Electronic Supporting Information

Exceptional thermal stability of undoped anatase TiO₂ photocatalysts prepared by a solvent-exchange method

Igor Krivtsov^{*a,b}, Marina Ilkaeva^{a,c}, Viacheslav Avdin^{b,c}, Zakariae Amghouz^d, Sergei A. Khainakov^d, José R. García^a, Eva Díaz^e and Salvador Ordoñez^e

 ^a Department of Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo, Spain
^b Nanotechnology Education and Research Center, South Ural State University, 454080, Chelyabinsk, Russia
^c Department of Chemistry, South Ural State University, 454080 Chelyabinsk, Russia
^d Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo, Spain
^e Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain

Fig. S1. Powder XRD patterns of the as-prepared samples

Fig. S2 DR UV-vis spectra of the as-prepared TiAq, TiAc and TiEt samples

Fig. S3 TG/DTG/DTA curves of the (A) TiAq, (B) TiAc and (C) TiEt samples

Figure S4. EELS spectra of some selected TiEt and TiAq samples; the inset shows the magnification of the nitrogen K-edge.

Fig. S5. Histograms of particle-size distribution for the **TiEt** (a) and **TiAq** (b) samples thermally treated at 800 °C

Fig. S6. Titanium L2,3 core-Loss and oxygen K core-Loss normalized EELS spectra from the TiEt (blue) and TiAq (red) samples treated at 800 °C

Fig. S7. SEM-images of the **TiAq** (a), **TiAc** (b), **TiEt** (c) samples thermally treated at 800 °C and the **TiEt** treated at 1000 °C (d)

Fig. S8. Photocatalytic decomposition of **MB** in presence of the catalysts thermally treated at 500 °C

Fig. S9. N_2 Adsorption-desorption isotherm at 77 K for the sample **TiAq** calcined at 800 °C (BET surface area: 9 m²·g⁻¹; mesopores volume: 0.026 cm³·g⁻¹)

Fig. S10. N₂ Adsorption-desorption isotherm at 77 K for the sample **TiEt** calcined at 800 °C (BET surface area: 34 m²·g⁻¹; mesopores volume: 0.50 cm³·g⁻¹)

Fig. S11. Powder XRD patterns of Evonik P25 thermally treated at different temperatures