xie}) (N)n B (S22)
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After updating the pressure field, its spatial aversgé [ n(F) dr is subtracted so as to improve
the algorithm’s stability. This has no effect on the equilim structure of the chains as the ther-
modynamic properties are invariant to a constant shift exgressure field. With the new fields

wa, we andn, the procedure is repeated until the saddle-point configursare found.

Interpretation of neutron reflectivity profiles

As mentioned in the main text, for interpretation of neutreitectivity profiles, we have followed a
three step procedure. In the first step, an initial estimftteedfilm thickness was obtained using the

spacing (in terms of momentum transfer veagpbetween two fringes in the neutron reflectivity
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Figure S1: Contribution of different Gaussian quadraturatgao the total volume fraction of
the A monomers in a thin film of polydisperse A-B di-block cbpoer chains containing equal
average fraction of A and B block. “Total” corresponds to uen of all of the ten quadrature
points used for these calculations. These results werenalotdy usingxag (N), = 10, xsa =
XaB = 0.001, Xapn = Xs8 = 0.35, PDl = 1.36 and a film of thicknesk = 5Ry in the SCFT.

data. With these film thicknesses, the SCFT simulations viiéhhyperbolic tangent masking
functions (as discussed in the previous section) were wsddtermine the number of strata that
are present in the thin film. These simulations were run toimihe PGMA-PVDMA-d¢ systems
with PDIpgua = 1.36 and different values gf parameters characterizing monomer-monomer and
monomer-substrate interactions. In the second step, a-laydr model based on the number
of strata and density profiles was constructed to fit the pauteflectivity data using Parratt’'s
formalism1’ Predictions of the SCFT were used as an initial guess for thetaetion of multi-
layer models, which makes it easier to find the best fit. No&¢ tthe SCFT provides description
of density profiles at equilibrium in the thin films. Howevieiis not clear whether the multi-layer
models corresponding to the best fits represent equilibaunon-equilibrium structure due to the
presence of kinetic effects in thin films. In order to distiigh between the two kinds of structures,

we have taken a third step by extracting “refined” maskingfioms (see Figure S2) and total
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Figure S2: Extraction of masking functions from the muijrdamodel corresponding to the best
fit of neutron reflectivity profile for the three samples is désed here. Figures (a),(c) and (e)
show the volume fraction profiles of different componentsdus the multi-layer model. As the

SCFT model doesn't distinguish between the silicon and iideojayer, the masking function

near these substrates represents the combined effectes#. thn order to extract the masking
functions, volume fractions of silicon and oxide layer oaré added, which is shown in Figures
(b),(d) and (f); functions based on hyperbolic tangentsiael to fit the volume fraction of air and
silicon-silicon oxide layers. These masking functionsased to run the SCFT simulations with

the different values of parameters.
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film thicknesses from the best fits obtained using the twosstegntioned above and using these
functions and thicknesses to run another round of SCFT stionka

Table S2: Characteristics of extracted masking functioivefgby Eqs. S3 and S4) from mod-
eling of neutron reflectivity profiles.

zz(A) &MA) z(A) &A
L=4120 A 3740 596 44919 538
L=2861A 3738 769 32993 611
L=1230 A 2651 548 14947 254

In order to obtain the volume fractiorg) profiles from the SLD profiles of the best fits,
we used the relatio®LD(r) = ¥ y_air 5,50, PGMA PVDMA—dg LDk (1), whereSLDy is the SLD
andg(r) = mg(r)/po so thatpg is the referencenass density andry is the mass density of the
component of typ&k. The SLD, were computed using the molecular formula and the reference
densitypg. Furthermorepy was varied to make sure that the spatial average©f) is 0.5 for
the three samples studied in this work. The volume fractiafilps for the silicon ¢g), silicon
oxide (@so,) and air (ur) were used to extract the masking functions for the SCFT sitiauls,
as shown in Figure S2. In our SCFT model, the effects of sileoa silicon oxide layer appear
through a single masking function that is given by Eq. S3 dfetts of monomer-air are modeled
by the masking function given as Eq. S4. In order to extracdmpaterss andés for the masking
function that describes the silicon substrate, we have datlte volume fractions of silicon and
silicon oxide before fitting the profiles to Eq. S3. For the mower-air interface, we have fitted
the volume fraction of air to Eq. S4. The fits are shown in Feg8® for the three films studied
in this work and the fit parameters are presented in Table S2.

Volume fraction profiles for the PGMA and PVDMAgdobtained from the SLDs representing
the best fits for the neutron reflectivity data are comparehl thie profiles obtained from the SCFT
simulations. Different SCFT results were obtained for thieine fraction profiles inside the film
by varying fivex parameters. For setting up dimensionless parameters kingithe three films,
we have estimateBy = ((N),1?/6)1/?2 = 39.6 A, corresponding tdN),, = 284 (instead of 290,

which preserves equal fractions of PGMA and PVDM#&-dbtained from molecular characteri-
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Figure S3: Procedure for extracting theN) , = Xpema—pvbma—ds (N),, from the volume fraction
profiles corresponding to best fits of neutron reflectivitgfipes for the three films studied in this
work. Left figures showndependent fits to the volume fraction profiles near each substrate using
Eq. S23. Right figures show the volume fraction profiles afteraddition of masking functions.
For the thickest films, flat region in the interior of the filmncaot be modeled by the analytical
profiles and the region is kept the same in obtaining the figarthe right hand side.
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zation of the PGMA-PVDMA-g di-block copolymers presented in Table 1 in the main text and

