Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

## Fabrication and Physical Properties of Self-Assembled Ultralong Polymer/small molecule Hybrid Microstructures

## Jing Zhang,<sup>a</sup> Chengyuan Wang,<sup>a</sup> Wanqiao Chen,<sup>a</sup> Jiansheng Wu,<sup>a</sup> Qichun Zhang<sup>a,b\*</sup>

<sup>a</sup>School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798,

Singapore.

<sup>b</sup>Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637371, Singapore

\*Correspondence: <u>qczhang@ntu.edu.sg</u>

## **Table of Contents**

| Figure S1. PL spectra of P3HT, TCNQ and P3HT/TCNQ complex.        | (S2) |
|-------------------------------------------------------------------|------|
| Figure S2. Optical images of P3HT film and TCNQ microplates.      | (83) |
| Figure S2. Detailed optical images of numbers of P3HT-TCNQ hybrid | (S4) |
| Figure S2. Power X-ray diffraction pattern                        | (85) |

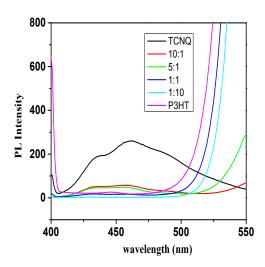
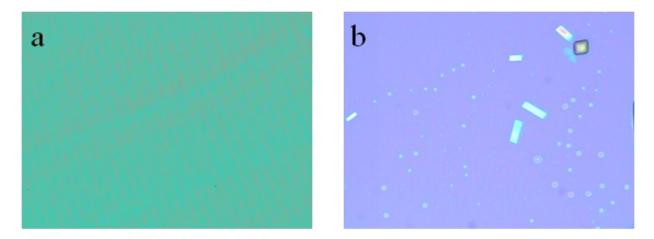
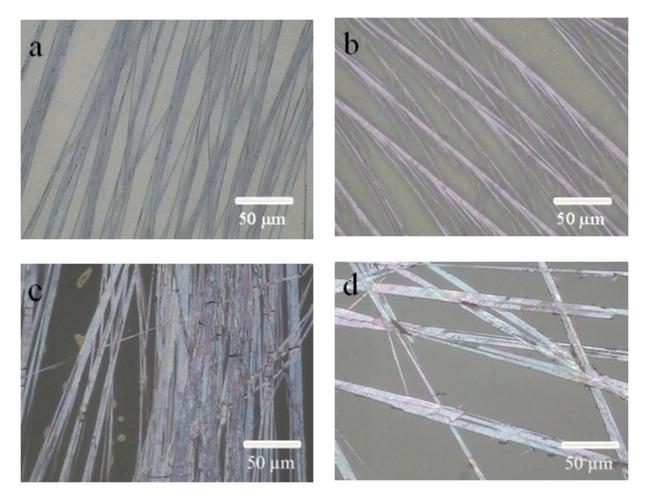





Figure S1. PL spectra of P3HT, TCNQ and P3HT/TCNQ complex.



**Figure S2.** Optical images of P3HT film and TCNQ microplates obtained by the drop-casting method. We observed that the polymer molecules gathered to form continuous film and TCNQ tend to pack into microplates after solvent evaporation.



**Figure S3.** Detailed optical images of numbers of P3HT-TCNQ hybrid microstructures obtained by the drop-casting method with different mass ratio: 10:1 (a), 5:1 (b), 1:1 (c), 1:10 (d). With the decrease of polymer content, hybrid wires tend to gather and form confluent plate-like architecture.

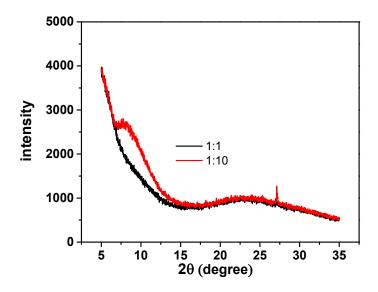



Figure S4. Power X-ray diffraction pattern of the P3HT/TCNQ hybrid.