Supporting information

Graphitic carbon nitride $(g-C_3N_4)$ as a metal-free catalyst for thermal decomposition of ammonium perchlorate

Qi Li,¹ Yi He,^{2,*} Rufang Peng,¹,*

¹(State Key Laboratory Cultivation Base for Non-metal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, P, R, China) ²(College of Defence Technology, southwest University of Science and Technology, Mianyang, 621010, P, R, China)

^{*} Corresponding author; Fax: 86-816-2419011; Tel.: 86-816-2419011 Email: pengrufang@swust.edu.cn yhe2014@126.com

Figure S1. X-ray photoelectron spectroscopy of $g-C_3N_4$ sample and residual $g-C_3N_4$.

Figure S2. Electronic band structure of g-C₃N₄.

Figure S3. DTA curves of pure dicyandiamide (a), and AP mixed with 10 wt% dicyandiamide (b) at a heating rating of 10 °C•min⁻¹.

As shown in Figure S3, the decomposition temperature of dicyandiamide (DCDA) at about 255.7 °C, demonstrated that DCDA has no effect on ammonium perchlorate (AP). Compared with the AP with 10 wt% DCDA (Figure S3b), the decomposition

temperature of AP at 381 °C, (g- C_3N_4 was produced by the decomposition of DCDA at 381 °C), which is similar to previous report (Figure 2). Above results confirmed that g- C_3N_4 is unique among metal free substance in promoting AP decomposition in background studies.

Figure S4. FT-IR spectra of crude g-C₃N₄ (a) and treated g-C₃N₄ with HClO₄ (b). In order to demonstrate the acid base reaction is involved in the mechanism, g-C₃N₄ was mixed with HClO₄ and incubated for 5 min, followed by centrifugation and airdrying. The treated g-C₃N₄ was further investigated by FT-IR. As shown in Figure S4, there was an obvious change of the FT-IR spectra of crude g-C₃N₄ and treated g-C₃N₄. The peaks at 1146, 1120 and 1096 cm⁻¹ are the characteristic peaks of ClO₄⁻⁻. Therefore, we confirmed that acid base reaction is involved in the catalytic mechanism.