| = \/IPGMAIP\,DMA,% =5.75A, which is estimated using group contribution method (Gable
S1). Due to the fact that each SCFT calculation is computalfiypextensive and takes around four
hours to obtain converged density profiles on eight coresamall@l execution, it is not practical
to vary the fivex parameters in an arbitrary fashion. As it turns out, the ghslyerse di-blocks
studied in this work lie in the weak and intermediate sedgiegdimit. So, we have estimated the
X parameters using an analytical theory applicable in thekvgegregation limit® (WSL). The
theory is a straightforward generalization from the casmohodisperse to polydisperse copoly-
mers. Details of the theory will be presented elsewhereundel fraction profiles obtained from
the modeling of neutron reflectivity data can be readily fibwihe predicted functional form in the

so-called “ordered bulk” regime, in the parlance of R&and written as

@(2) = f1+\/8)A(€E Zp) coS[0o(z— 20) + @] (S23)
L u(@)exp|-v22/& |

E(z = (S24)
1+ p(g)exp| —v2z/& |

HO) = oo (25

() = 52( tan +1)2+ Hid A+1 1/2—5—{ tan +1] (S26)

Qalp) = 5 Qotang h Bcosp\/ 4xe NG Qotang )

The parameteH; characterizes the difference in the chemical potentialveeh PGMA and
PVDMA-dg to be at different surfaces. In the SCFT, this is equivaletiéadifference inyjpema

and XjpvpMA—dg SO thatj =s,a. € = (X — Xs)/Xs = 2/(g3&2), so thatys is the value ofy =
XPGMA PVDMA—dg at the stability limit of the disordered phase. For the ptgisinterpretation of
other parameters appearing in Eq. S23, the interestedrrsladeld refer to Ret® For estimating
the x parameters using Eq. S23, we have/set> o, which, in turn, corresponds to setting the
“extrapolation length’a; in Ref.1® to zero. We have done this by keeping in mind the fact that the

Hamiltonian used for the construction of the SCFT doesn’ehaterm dependent on the “extrap-
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olation length”a; in the surface free energy density. For these fits, eachraidss assumed to
behave independent of each other. As the analytical themegrdt take into account the depletion
zone, we have usezy as the starting point for the fitting and indg¢xorresponds to the compo-
nent near each walH; /B, tang, é_,q, L and\/w are taken as the fit parameters, which are

shown in Table S3 for the silicon and air sides.

Table S3: Parameters obtained by fitting volume fractioffilpousing Eq. S23

Silicon side Air side Silicon side Air side Silicon side Air side
L=4120A L=4120A L=2861A L=2861A L=1230A L=1230A
Hi/B  132x103 175x103 333x10% 593x10 237x10° 154x10°3
tang  —1.13x10°% -321x107 -819x10' —216x10! —-3.18x10% —6.70x10°3
& 3.06x 10° 3.06x 10° 1.46x 107 1.51x 10? 4.00x 10 6.35x 10t
(o 2.53x 10! 3.28x 10 2.15x 10t 3.13x 10t 1.36x 10t 2.11x 10t

—11/2
[% 192x1073  742x10°3  566x102  100x101 217x10t  232x 107"
X (N, 9.17 917 956 9.96 1129 1120

The fits are shown in Figure S3. From the fit parameters showfaisle S3 X = Xpema—PvDMA—ds (N)
is computed using the relatidy — xs)/Xs = 2/(3€2). xs(N), and the characteristic length scale
appearing at the stability limit of disordered phase in tblygisperse case have already been pre-
sented in the literature and we have reproduced those sesgitshown in  Figure S4. In the
process, we have found typographical errors in Egs. (37)38idof Ref.2 which are relevant for
the computation of stability limit of the disordered phabeparticular, the Egs. (37) and (38) in

that work should read as

L(q) — %[{1+NN—T(}_G—1+GNN:X] (S27)
Sel0) = i on{ -1} -1 {1+NN—t;X}_a—1] (528)

wherex = g?Nqyb?/6. Here, we have used the same notation as in°Ref.
Note that we have used the assumption that volume fractiofiigonear each substrate is not
affected by the presence of the other substrate. Such ampsen facilitates the fitting and, at the

same time, provides useful information regarding the cenfient effects. For example, the esti-

14



mated values ofpgma—PvDMA-dg (N), Dased on this assumption are equal for the two substrates
in the case of the thickest film (i.el,= 4120A) studied in this work. However, for the thinner
films, values of{pgma—pvbma—ds (N), determined from the fitting of volume fraction profiles near
each substrate differ from each other and reveals the preséconfinement effects. Nevertheless,
these estimates provide a useful rangg@éma—pvoma-—ds (N),, Which we have used in the nu-
merical SCFT and computed the volume fraction profiles in fitmstaining polydisperse di-block

copolymers.

Ul

S

Domain spacing
w

N

@) (b)

Figure S4: Characteristics of the domain spacibg<2rt/q*,q* being the wave-vector at the
minimum of the free energy at the stability limit) and(N),, in the polydisperse A-B di-block
copolymers as predicted by the weak segregation th&gyys the domain spacing at the stability
limit of monodisperse di-block copolymer melts. The didka@opolymers contains equal average
volume fractions of A and B monomers.
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