Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in waste water samples

K. Chelladurai, ^a K. Muthupandi, ^b S.M. Chen, ^{a, c*} M. Ajmal Ali, ^c P. Selvakumar, ^a A. Rajan, ^b P. Prakash, ^{b**} Fahad M. A. Al-Hemaid, ^c Bih-Show Lou^{d***}

^aElectroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao

East Road, Taipei 106, Taiwan.

^bDepartment of Chemistry, Thiagarajar College, Madurai-625009, Tamilnadu, India.

^cDepartment of Botany and Microbiology, College of Science, King Saud University Riyadh

11451, Saudi Arabia

^dChemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan. E-mail: blou@mail.cgu.edu.tw

Supplementary information

Fig. S1 UV-Vis spectra of silver nanoparticles recorded as a time dependent reaction of 50 mL of *Justicia glauca* leaf extract mixed with the 100 mL of aqueous solution of 1 mM AgNO₃ at room temperature.

Fig. S2 FT-IR spectrum of Justicia glauca leaf powder (a) and Green synthesized AgNPs (b).

Fig. S3 Calibration plot of E_{pc} vs. logv.